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η-UMBILICAL HYPERSURFACES IN P2C AND H2C
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Abstract. We characterize totally η-umbilical hypersurfaces in P2C or H2C by
using the structure Jacobi operator or the Ricci operator.

1. Introduction

Let (M̃, J, g̃) be an n-dimensional Kähler manifold with a Kähler structure (J, g̃)

and let M be an orientable real hypersurface in M̃ with a unit normal vector N on
M . Then the Reeb vector field ξ = −JN plays a fundamental role in real hypersur-
faces in a Kähler manifold. In particular for a complex projective space PnC, Cecil
and Ryan [1] proved that Hopf hypersurfaces (with ξ a principal curvature vector
field) are realized as tubes over certain submanifolds in PnC, provided the rank
of their focal maps is constant. In the geometry of hypersurfaces, the structure
Jacobi operator Rξ = R(·, ξ)ξ (along the Reeb flow) has many interesting implica-
tions (cf. [2], [3], [4]). Recently, Ivey and Ryan [6] showed that there are no real
hypersurfaces whose structure Jacobi operator vanishes in P2C or H2C. In higher
dimensions, it was proved by the present authors [5].

From Codazzi equation, we can show that there are no totally umbilical real
hypersurfaces in a non-flat complex space form. In this context, some authors
studies the so called totally η-umbilical structure in a real hypersurface in PnC or
HnC, that is, its shape operator A is represented by

A = λI + µη ⊗ ξ

for λ, µ ∈ R. Indeed, totally η-umbilical real hypersurfaces in PnC or HnC are
classified in [1], [14] or [10]. They are realized as a geodesic hypersphere in PnC
and a horosphere, a geodesic hypersphere or a tube over a complex hyperbolic
hyperplane Hn−1C in HnC. By Gauss equation we find that Rξ is proportional to
I (identity transformation) on the orthogonal complement space ξ⊥ of ξ for such
spaces. In the present note, we characterize totally η-umbilical hypersurfaces in
P2C or H2C by using the structure Jacobi operator or the Ricci operator.
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2. Preliminaries

All manifolds are assumed to be connected and of class C∞ and the real hyper-
surfaces are supposed to be oriented. At first, we review the fundamental facts on

a real hypersurface of a n-dimensional complex space form M̃n(c) with constant
holomorphic sectional curvature 4c. Let M be an orientable real hypersurface of

M̃n(c) and let N be a unit normal vector on M . We denote by g̃ and J a Kähler
metric tensor and its Hermitian structure tensor, respectively. For any vector field
X tangent to M , we put

(2.1) JX = ϕX + η(X)N, JN = −ξ,

where ϕ is a (1,1)-type tensor field, η is a 1-form and ξ is a unit vector field on M ,
which is called Reeb vector field. The induced Riemannian metric on M is denoted
by g. Then by properties of (g̃, J) we see that the structure (ϕ, ξ, η, g) is an almost
contact metric structure on M , that is, from (2.1) it follows that

ϕ2X = −X + η(X)ξ, η(ξ) = 1

g(ϕX, ϕY ) = g(X,Y ) − η(X)η(Y )
(2.2)

for any vector fields X and Y tangent to M . From (2.2), we have

ϕξ = 0, η ◦ ϕ = 0, η(X) = g(X, ξ)

The Gauss and Weingarten formula for M are given as

∇̃XY = ∇XY + g(AX, Y )N,

∇̃XN = −AX

for any tangent vector fields X, Y , where ∇̃ and ∇ denote the Levi-Civita connec-

tions of (M̃n(c), g̃) and (M, g), respectively, A is the shape operator. From (2.1)

and ∇̃J = 0, we then obtain

(∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ,

∇Xξ = ϕAX.
(2.3)

Then we have the following Gauss and Codazzi equations:

R(X,Y )Z = c{g(Y, Z)X − g(X, Z)Y

+ g(ϕY, Z)ϕX − g(ϕX, Z)ϕY − 2g(ϕX, Y )ϕZ}
+ g(AY, Z)AX − g(AX, Z)AY.

(2.4)

(2.5) (∇XA)Y − (∇Y A)X = c{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ}.
From (2.4) together with (2.2) the Ricci operator S is given by

(2.6) SX = c{(2n + 1)X − 3η(X)ξ} + HAX − A2X,

where H = trace of A. Also, from (2.4) the structure Jacobi operator Rξ = R(·, ξ)ξ,
which is a self-adjoint operator, is given by

(2.7) Rξ(X) = c(X − η(X)ξ) + g(Aξ, ξ)AX − η(AX)Aξ.
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Now we consider the vector field U = ∇ξξ and denote αm = η(Amξ). Then from
(2.2) and (2.3) we easily observe that

g(U, ξ) = 0, g(U,Aξ) = 0,

∥U∥2 = g(U,U) = α2 − α2
1.

Then we see at once that ξ is a principal curvature vector field if and only if
α2 − α2

1 = 0. Moreover, at that time, α1 is constant (cf. [8], [12]).

3. Real hypersurfaces satisfying Sϕ = ϕS and Rξϕ = ϕRξ

In [2] the first author studies a real hypersurface M in a non-flat complex space

form M̃n(c), c ̸= 0, which satisfies Sϕ = ϕS and at the same time Rξϕ = ϕRξ.
Unfortunately, there contain some incorrect arguments. So, in this section we add
the correction of it.

From the condition Sϕ = ϕS, we have

(3.1) H(Aϕ − ϕA)X − (A2ϕ − ϕA2)X = 0.

Put X = ξ in (3.1) to get ϕA2ξ = HU . Applying ϕ, then we have

(3.2) A2ξ = HAξ + (α2 − α1H)ξ.

Using (2.7) the commutativity Rξϕ = ϕRξ implies that

(3.3) α1(Aϕ − ϕA)X = −g(U,X)Aξ − η(AX)U.

Put X = Aξ in (3.3) to get α1AU = α1ϕA2ξ − α2U . Using (3.2) we get

(3.4) α1AU = (α1H − α2)U.

Now, we shall prove that M is a Hopf hypersurface. Put Ω = {p ∈ M : (α2 −
α2

1)(p) ̸= 0}. Suppose that Ω is non-empty and proceed our arguments in Ω. Then
from (3.4) we can see that α1 ̸= 0 in Ω. Use the relation:

(A2ϕ − ϕA2)X = A(Aϕ − ϕA)X + (Aϕ − ϕA)AX.

Then, from (3.1) and (3.3) we have

(3.5) α1H(Aϕ−ϕA)X = −
(
g(U,X)A2ξ+η(AX)AU +g(U,AX)Aξ+η(A2X)U

)
.

Using (3.2), (3.3) and (3.4) in (3.5), then we obtain

(3.6) (α2 − α1H)
(
α1g(U,X)ξ − η(AX)U − g(U,X)Aξ + α1η(X)U

)
= 0.

Put X = U in (3.6) to get

(3.7) (α2 − α1H)(α2 − α2
1)Aξ = (α2 − α1H)(α2 − α2

1)α1ξ,

which yields that α2 − α1H = 0 in Ω. Hence, from (3.2) and (3.4) we obtain
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Lemma 3.1. In Ω,

(3.8) AU = 0

and

(3.9) A2ξ = HAξ.

Differentiating α1 = g(Aξ, ξ) covariantly, using 2nd equation of (2.3) and (3.8)
we easily get

(3.10) g((∇XA)ξ, ξ) = dα1(X),

where d denotes the exterior differentiation. Since U = ϕAξ, by using 1st equation
of (2.3), (2.5) and (3.8), we have

(3.11) ∇ξU = α1Aξ − α2ξ + ϕ grad(α1),

where grad(α1) denotes the gradient vector field of α1.
Differentiating (3.8) covariantly along Ω, then by using (2.5) and (3.11) we have

(3.12) (∇UA)ξ = −cϕU − α1A
2ξ + α2Aξ − Aϕ grad(α1).

Also, if we differentiate (3.9) covariantly along Ω, then together with (2.3) we get

g(Aξ, (∇XA)Y ) + g((∇XA)ξ, AY ) + g(ϕAX, A2Y )

= dH(X)g(Aξ, Y ) + Hg((∇XA)ξ, Y ) + Hg(ϕAX, AY ).
(3.13)

From (3.13), using Codazzi equation (2.5), then it follows that

c
(
η(X)g(Aξ, ϕY ) − η(Y )g(Aξ, ϕX) − 2α1g(ϕX, Y )

)
+ g((∇XA)ξ, AY ) − g((∇Y A)ξ, AX) + g(ϕAX, A2Y ) − g(ϕAY,A2X)

= dH(X)g(Aξ, Y ) − dH(Y )g(Aξ, X) + Hg((∇XA)ξ, Y ) − Hg((∇Y A)ξ,X)

+ 2Hg(ϕAX, AY )

(3.14)

for any vector fields X and Y tangent to Ω. Putting X = U and making use of
(2.5) and (3.8), then we have

(3.15) g((∇UA)ξ, AY ) = c
(
2(α1 −H)g(ϕU, Y )− η(Y )g(U,U)

)
+ dH(U)g(Aξ, Y ).

Hence, from (3.12) and (3.15), we have

− cg(ϕU,AY ) + dα1(ϕA2Y )

= c
(
2(α1 − H)g(ϕU, Y ) − η(Y )g(U,U)

)
+ dH(U)g(Aξ, Y ),

(3.16)

where we have used (α2 − α1H) = 0. If we put Y = ξ in (3.16), then use (3.9) to
obtain

α1dH(U) − Hdα1(U) = 2c(α2 − α1
2).

Putting Y = Aξ in (3.16) and using (3.9) again, then we obtain

H(α1dH(U) − Hdα1(U)) = c(3α1 − H)(α2 − α1
2).

From the above two equations, we have (H−α1)(α2−α2
1) = 0. But, since α2 = α1H,

we have α2 − α2
1 = 0. Eventually, we have shown that M is a Hopf hypersurface.
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Moreover, from (3.3) we have α1(Aϕ−ϕA) = 0. Therefore, due to Okumura [13]
and Motiel-Romero [11] we have (cf. [2])

Theorem 3.2. Let M be a real hypersurface of PnC and HnC. If M satisfies
ϕS = Sϕ and ϕRξ = Rξϕ at the same time, then Aξ = 0 or M is locally congruent
to one of the so-called real hypersurfaces of type (A).

4. 3-dimensional real hypersurfaces

Let M be a real hypersurface in P2C and H2C. Then, since the Weyl curvature
tensor vanishes in dimension 3, we have

(4.1) R(X, Y )Z = ρ(Y, Z)X − ρ(X,Z)Y + g(Y, Z)SX − g(X,Z)SY − r/2
(
g(Y, Z)X − g(X, Z)Y

)
for any smooth vector fields X, Y, Z on M , where ρ(X, Y ) = g(SX, Y ) and r
denotes the scalar curvature. From (4.1) we get

(4.2) Rξ(X) = ρ(ξ, ξ)X − ρ(X, ξ)ξ + SX − η(X)Sξ − r/2(X − η(X)ξ).

It follows from (4.2) that

(Rξϕ − ϕRξ)(X) = (Sϕ − ϕS)(X) − ρ(ϕX, ξ)ξ + η(X)ϕSξ.

Then we can easily show the following result.

Proposition 4.1. For a 3-dimensional real hypersurface M of P2C and H2C, the
following four conditions are equivalent:
• Sϕ = ϕS;
• M is pseudo-Einstein (or η-Einstein), which means S = aI + bη ⊗ ξ for smooth
functions a and b;
• Rξϕ = ϕRξ and Sξ = σξ;
• Rξ = f(I − η ⊗ ξ) and Sξ = σξ, where f, σ are smooth functions.

Then, using Theorem 2 we have

Theorem 4.2. Let M be a real hypersurface in P2C and H2C which satisfies one
of four in Proposition 4.1. Then M is locally congruent to a geodesic hypersphere
in P2C and a horosphere, a geodesic hypersphere, a tube over a complex hyperbolic
line H1C in H2C, or a Hopf hypersurface with Aξ = 0 in P2C and H2C.

The Reeb section is defined by the plane spanned by {ξ,X} for a unit vec-
tor X orthogonal to ξ and the Reeb sectional curvature is defined by K(X, ξ) =
g(R(X, ξ)ξ, X). Then, we have

Corollary 4.3. Let M be a real hypersurface of P2C or H2C whose Ricci operator
S satisfies Sξ = σξ for a function σ. If the Reeb sectional curvature is pointwise
constant, then Aξ = 0, or otherwise M is locally congruent to a geodesic hyper-
sphere in P2C and a horosphere, a geodesic hypersphere or a tube over a complex
hyperbolic line H1C in H2C.

We close this paper by the following remark.
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Remark 4.4. Using Cecil-Ryan’s fundamental idea of tube construction in PnC ([1]),
Kimura and Maeda [9] found real hypersurfaces in PnC with Aξ = 0, provided the
rank of their focal maps is constant. Indeed, they are realized as tubes of certain
complex submanifolds in PnC of radius π/4. Very recently, Ivey and Ryan [7]
constructed such a real hypersurface in H2C with Aξ = 0 by a pair of Legendre
curves in the unit 3-sphere.
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