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Abstract. This paper is based on the author’s thesis, “Kernel Regression for
Binary Response Data”. We consider kernel-based estimators with additional
weights of the regression functions in nonparametric binomial and binary re-
gressions. Firstly, in the binomial regression with a single covariate and a fixed
covariate design, we introduce a weighted Nadaraya-Watson estimator and its
bias adjusted estimator discussed in Okumura and Naito [13]. Secondly, in the
binary regression with multiple covariates and a random covariate design, we
propose weighted local linear estimators.

1. Introduction

In various fields such as pharmacology, toxicology, econometrics etc, researchers
are often interested in understanding the relationship between a binary response
and a single covariate/covariate vector. The formal description of the relationship
is as follows. Suppose that the response Y of a subject, which is encoded as Y = 1 if
it exhibits interest and Y = 0 if it does not, is observed at each covariate/covariate
vector x. The relationship can be expressed as

Pr(Y = 1|x) = p(x),

where p(x) is a function of x. The function p(x) is referred to as the dose response
curve in biostatistics. The aim of this paper is to estimate p(x) with respect to x,
which has various applications to practical situations.

This study focuses on the kernel smoothing methods used in nonparametric
binary/binomial regression. The Nadaraya-Watson estimator (NWE) is one of the
most popular and simplest estimators, which is referred to as the local constant
estimator. Copas [2] discussed the application of NWE in the binary settings with
a single covariate (Staniswalis and Cooper [17] and Müller and Schmitt [10]). The
ordinary local linear estimator (OLLE) is superior to NWE in terms of the mini-
max efficiency and the boundary effect when the response variable is continuous in
general (Fan [3] and Fan and Gijbels [4]). NWE is bounded on [0, 1] while OLLE is
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not necessarily bounded. Aragaki and Altman [1] used the truncated LLE bounded
in binary settings with a single covariate. To avoid the boundary problem, the local
linear logistic estimator (LLLE) is considered, which is a special case of the local
polynomial quasi-likelihood estimators discussed by Fan et al. [5]. Since LLLE
is defined through the optimal solution of an optimization problem, an iterative
calculation is required to derive the solution in practice. Moreover, in the case of
single covariate settings, Signorini and Jones [16] proposed an NW-type estimator
involving two bandwidths and Hazelton [7] proposed bias reduction for NWE.

We propose the kernel estimators of p(x) with additional weights for binary and
binomial regression data. In most studies on binomial settings, the dimension of
the covariate is assumed to be one. On the other hand, in binary settings, it is
not necessarily so. Hence, we consider the settings with multiple covariates, i.e.,
a covariate vector. This paper deals with the binomial regression problem with a
single covariate and the binary regression problem with multiple covariates.

The remainder of this paper is organized as follows. In Section 2, the standard
kernel smoothing methods are summarized from a general viewpoint, and NWE,
OLLE and LLLE are given.

Sections 3 and 4 investigate the use of kernel estimators in nonparametric bi-
nomial regression with a single covariate. In Section 3, for the binomial data, a
weighted NWE is derived by considering the variance of the proportion of responses
at each covariate. Moreover, the efficient bias-adjusted estimator proposed in Oku-
mura and Naito [13] is reviewed. In addition, an application of the bias-adjusted
estimator to the quantal bioassay, discussed in Okumura and Naito [12], is also
given. In Section 4, two methods for data-driven bandwidth selection for the bias-
adjusted estimator discussed in Okumura and Naito [14] are described: the rule of
thumb (ROT) method and the plug-in (PI) method. A scale adjustment and an
efficient ROT method are discussed to improve the performance of the proposed
method from practical viewpoints. The asymptotic properties of the proposed PI
bandwidth selector are given.

Sections 5 and 6 are concerned with the kernel estimators in the nonparametric
binary regression with multiple covariates. In particular, we will discuss the effi-
ciency of weighting for the local linear type estimators (LLTEs). In Section 5, the
LLTEs with weights are proposed, and their asymptotic properties are given. In
Section 6, the ROT method and the PI method for data-driven bandwidth selec-
tion are discussed as in Section 3. Finally, we conclude the paper. Proofs of all
theorems are omitted.

2. Regression with binary data

2.1. Binomial regression models. In bioassay, binomial responses are often ob-
served at K levels designed through a single covariate, for example, a drug dose
or a toxic dose. The sample can be expressed as independent random variables
Yi(i = 1, . . . , K) having the binomial distribution Bi(Ni, p(xi)) corresponding to
covariates xi, where p is unknown. Then, the binomial data is generally expressed
as B1 = {(xi, Yi, Ni) : i = 1, . . . , K}. We consider the equispaced fixed design.
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However, this assumption is not essential and can be relaxed by the manipulation
described in Müller and Schmitt [10]. Without lack of generality, the covariates xi

are assumed to be

xi =
i− 1

K − 1
, i = 1, ..., K.

Then, a regression model to estimate p(x) is given as Ȳi = p(xi) + ϵ̄i, i = 1, . . . , K,
where Ȳi = Yi/Ni and ϵ̄i = Ȳi −p(xi). The data set in this setting can be expressed

as B2 = {(xi, Ȳi) : i = 1, . . . , K}. If Yi can be expressed as Yi =
∑Ni

j=1 Yij, where Yij

has the Bernoulli distribution Bi(1, p(xi)) for j = 1, . . . , Ni, then another regression
model can be given as Yij = p(xi) + ϵi, i = 1, . . . , K, j = 1, . . . , Ni, where ϵi =
Yij − p(xi). Then, B3 = {(xi, Yij) : i = 1, . . . , K, j = 1, . . . , Ni} is a general
expression of the binary data.

2.2. Binary regression models. We consider the random design of multiple
covariates. In this case, the outcome at each covariate vector is mostly ob-
served as a binary scale. The binary data can be expressed as follows. Let
(X1, Y1), . . . , (Xn, Yn) be independent random vectors, where Xi = (Xi1, . . . , Xid)

T

is a d-dimensional random vector with a probability density function φ(x) and Yi

is a binary random variable. In addition, assume that Pr(Yi = 1|Xi = x) = p(x)
for all i, where p(x) is an unknown function of x. The function p(x) is to be esti-
mated. A binary regression model is given as Yi = p(Xi) + εi, i = 1, ..., n, where
εi = Yi − p(Xi). Then, B4 = {(Xi, Yi) : i = 1, . . . , n} is a general expression of the
binary data with multiple covariates.

2.3. Kernel regression approaches. We will introduce the standard kernel re-
gression estimators. These can be derived from a general viewpoint. Assume that
(X1, Y1), . . . , (Xn, Yn) are observed independently, where Xi is a d-dimensional ran-
dom/nonrandom vector and Yi has the distribution Bi(1, p(Xi)). The kernel re-
gression approaches are the methods to estimate p(x) for a fixed x by fitting a
parametric approximation to the observations (Xi, Yi) using the weighted sum of
divergence measures. In general, the standard kernel regression approaches can be
described as follows. Let D(s, t) be a measure that specifies the divergence of s
and t and Zi = (1, (Xi −x)T )T for i = 1, . . . , n. We consider the following criterion
for estimation:

ℓ(βr : g,D) =
n∑

i=1

KH(Xi − x)D(Yi, g
−1(βT

r Zi)),

where H is a symmetric positive definite d×d-matrix called the bandwidth matrix,

KH(x) = |H|−1/2ψ(H−1/2x),

ψ(x) is the nonnegative d-variate kernel function with
∫
ψ(x)dx = 1, βr =

(β0, rβ1, . . . , rβd)
T for r = 0, 1 and g−1(βT

r Zi) is a parametric approximation to
p(Xi) in a neighborhood of x. The kernel estimators are obtained by minimiz-
ing (2.1). Let ℓ0(β0; g,D) = ℓ(β0; g,D) and ℓ1(β; g,D) = ℓ(β1; g,D), where
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β = (β0, β1, . . . , βd)
T . The simplest kernel estimator is NWE that is defined as

p̂NW (x;H) =

∑n
i=1wiYi∑n
i=1wi

,

where wi = KH(Xi − x). By setting g1(t) = t and D1(s, t) = (s− t)2, we see that

ℓ0(β0; g1, D1) =
n∑

i=1

wi(Yi − β0)
2.

Then, p̂NW (x;H) is given as β̂0 that minimizes ℓ0(β0; g1, D1). OLLE can be ex-
pressed as

p̄OLL(x;H) = eT
1(d+1)(X

T
xKxXx)

−1XT
xKxY,

where ek(d+1) is the (d + 1) column vector having 1 in the kth entry and 0 in all
other entries,

Xx =

 1
...
1

(X1 − x)T

...
(Xn − x)T

 ,

Y = (Y1, . . . , Yn)T and Kx = diag(w1, . . . , wn). Set

ℓ1(β; g1, D1) =
n∑

i=1

wi(Yi − βTZi)
2.

Then, p̄OLL(x;H) is given as β̂0 of β̂ = (β̂0, . . . , β̂d)
T that minimizes ℓ1(β; g1, D1).

Fan et al. [5] developed local quasi-likelihood estimators (LQLEs) for generalized
linear models with one-parameter exponential families, which can be constituted
naturally for binomial regression models. Their method estimates η(x) locally
under the assumption that p(x) = g−1(η(x)). We assume that g−1(t) is strictly
increasing for any t satisfying 0 < g−1(t) < 1 and − log g−1(t) and − log(1−g−1(t))
are convex. Because of its mathematical tractability and efficiency, we only consider
the local linear estimator (LLE) derived in their theory, which corresponds to the
case p = 1 and r = 0 in their notations. Set D2(s, t) = −{s log t+(1−s) log(1−t)},
then,

(2.1) ℓ1(β; g,D2) = −
n∑

i=1

wi{Yi log g−1(βTZi) + (1 − Yi) log(1 − g−1(βTZi))}.

The LLE η̂LL(x;H) of η(x) is given by β̂0 of β̂ that minimizes this ℓ1(β; g2, D2).
The local maximum likelihood estimator (LMLE) of p(x) is given as

p̂LML(x;H) = g−1(η̂LL(x;H)).

Note that β̂ = η̂LL(x;H) cannot be expressed explicitly. This derivation requires

iterative calculations. A method to identify the existence of β̂ is proposed in
Okumura [11]. In particular, if g−1(t) is the logistic function G(t) = et/(1 + et),
LMLE is referred to as LLLE, and is denoted as p̂LLL(x;H).
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3. Nonparametric binomial regression

We will discuss estimators for the binomial regression models with a single co-
variate described in Section 2.1.

3.1. Nadaraya-Watson type estimators. The NWE of p(x) based on data B3

can be written as

p̂NW (x;h) =

∑K
i=1wiYi∑K
i=1wiNi

(cf. Lloyd [8]), where wi = ϕh(x) = h−1ϕ(h−1(xi − x)), ϕ(x) is a kernel function
and h is the bandwidth. Note that p̂NW (x;h) can be constructed based on the
binomial data B1. Throughout this paper, we adopt as ϕ(x) a symmetric univariate
probability density function whose support is [−1, 1] with

∫
xϕ(x)dx = 0 and∫

x2ϕ(x)dx > 0.
In addition, the NWE of p(x) based on data B2 is given as

p̂M(x;h) =

∑K
i=1wiȲi∑K
i=1wi

.

This estimator was proposed in Müller [9], and utilized in Staniswalis and Cooper
[17] in the multivariate covariate setting. Note that p̂M(x;h) is equal to p̂NW (x;h)
if Nis are equal. From the viewpoint of local polynomial smoothing (Ruppert and
Wand [15]), p̂NW (x;h) based on B3 is characterized as the minimizer of

ℓ0(β0; g1, D1) =
K∑

i=1

wi

Ni∑
j=1

(Yij − β0)
2(3.1)

with respect to β0. Similarly, p̂M(x;h) based on B2 is characterized as the minimizer
of

ℓ0(β0; g1, D1) =
K∑

i=1

wi(Ȳi − β0)
2(3.2)

with respect to β0. In both (3.1) and (3.2), the differences in the variations of Yijs
are not considered in the weights wis. However, it seems natural that the weights
should be related to the variations of the responses. Since Ȳi has the variance
V [Ȳi] = vi/Ni at each xi, where vi = pi(1 − pi), our approach for constructing the
estimator of p(x) is to use the weighted kernels defined by Niwi/vi, i = 1, . . . , K,
which provides the criterion

K∑
i=1

Niwi

vi

(Ȳi − β0)
2

with respect to β0. Through the minimization, we have the ideal estimator p∗(x;h)
as

p∗(x;h) =

∑K
i=1 Yiwi/vi∑K
i=1Niwi/vi

.
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The phrase ‘ideal ’ means that p∗(x;h) contains the vis that are unknown. There-
fore, vi must be estimated and a reliable estimator should be built up by substi-
tuting vis with the appropriate estimators v̂is. To obtain the estimator of vi, we
adopt a pilot estimator of pi defined by

p̂i =
Yi +

√
Ni/2

Ni +
√
Ni

,

which is known as the Bayes estimator with respect to the Beta distribution
Beta(s, t) with s = t =

√
Ni/2 that has the minimax property. Hence, the es-

timator of p(x) is given by

p̂(x;h) =

∑K
i=1 Yiwi/v̂i∑K
i=1Niwi/v̂i

,

where v̂i = p̂i(1 − p̂i), i = 1, . . . , K. We call p̂(x;h) the weighted NWE (WNWE).

3.2. Theoretical performance. In this section, we develop a theory for the be-
havior of the proposed estimator and other estimators. In subsection 3.3.1, we
consider their performance in the near exact situation. Subsection 3.3.2 considers
the performance under a situation familiar in nonparametric smoothing.

3.2.1. Near exact performance. It is known that the consistent property of kernel
estimators is guaranteed under the situation where h tends to zero as K and Nis
go to infinity. However, their consistency is not held under such a near exact
situation where h and K are fixed and Nis go to infinity. We assess the behavior
of the estimators through their mean squared errors (MSEs) under the near exact
situation. First, under the situation where h, K and Nis are fixed, the MSEs of
basic estimators p̂NW (x;h) and p̂M(x;h) can be easily obtained as follows:

MSE[p̂NW (x;h)] =

[∑K
i=1Nipiwi∑K
i=1Niwi

− p(x)

]2

+

∑K
i=1Niviw

2
i

(
∑K

i=1Niwi)2
,(3.3)

MSE[p̂M(x;h)] =

[∑K
i=1 piwi∑K
i=1wi

− p(x)

]2

+

∑K
i=1 viw

2
i /Ni

(
∑K

i=1wi)2
.(3.4)

Note that (3.4) and (3.5) can be derived without any asymptotic manipulations.
In this sense, these are exact evaluations. On the other side, one assumption is
needed to obtain the MSE of p̂(x;h).

Assumption 1 K and h are fixed, and N =
∑K

i=1Ni → ∞, Ni/N → 1/K for
i = 1, 2, ..., K.

We explain the reason for making this assumption. In fact, there is often a case
where the size of K is limited. In such a situation, one is interested in the behavior
of the estimators when the number of subjects increases. Assumption 1 expresses
the minimum situation wherein the MSE of p̂(x;h) is calculable. Thus, we can
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evaluate the performance of the estimators under the near exact situation. Direct
calculations including Taylor expansion yield the following.

Theorem 3.1. Under Assumption 1, we have

MSE[p̂(x;h)] =

[∑K
i=1Niwi/(1 − pi)∑K

i=1Niwi/vi

− p(x)

]2

+2

{
G21√
N

G22

N

}[∑K
i=1Niwi/(1 − pi)∑K

i=1Niwi/vi

− p(x)

]

+
G2

21

N
+

∑K
i=1Niw

2
i /vi

(
∑K

i=1Niwi/vi)2
+
H

N
+ o(

1

N
),

where

G1 =
1

B2

∑
i̸=j

Njwiwj

Nv2
i vj

{
p3

i − pj(1 − 3vi)
}
− 1

B3

∑
i,j

NiNjw
2
iwj

N2v3
i vj

(pi − pj)(1 − 2pi)
2,

G21 = − 1

2B2

∑
i,j

Nj

√
Niwiwj

N
√
Nv2

i vj

(pi − pj)(1 − 2pi)
2,

G22 = G1 +
1

4B2

∑
i,j

Niwiwj

Nv3
i vj

(pi − pj)(1 − 2pi)
2(1 − vi)

− 1

4B3

∑
i,j,k

Nj

√
NiNkwiwjwk

N2v2
i vjv2

k

(pi − pj)(1 − 2pi)
2(1 − 2pk)

2.

H = − 2

B3

∑
i,j

NiNjw
2
iwj

N2v2
i vj

(pi − pj)(1 − 2pi)

+
1

B4

∑
i,j,k

NiNjNkw
2
iwjwk

N3v3
i vjvk

(1 − 2pi)
2(pi − pj)(pi − pk),

B =
K∑

i=1

Niwi

Nvi

.

Theorem 3.1 evaluates the behavior of p̂(x;h) among the covariates, and plays a key
role in deriving the asymptotic properties of the estimators discussed in subsection
3.3.2. The proof of Theorem 3.1 is given in Okumura and Naito [13].

3.2.2. Asymptotic performance. We focus on the estimators discussed above from
the viewpoint of the estimation of p(x). Then, it is natural to consider a nonpara-
metric smoothing situation such as the smoothing parameter tends to zero as the
sample size grows. Indeed, no estimator including the bandwidth h is endowed with
consistency without such assumptions. The necessary assumptions are as follows.

Assumption 2 h → 0 as K → ∞ and Ni = N1 → ∞ for i = 2, . . . , K in such a
manner that Kh3+ε = O(1) and N1h

2−ε = O(1) for some 0 < ε < 1.
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Assumption 3 The support of the kernel ϕ(x) is [−1, 1] and ϕ(x) has continuous
and bounded derivatives of order m for any x in [−1, 1] with

(−1)k

∫ 1

−1

xℓϕ(k)(x)dx =

 0, ℓ < k or ℓ = k + 1,
ℓ!, ℓ = k,

cℓ,k, otherwise,

where 0 ≤ k ≤ m and the cℓ,ks are non-positive constants.

Note that the symmetric beta densities on the interval [−1, 1] satisfy Assumption
3 (cf. Wand and Jones [18]):

ϕ(x) = ϕB(x; r) = {22r+1B(r + 1, r + 1)}−1(1 − x2)r1{|x|<1}(x), r = 0, 1, . . . ,

where B(·, ·) is the beta function. Particular cases are the uniform, Epanechnikov,
biweight and triweight kernels for r = 0, 1, 2 and 3, respectively.

Assumption 4 The curve p(x) has continuous and bounded derivatives of order
m+ 2 for any x in [0,1], and satisfies 0 < p(x) < 1 for any x in [0, 1].

Note again that p̂NW (x;h) is equal to p̂M(x;h) under these assumptions, since
Ni = N1 for i = 2, . . . , K. Under Assumptions 2–4, the MSE of p̂NW (x;h) is given
by

MSE[p̂NW (x;h)] = AMSE[p̂NW (x;h)] +O

(
h

K
+ h6

)
,

where

AMSE[p̂NW (x;h)] =
h4µ2(ϕ)2

4
p(2)(x)2 +

v(x)R(ϕ)

N1Kh
,

v(x) = p(x)(1 − p(x)), R(ϕ) =
∫ 1

−1
ϕ(z)2dz and µr(ϕ) =

∫ 1

−1
zrϕ(z)dz. Using the

Taylor expansion, we obtain the MSE expression of the ideal estimator p∗(x;h) as

MSE[p∗(x;h)] = AMSE[p∗(x;h)] +O

(
h

K
+ h6

)
,

where

AMSE[p∗(x;h)] = h4µ2(ϕ)2f(x)2 +
v(x)R(ϕ)

N1Kh
(3.5)

and

f(x) =
1

2

{
p(2)(x) − 2(1 − 2p(x))p(1)(x)2

v(x)

}
.

Next, we focus on the proposed estimator p̂(x;h). We have the following.

Theorem 3.2. Under Assumptions 2–4, we have

MSE[p̂(x;h)] = AMSE[p̂(x;h)] +O

(
h

K
+ h6

)
,

AMSE[p̂(x;h)] = AMSE[p∗(x;h)] − h2

N1

(1 − 2p(x))µ2f(x).
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The proof of Theorems 3.2 is also given in Okumura and Naito [13]. The term
v(x)R(ϕ){N1Kh}−1 appears in all MSE expressions above, which is the leading
term of the variances of p̂NW (x;h), p∗(x;h) and p̂(x;h). Thus, we note that the
essential difference in these estimators appears in the bias. We can immediately
obtain the following.

Corollary 3.3. If (1−2p(x))
{
v(x)p(2)(x) − (1 − 2p(x))p(1)(x)2

}
≥ 0 for x ∈ [0, 1],

then

MSE[p∗(x;h)] ≤ MSE[p̂NW (x;h)]

by neglecting the terms of O(hK−1 + h6) and smaller.

The proposed WNWE p̂(x;h) is constructed by plugging the variance estimators
into p∗(x;h). However, Theorem 3.2 reveals that there is a difference of O(h2N−1

1 )
between the AMSE expressions of p̂(x;h) and p∗(x;h). We also understand that
the effect of the plug-in variance estimators appears as O(h2N−1

1 ) in the sense of
MSE. The order of O(h2N−1

1 ) is important since it dominates the order in the MSE
of p̂(x;h) under Assumption 2. Here, we discuss a manipulation that makes the
MSE of p̂(x;h) close to that of p∗(x;h). We have from the calculations presented
in the Appendix of Okumura and Naito [13] that

Bias[p̂(x;h)] = h2µ2f(x) − 1 − 2p(x)

N1

+ o(h2).

Hence, the bias-adjusted version of p̂(x;h) can be obtained as

p̃(x;h) =
1

N1

+

(
1 − 2

N1

)
p̂(x;h).

Then, we have the following.

Theorem 3.4. Under Assumptions 2–4, we have

MSE[p̃(x;h)] = AMSE[p∗(x;h)] +O

(
h

K
+ h6

)
.

Further, we have the following asymptotic normality of p̃(x;h):

Theorem 3.5. Assume that Assumptions 2–4 hold and also that there exists a
constant ρ ≥ 0 such that N1Kh

5 → ρ2. Then,√
N1Kh {p̃(x;h) − p(x)} →D N(ρf(x), v(x)R(ϕ)).

It can be easily verified that p̂NW (x;h) also has asymptotic normality and that its
asymptotic variance equals v(x)R. The same argument for p̂LML(x;h) can been
seen in Theorem 2 of Fan et al. [5]. These facts along with Theorem 3.5 reveal
that p̃(x;h) has asymptotically the same precision for estimating p(x) as p̂NW (x;h)
and p̂LML(x;h), and we again note that p̂LML(x;h) does not always exist. Hence,
the use of p̃(x;h) is justified since it does not have a fault on existence and it
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has the same asymptotic precision. Using Theorem 3.5, we obtain an asymptotic
100(1 − β)% confidence interval for p(x) as

(3.6)

[
p̃(x;h) − Φ−1(1 − β

2
)V (x), p̃(x;h) + Φ−1(1 − β

2
)V (x)

]
,

where V (x) =
√
p̃(x;h)(1 − p̃(x;h))R(ϕ)/(N1Kh) and Φ(z) is the standard normal

distribution function. The bias adjusted estimator p̃(x;h) has a nonzero asymptotic
bias ρf(x)µ2 in Theorem 3.5 if f(x) ̸= 0 and the bandwidth is optimally selected
as h ∼ (N1K)−1/5. However, this bias will be small for α = 0.5 since p(2)(x) is close
to 0, that is, f(x) is close to 0, if p(x) can be well approximated by symmetric
and sigmoid models such as the probit models or the logistic models. On the other
hand, the bias may also varnish since ρ = 0 for a small h. Hence, we neglect the
bias term when the confidence interval is constituted as in Müller and Schmitt [10].

3.3. Quantal Bioassay. Okumura and Naito [12] proposed quantal bioassay using
p̃(x;h). We assume that p(x) is strictly monotone, and here discuss the estimation
for Θα = p−1(α)(0 < α < 1). The estimator of Θα is similarly defined as the way
of Müller and Schmitt [10]. Put Mα = {x ∈ [0, 1] : p̃(x;h) = α, p̃(1)(x;h) > 0},
then the estimator of Θα is defined by Θ̃α = (infMα +supMα)/2. Note that if α is
increasing, then Θ̃α is also increasing. The proposed estimator Θ̃α has consistent
property.

Theorem 3.6. Let p(x) be strictly monotone. Under Assumptions 2–4,

sup
α:Θα∈[0,1]

|Θ̃α − Θα| → 0 in probability .

The asymptotic normality of Θ̃α is given as follows.

Theorem 3.7. Let p(x) be strictly monotone. Assume that there exists a constant
ρ ≥ 0 such that KN1h

5 → ρ2. Then under Assumptions 2–4, for any Θα ∈
[h, 1 − h], √

KN1h(Θ̃α − Θα)−→
d
N

(
ρf(Θα)µ2

p(1)(Θα)
,
α(1 − α)R(ϕ)

p(1)(Θα)2

)
.

We also neglect the bias term from the same reasons in the construction of the con-
fidence interval of p(x) given by (3.6). Hence an asymptotic 100(1−β)% confidence
interval for Θα can be obtained asΘ̃α −

Φ−1(1 − β
2
)

p̃(1)(Θ̃α)

√
α(1 − α)R(ϕ)

KN1h
, Θ̃α +

Φ−1(1 − β
2
)

p̃(1)(Θ̃α)

√
α(1 − α)R(ϕ)

KN1h

 .
This confidence interval is incalculable for all α such that Mα = ∅.
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4. Bandwidth selection for WNWE

4.1. Bandwidth selection. From (3.5), the integrated mean squared error
(IMSE) with a weight function κ(x) of the bias-adjusted estimator p̃(x;h) can
be approximated under Assumptions 1–3 with m ≥ 0 as follows:

IMSE[p̃(·;h)] =

∫
E[(p̃(x;h) − p(x))2]κ(x)dx

≈ h4µ2(ϕ)2

∫
κ(x)f(x)2dx+

R(ϕ)

N1Kh

∫
κ(x)v(x)dx.(4.1)

In Section 4, we employ κ(x) = 1[δ1,1−δ2](x), where 1[δ1,1−δ2](x) is the indicator func-
tion of the interval [δ1, δ2] for some small positive constants δ1 and δ2. Therefore,
the optimal bandwidth hopt that minimizes the right hand side of (4.1) is given as

(4.2) hopt = C(ϕ)

(
θ2

θ1

)1/5

(N1K)−1/5,

where C(ϕ) = {R(ϕ)/(4µ2(ϕ)2)}1/5, θ1 =
∫
κ(x)f(x)2dx and θ2 =

∫
κ(x)v(x)dx.

The unknown amounts θ1 and θ2 that are functionals of p must be estimated. First,
in order to construct an estimator of θ1, we adopt

p̂(i)(x; g) =

∑K
i=1 Yiϕ

(i)
g (xi − x)∑K

i=1Niϕg(xi − x)

as a simple convenient estimator of p(i)(x) having the bandwidth g. The NWE for

B1 is p̂(0)(x; g). Then, a consistent estimator of f(x) is given by

f̄(x; g) =
p̂(2)(x; g)

2
− (1 − 2p̂(0)(x; g))p̂(1)(x; g)2

τK−r(p̂(0)(x; g))(1 − τK−r(p̂(0)(x; g)))
,

where r is a positive integer and

τc(t) =

 c, t ≤ c,
t, c < t < 1 − c,
1 − c, t ≥ 1 − c.

Note that it can be easily shown to hold that τK−r(p̂(0)(x; g))−p̂(0)(x; g) = op(K
−r).

Hence, our proposed estimator of θ1 is given by

θ̄1(g) =

∫
κ(x)f̄(x; g)2dx.

To select the optimal bandwidth g, we make the following assumption instead of
Assumption 2.

Assumption 5 g → 0 as K → ∞ and Ni = N1 → ∞ for i = 2, . . . , K in such a
manner that Kg2m+2+ε = O(1) and N1g

1−ε = O(1) for some 0 < ε < 1.

Then, we have the following theorem:
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Theorem 4.1. Under Assumptions 3–5 with m = 2, we have

(4.3) MSE[θ̄1(g)] ≃
[
g2∆1(p, p

(1), p(2), p(3), p(4)) +
∆2(p)

N1Kg5

]2

+
∆3(p)

N1K2g9
,

where

∆1 = ∆1(p, p
(1), p(2), p(3), p(4))

=

∫
κ(x)

[
µ4(ϕ

(2))p(2)(x)p(4)(x)

48
− µ2(ϕ)(1 − 2p(x))(1 − 2v(x))p(1)(x)4p(2)(x)

v(x)3

−2µ2(ϕ
(1))(1 − 2p(x))2p(1)(x)3p(3)(x)

3v(x)2
+
µ2(ϕ)(1 − 2v(x))p(1)(x)2p(2)(x)2

2v(x)2

−(1 − 2p(x))p(1)(x)

v(x)

(
µ4(ϕ

(2))p(1)(x)p(4)(x)

24
− µ3(ϕ

(1))p(2)(x)p(3)(x)

3

)]
dx,

∆2 = ∆2(p) =
R(ϕ(2))

4

∫
κ(x)v(x)dx,

∆3 = ∆3(p) =
R(ϕ(2) ∗ ϕ(2))

4

∫
κ(x)p(x)2v(x)dx,

ϕ ∗ ϕ(x) =

∫
ϕ(t)ϕ(x− t)dt.

Futhermore, it holds that

K
√
N1g9{θ̄1(g) − θ1 − g2∆1 − (N1Kg

5)−1∆2} →d N(0,∆3).

In the right hand side of (4.3), the order of the first term, which is the asymptotic
squared bias (ASB) of θ̄1(g), is larger than that of the second term, which is the
asymptotic variance. Therefore, the optimal bandwidth gopt that minimizes the
ASB is given by

gopt = gopt(∆1,∆2) = C1(∆1)

(
∆2

|∆1|

)1/7

(N1K)−1/7,

where

C1(∆1) =

{
1 , ∆1 < 0,

(5/2)1/7 , ∆1 > 0.

We adopt

θ̄2 =
1

K∗

∑
i

∗ Ni

Ni − 1
(Ȳi − Ȳ 2

i )

as an estimator of θ2, where K∗ is the number of xis which belongs to [δ1, 1 − δ2]
and

∑
i
∗ designates the summation for those xis. Then, under Assumptions 3 and

4 with n ≥ 0, it can be shown that θ̄2 − θ2 = Op((N1K)−1/2). Hence, from (4.2), a
selection of hopt can be performed on the basis of the following:

h̄PI = h̄PI(gopt) = C(ϕ)

(
θ̄2

θ̄1(gopt)

)1/5

(N1K)−1/5.
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The relative error of h̄PI has the following property.

Theorem 4.2. Under Assumptions 3–5 with m = 2,

N
−1/7
1 K5/14

{
h̄PI

hopt

− 1 +
1

5(N1K)2/7
θ−1
1 (c2∆1 + c−5∆2)

}
→D N

(
0,

∆3

25c9θ2
1

)
,

where c = (N1K)1/7gopt = C1(∆1)(∆2/|∆1|)1/7.

From Theorem 4.2, we immediately have

h̄PI

hopt

− 1 = OP

(
1

(N1K)2/7

)
.

4.2. Implementation. The subsection briefly illustrates the proposed practical
algoritheorem to select the bandwidth from the data. Our devices in the algorithe-
orem include a scale adjustment pointed out by Yang and Tschernig [19] and the
GSK approach discussed in Grizzle et al. [6] for the ROT step.

4.2.1. Scale adjustment. As pointed out in Yang and Tschernig [19], the bandwidth
that minimizes an ASB as described in Section 4.1 is smaller than the optimal
bandwidth that minimizes an asymptotic MSE (AMSE) in finite samples. Hence,
they recommended using a bandwidth slightly larger than the bandwidth that
minimizes the ASB.

We describe an algoritheorem to ditermine the constant ρ∗ > 1 such that g†opt =

ρ∗gopt, where g†opt is the optimal bandwidth minimizing the AMSE of θ̄1(g) which

is the right hand side of (4.3). Denote the AMSE[θ̄1(ρg)] as α(ρ : g,∆1,∆2,∆3),
which can be regarded as a function of ρ. We apply the Newton–Raphson method
to the derivation of the solution minimizing α(ρ : gopt,∆1,∆2,∆3), where the
existence of the minimizer is guaranteed from the form of the function. The m-th
approximation of ρ is given by

ρ[m] = ρ[m−1] − α′(ρ[m−1] : gopt,∆1,∆2,∆3)

α′′(ρ[m−1] : gopt,∆1,∆2,∆3)
,

where the derivatives are calculated with respect to ρ and ρ[0] = 1. From the fun-
damental result of the Newton–Raphson method, it follows that ρ∗ = limm→∞ ρ[m].

In practice, we adopt ĝ†opt = ρ̂∗ĝROT, where ĝROT and ∆̂i(i = 1, 2, 3) are quantities
given by using a ROT method in the sequent discussion and ρ̂∗ is the minimizer of
α(ρ : ĝROT, ∆̂1, ∆̂2, ∆̂3). Finally, we have the data-driven bandwidth

h̃†PI = h̄PI(ĝ
†
opt).

4.2.2. GSK approach for ROT. The quantities gopt and ∆i(i = 1, 2, 3) are deter-
mined by the ROT method using certain parametric estimation. In the parametric
estimation for p(x), it will be desirable that estimators of p(x) take values in (0, 1)
for any x and can be derived without iterative calculations. We present here a
method of ROT endowed with such desirable properties. The method we employ
is called the GSK approach given in Grizzle et al. [6], which is based on a gener-
alized least squares method. The method is as follows. We consider the following
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polynomial logistic regression model: p(x; β) = G(zT β), where z = (1, x, . . . , xr)T

and unknown parameter β = (β0, β1, . . . , βr)
T . The estimator β̂ is obtained by

minimizing the weighted sum of squared errors
∑K

i=1Niv̂i(G
−1(p̂i) − zT

i β)2, where
p̂is are the Bayes estimators given in Section 3.1 and xi = (1, xi, . . . , x

r
i )

T . We

can explicitly express β̂ as β̂ = (XT Ω̂−1X)XT Ω̂−1η, where Z = (z1, . . . , zK)T ,

Ω̂−1 = diag[N1v̂1, . . . , NK v̂K ] and η = (G−1(p̂1), . . . , G
−1(p̂K))T . Note that the

empirical logit G−1(Ȳi) is asymptotically normally distributed with mean zT
i β and

variance (Nivi)
−1 and is not well defined if Ȳi is 0 or 1 in practice. The ROT esti-

mator of p(x) and its ith derivative p(i)(x) are obtained by p(x; β̂) and p(i)(x; β̂),

respectively. We can obtain the estimators ∆̂i(i = 1, 2, 3) of ∆i(i = 1, 2, 3), re-
spectively, by substituting the ROT estimators defined above to the corresponding
parts in the definitions of ∆i(i = 1, 2, 3). Hence, we have ĝROT = gopt(∆̂1, ∆̂2).

4.2.3. Fully ROT method. As a simpler alternative method, the ROT method for
hopt can be directly applied. This bandwidth selector is written as

hROT = C(ϕ)

( ∫
κ(x)v̂(x; β̂)dx∫
κ(x)f̂(x; β̂)2dx

)1/7

(N1K)−1/7,

where v̂(x; β̂) and f̂(x; β̂) are the ROT estimators of v(x) and f(x), respectively.
Note that hROT is not consistent in general.

5. Nonparametric binary regression

5.1. Kernel estimators. We consider the binary regression problem for the bi-
nary data B4. Let us introduce the standard kernel-based estimators of the re-
gression function p(x). Set wi = Kh(Xi − x) = Πd

j=1h
−1
j ϕ(h−1

j (Xij − xj)), where
h = (h1, . . . , hd). Then, the NWE can be expressed as

p̂NW (x;h) =

∑n
i=1Kh(Xi − x)Yi∑n
i=1Kh(Xi − x)

.

Table 1. Asymptotic conditional biases of three kernel-based estimators.

Estimator Asymptotic bias

p̂NW (x;h)
1

2
µ2(ϕ)

d∑
j=1

h2
j

{
pjj(x) + 2

pj(x)φj(x)

φ(x)

}
p̆LLT (x;h)

1

2
µ2(ϕ)

d∑
j=1

h2
jpjj(x)

p̂LLL(x;h)
1

2
µ2(ϕ)

d∑
j=1

h2
j

{
pjj(x) − (1 − 2p(x))pj(x)2

p(x)(1 − p(x))

}
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In order to derive local linear type estimators (LLTEs), we employ the following
criterion:

(5.1) qω(β;x) =
n∑

i=1

ω(Xi)Kh(Xi − x)(Yi − βTZi)
2,

where β = (β0, β1, . . . , βd)
T and ω(t) is a weight function of t. Let LLTE be defined

as β0 of β = (β0, β1, . . . , βd)
T that minimizes qω(β;x). LLTE can be expressed as

the following matrix formula:

p̄LLT (x;h) = eT
1(d+1)(X

T
xWxXx)

−1XT
xWxY,

where Wx = ΩKx, in which Ω = diag(ω(X1), . . . , ω(Xn)) and Kx = diag(Kh(X1−
x), . . . , Kh(Xn − x)). Note that p̄LLT (x;h) depends on ω. The truncated version
of LLTE proposed by Aragaki and Altman [1] can be expressed as p̆LLT (x;h) =
τ0(p̄LLT (x;h)). In particular, OLLE can be defined by p̆LLT (x;h) with ω(t) = 1
for any t, which is expressed as p̂OLL(x;h) = τ0(p̄OLL(x;h)), where p̄OLL(x;h) =
eT

1(d+1)(X
T
xKxXx)

−1XT
xKxY.

The LLLE of p(x) is defined by p̂LLL(x;h) = G(eT
1(d+1)β̂) if the following solution

exists uniquely:

β̂ = arg min
β

n∑
i=1

Kh(Xi − x)
{
Yi log(G(βTZi)) + (1 − Yi) log(1 −G(βTZi))

}2
.

The following asymptotic properties of p̂NW (x;h), p̆LLT (x;h) and p̂LLL(x;h) can
be obtained through the standard calculations used in kernel smoothing. The
asymptotic conditional variances of the three estimators given Ẋ = (X1, . . . ,Xn)
are equal and are given as

(5.2)
R(ϕ)d

nh1 · · ·hd

v(x)

φ(x)
,

where v(x) = V [Yi|Xi = x] = p(x)(1−p(x)). The asymptotic conditional biases of

the three estimators given Ẋ are shown in Table 1, where pj(x) and pjj(x) denote
the first and second order partial derivatives of p(x) with respect to the jth variable

xj, respectively. The asymptotic conditional biases of LLTEs given Ẋ depending
on ω obtained using (5.1) are found to be the same. If φ(x) is not the uniform
density, then the bias of NWE only includes functionals of φ. The bias of LLLE
is more complex than that of LLTEs. If p(x) is a logistic linear model, then the
asymptotic bias of LLLE becomes 0.

5.2. Weighted local linear estimators. We will focus on LLTE because it has
several advantages. In ordinary parametric linear regression with heteroskedastic-
ity, the advantage of weighting by inverse variance is given by the Gauss-Markov
theorem. To improve the inverse variance weighting in local linear regression, we
consider p̆LLT (x;h) weighted through ω(x) = ωα(x), where

ωα(t) = ηα(p(t)) = {p(t)α(1 − p(t))1−α}−2
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for some α(0 < α < 1), which we refer to as the weighted local linear estimator
(WLLE) for 100α%. The corresponding estimator is given by p̆ωα(x;h). If α =
0.5, then ω(t) = v(t)−1. The difference between the variances of p̂OLL(x;h) and
p̆ωα(x;h) is asymptotically given by the following theorem.

Theorem 5.1. Under Assumptions 6–8 in Appendix, we have

V [p̂OLL(x;h)|Ẋ] = V [p̆ωα(x;h)|Ẋ] +
ν(ϕ)

nh1 · · ·hd

d∑
j=1

h2
jδαj(x) + op

(
∥h∥2

nh1 · · ·hd

)
,

where ∥h∥ =
√

hTh, ν(ϕ) = R(ϕ)d−1{µ2(ϕ
2) −R(ϕ)µ2(ϕ)} and

δαj(x) =
2

φ(x)2p(x)2(1−α)(1 − p(x))2α

× [(α− p(x))p(x)(1 − p(x)) {−2φj(x)pj(x) + φ(x)pjj(x)}
+
{
−α(1 − α) + (α− p(x))2

}
φ(x)pj(x)2

]
.

It can be shown that µ2(ϕ
2) − R(ϕ)µ2(ϕ) < 0 when ϕ(x) = ϕB(x, r) r = 1, 2, ....

Hence, ν(ϕ) < 0. Let Aα =
∩d

j=1{x : δαj(x) ≤ 0}. For x ∈ Aα, it can be expected

that the variance of p̆ωα(x;h) is smaller than that of p̂OLL(x;h). At least, for x
with α = p(x), δαj(x) ≤ 0 for any j.

Moreover, if φ is uniform on [0, 1]d and the value of p(x) is close to α and pjj(x)
is rather small, that is, p(x) is rather flat, p̆ωα(x;h) can be superior to p̂OLL(x;h)
in terms of variance.

Furthermore, if ϕ(x) = ϕB(x; 0), then µ2(ϕ
2)−R(ϕ)µ2(ϕ) = 0. Note that ϕB(x; 0)

is a uniform kernel. In addition, if α = 0.5, then we obtain the following exact
result:

V [p̂OLL(x;h)|Ẋ] ≥ V [p̆ω0.5(x;h)|Ẋ].

In practice, p̆ωα(x;h) requires the estimation of Ω = Ωα, where Ωα = diag(
ωα(X1), . . . , ωα(X1)). Let p̂LLT (x;h) denote p̆LLT (x;h) in which Ω is replaced by

Ω̂, where Ω̂ = diag(ω̂(X1), . . . , ω̂(Xn)) is an estimator of Ω. Then, we obtain the

conditional AMSE of p̂LLT (x;h) given Ẋ in general as follows.

Theorem 5.2. Under Assumptions 6–9 in Appendix, if E[n−1tr{Kx(Ω̂−Ω)2}|Ẋ] =
Op(||h||4), we have

AMSE[p̂LLT (x;h)|Ẋ] =
µ2(ϕ)2

4

{
d∑

j=1

h2
jpjj(x)

}2

+
R(ϕ)d

nh1 · · ·hd

v(x)

φ(x)
.

Let Ω̂α = diag(ω̂α(X1), . . . , ω̂α(Xn)), where ω̂α(Xi) = ηα(τn−1(p̂OLL(Xi;h))).

Then, it follows that E[n−1tr{Kx(Ω̂α − Ωα)2}|Ẋ] = Op(||h||4). Practical WLLE
for 100α% can be expressed as p̂ωα(x;h) = τ0(p̄ωα(x;h)), where

p̄ωα(x;h) = eT
1 (XT

xŴxXx)
−1XT

xŴxY
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and Ŵx = Ω̂αKx. On the other hand, assume that p̃(x) is a parametric es-
timator of p(x) and p̃∗(x) is the best parametric estimator of p̃(x). Let Ω̃α =
diag(ω̃α(X1), . . . .ω̃α(Xn)) and Ω̃∗

α = diag(ω̃∗
α(X1), . . . .ω̃

∗
α(Xn)), where ω̃α(Xi) =

ηα(p̃(Xi)) and ω̃∗
α(Xi) = ηα(p̃∗( Xi)). If the true function p(x) is not included in a

family of parametric models, then E[n−1tr{Kx(Ω̃α − Ωα)2}|Ẋ] does not converge

to 0 in general but it will follow that E[n−1tr{Kx(Ω̃α − Ω̃∗
α)2}|Ẋ] = Op(n

−1) =
op(||h||4) under certain regularity conditions. Hence, if the parametric fitting is

possible, the parametric estimator Ω̃α can be used as an alternative for Ω̂α. We
obtain an alternative estimator for p̂ωα(x;h) by replacing Ω̂α with Ω̃α, and denote
it as p̆ωα(x;h). Moreover, we adopt p̂ω(x;h) and p̃ω(x;h) as the estimators of p(x)
for any x, where p̂ω(x;h) is p̂ωα(x;h) with α = τn−1(p̂OLL(x;h)) and p̃ω(x;h) is
p̃ωα(x;h) with α = p̃(x). It can also be shown that the condition of Theorem 5.2
is satisfied for p̂ω(x;h) and p̃ω(x;h).

6. Bandwidth selection for WLLEs

6.1. Preliminaries. Using a known weight function κ(x), the weighted IMSE of
p̂LLT (·;h) is defined as

IMSE[p̂LLT (·;h)] = E[

∫
{(p̂LLT (x;h) − p(x)}2κ(x)φ(x)dx].

From the result of Theorem 5.2, the asymptotic IMSE of p̂LLT (·;h) is given as

(6.1) AIMSE[p̂LLT (·;h)] =
µ2(ϕ)2

4

d∑
α=1

d∑
λ=1

h2
αh

2
λCαλ +

R(ϕ)d

nh1 · · ·hd

B,

where Cαλ =
∫
κ(x)pαα(x)pλλ(x)dx and B =

∫
κ(x)v(x)dx. Under some regularity

assumptions, given in the Appendix of Yang and Tschernig [19], it is confirmed
that the optimal bandwidth exists uniquely. In such a case, the solution can be
calculated numerically. We will define the optimal bandwidth as follows:

hopt = arg min
h

AIMSE[p̂LLT (·;h)].

We will present the ROT and PI methods for bandwidth selection using (6.1),
which are constructed as in Yang and Tschernig [19]. In practice, Cαλ and B are
to be estimated. For each α, λ = 1, . . . , d, let

C̄αλ = C̄αλ(pαα, pλλ) =
1

n

n∑
i=1

pαα(Xi)pλλ(Xi)κ(Xi),

B̄ = B̄(p, φ) =
1

n

n∑
i=1

(Yi − p(Xi))
2κ(Xi)

φ(Xi)

and

AIMSE[h; {C̄αλ(pαα, pλλ)}, B̄(p, φ)] =
µ2(ϕ)2

4

d∑
α=1

d∑
λ=1

h2
αh

2
λC̄αλ +

R(ϕ)d

nh1 · · ·hd

B̄.
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To derive the ROT and PI bandwidth selectors, C̄αλ and B̄ are estimated in para-
metric and nonparametric approaches, respectively.

6.2. ROT method. To estimate p(x) and its higher order partial derivatives,
Yang and Tschernig [19] have proposed blocked polynomial fitting. A polynomial
model is fitted to each block constructed by separating the covariate space. Mal-
lows’s Cp is used to select the optimal separation for the various separated blocks.
Since p(x) is known to be bounded on (0, 1), we will carry out the blocked fitting
of the following logistic quadratic model:

p(x; γ) = G

(
γ0 +

d∑
j=1

2∑
k=1

γ2(j−1)+kx
k
j

)
.

The maximum likelihood estimation of the model in each block is required. We
will select the optimal separation of blocks by the Bayesian information criterion.
The maximum likelihood estimator (MLE) of p(x) obtained by this approach is
denoted as p̃(x). As an estimator of φ(x), we adopt the uniform density function,
which is denoted as φ̇(x). Therefore, the ROT bandwidth of h is given by

ĥROT = arg min
h

AIMSE[h; {C̄αλ(p̃αα, p̃λλ)}, B̄(p̃, φ̇)].

6.3. PI method. We will use the estimator with a scalar bandwidth proposed by
Yang and Tschernig [19] as an estimator of pαα(x). The estimator of pαα(x) can
be expressed as p̂αα(x; g) = 2eT

(α+1)(5d−1)(X
T
αΞXα)−1XT

αΞY, where g = (g, ..., g),

Ξ = diag(Kg(X1 − x), . . . , Kg(Xn − x)), Xα is the n× (5d− 1) matrix defined by

Xα = [1, {(Xij − xj)
2}1≤j≤d, {(Xij − xj)(Xiα − xα)}j ̸=α, {(Xij − xj)}1≤j≤d,

{(Xij − xj)(Xiα − xα)2}j ̸=α, {(Xij − xj)
2(Xiα − xα)}j ̸=α, (Xiα − xα)3]ni=1

and [(ai1, . . . , aim)]ni=1 = (aij)n×m. Put Ĉαλ(gαλ) = n−1
∑n

i=1 p̂αα(Xi; gαλ)
p̂λλ(Xi; gαλ) for each α, λ = 1, . . . , d. Then, from the result of Yang and Tsch-

ernig [19], an expression of the asymptotic MSE of Ĉαλ(gαλ) can be expressed as

(6.2) AMSE[Ĉαλ(gαλ)] =

{
gαλDαλ +

BVαλ

ngd+4
αλ

}2

+
σ2

αλ

n2gd+2
,

in which

Dαλ =

∫
{pαα(x)bλλ(x) + pλλ(x)bαα(x)}φ(x)κ(x)dx,

Vαλ =
4R(ϕ)d−2

(µ4(ϕ) − µ2(ϕ)2)2
{δαλµ4(ϕ

2)R(ϕ) + (1 − δαλ)µ2(ϕ
2)2

−2µ2(ϕ)µ2(ϕ
2)R(ϕ) + µ2(ϕ)2R(ϕ)2},

σ2
αλ = cαλ(ϕ)

∫
p(x)2(1 − p(x))2κ(x)2dx,
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where δαλ = 1 if α = λ, δαλ = 0 if α ̸= λ,

bαα(x) =
µ6(ϕ) − µ2(ϕ)µ4(ϕ)

12(µ4(ϕ) − µ2(ϕ)2)
pαααα(x) +

µ2(ϕ)

2

∑
j ̸=α

pjjαα(x),

cαλ(ϕ) =
32

(µ4(ϕ) − µ2(ϕ)2)4

∫
Fαα(x)Fλλ(x)dx,

Fαλ(x) = (1 − δαλ)(ϕ
∗ ∗ ϕ)(xα)(ϕ∗ ∗ ϕ)(xλ)Πj ̸=α,λϕ

(2)(xj)

+δαλϕ
∗(2)(xα)Πj ̸=αϕ

(2)(xj),

ϕ(2)(t) =

∫
ϕ(u− t)ϕ(u)du and ϕ∗(u) = ϕ(u)(u2 − µ2(ϕ)).

Note that the first and second terms in the right hand side of (6.2) are the

leading terms of the ASB and the asymptotic variance of Ĉαλ(gαλ), respectively.
We substitute

D̄αλ =
1

n

n∑
i=1

{pαα(Xi)bλλ(Xi) + pλλ(Xi)bαα(Xi)}κ(Xi)

and

σ̄2
αλ =

1

n

n∑
i=1

p(Xi)
2(1 − p(Xi))

2κ(Xi)
2

φ(Xi)

for Dαλ and σαλ in (6.2), respectively. Instead of (6.2), we will consider

(6.3) AMSE[gαλ; p, pαα, pλλ, {pjjαα, pjjλλ}, φ =

{
gαλD̄αλ +

B̄Vαλ

ngd+4
αλ

}2

+
σ̄2

αλ

n2gd+2
αλ

.

Yang and Tschernig [19] adopted for each α, λ = 1, . . . , d,

ĝαλ = argmingαλ
ASB[gαλ; p̃, p̃αα, p̃λλ, {p̃jjαα, p̃jjλλ}, φ̇],

where

ASB[gαλ; p, pαα, pλλ, {pjjαα, pjjλλ}, φ] =

{
gαλD̄αλ +

B̄Vαλ

ngd+4
αλ

}2

.

We obtain Ĉαλ(ĝαλ) as an estimator of C̄αλ. Therefore, the PI bandwidth selector
of h can be obtained as follows:

ĥPI = arg min
h

AIMSE[h; {Ĉαλ(ĝαλ)}, B(p̄, φ̄)],

where p̄(x) = p̂OLL(x; ĥROT) and φ̄(x) = n−1
∑n

i=1KĥROT
(Xi − x) + n−2. Since

B(p̄, φ̄)/B = 1 + Op(n
−2/(d+4)), under the regularity assumptions given in Yang

and Tschernig [19], we have

ĥPI = hopt{1 +Op(n
−2/(d+6))}.

The bandwidth that minimizes the AMSE given by (6.3) can be selected through
the method proposed in Okumura and Naito [14]. The proposed bandwidth selector
of gαλ is given as

ĝαλ = arg min
gαλ

AMSE[gαλ; p̃, p̃αα, p̃λλ, {p̃jjαα, p̃jjλλ}, φ̇],
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which was used in the simulation study in the thesis.
In practice, the d×d matrix whose (α, λ)-element is Ĉαλ is not always a positive

definite. Therefore, we replace Ĉαλ by n−1
∑n

i=1 p̂αα(Xi; gαα)p̂λλ(Xi; gλλ). The
ROT and PI bandwidth selectors for NWE and LLLE can also be derived similarly
based on each conditional bias in Table 1 and the same conditional variance (5.2).

7. Conclusion

We proposed the weighted kernel estimators of the regression function in the
binomial and binary regression problems.

For the binomial regression problem with a single covariate, WNWE was pro-
posed in Section 3. This estimator is NWE with a kernel weighted by the inverse of
the variance estimator at each covariate. The bias-adjusted version of WNWE was
also obtained through the asymptotic properties. The MSE of the bias-adjusted
WNWE is asymptotically smaller than that of NWE under some conditions. The
simulation study in Okumura and Naito [13] also demonstrated the good perfor-
mance of the bias-adjusted WNWE. Two efficient data-driven bandwidth selectors
were also proposed: the PI bandwidth selector and the ROT bandwidth selector.
Their efficiencies are described in Okumura and Naito [14].

For the binary regression problem with multiple covariates, two practical WLLEs,
which are LLTEs with a kernel weighted at each observed covariate, were proposed
in Section 5. The behavior of the estimators and the bandwidth selectors was
discussed. WLLE with weights constructed by using the true regression function
is asymptotically shown in Theorem 5.1 to have a variance smaller than that of
OLLE. With regard to practical applications, the WLLEs with weights constructed
by using the parametric and nonparametric estimators were proposed. The prac-
tical WLLEs cannot necessarily guarantee the variance reduction asymptotically
as given in Theorem 5.1. A simulation study to compare estimators described
was done in the thesis. From the simulation study, we inferred that the proposed
WLLEs reduce the variance and have good performance in terms of IMSE. Further,
it was shown that it is effective to use the ROT bandwidth selector in compara-
tively small samples if the parametric model fits well. The proposed WLLEs can
be recommended as a nonparametric estimator of the regression function, consid-
ering the disadvantages of the boundary bias problem inherent in NWE and the
troubles involved in the calculation of the LLLE. The WLLEs are also useful for
the estimation of effective covariates corresponding to a response probability.

Appendix

The following assumptions are needed in Theorems 5.1 and 5.2.
Assumption 6. At x ∈ supp(φ), φ(x) is second continuously differentiable.

Assumption 7. At x ∈ supp(φ), p(x) is second continuously differentiable.

Assumption 8. As n→ ∞, hj → 0(j = 1, . . . , d) in such a manner that hk/hj =
O(1)(j ̸= k) and ||h||4/(nh1 . . . hd) = O(1).
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Assumption 9. At x ∈ supp(φ), ω(x) is second continuously differentiable.
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