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Abstract. In the study of potential theory on an infinite network X or an infi-
nite tree T with terminal vertices, if the Laplacian is not defined at the terminal
vertices considering them as boundary points of X, then X always has positive
potentials and the constants are harmonic on X. Consequently, the harmonic
classification theory of X has to be studied differently from an earlier study which
treats T as a Brelot harmonic space.

1. Introduction

A Brelot harmonic space is a connected, locally compact, but not compact, space
provided with a harmonic sheaf satisfying the axioms 1, 2, 3 of Brelot [4]. The paper
“Trees as Brelot Spaces” [3] intends to show that an infinite tree T along with its
vertices and edges and an associated Laplacian operator serves as a model for Brelot
spaces. Specifically, by a tree, we mean here (Cartier [5]) an infinite (countable)
graph which is connected (that is, there is a path connecting any two vertices),
locally finite (that is, every vertex has only a finite number of adjacent vertices,
called neighbours) and without cycles (that is, there is a unique path connecting
any two vertices) or self loops; and provided with a nearest neighbour transition
probability p(x, y) ≥ 0 such that p(x, y) > 0 if and only if x and y are neighbours
and

∑
y∈T

p(x, y) = 1 for any vertex x in T ; we do not suppose p(x, y) = p(y, x). A

vertex z ∈ T is terminal if and only if z has only one neighbour in T . For any
real-valued function u defined on the vertices of T , the Laplacian ∆u(x) is defined
in [3] for any non-terminal vertex x ∈ T ,

∆u(x) =
∑
y∈T

p(x, y)[u(y) − u(x)].

u is said to be superharmonic (respectively harmonic) if ∆u ≤ 0 (respectively ∆u =
0). It is then proved that when the harmonic functions are linearly extended on the
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edges, one arrives at a situation where the topologically connected space T along
with this extended harmonic structure can be considered as a Brelot Harmonic
Space. Then taking the restrictions of the relevant functions on the vertices of T ,
[3] establishes potential-theoretically significant discrete case results in T .

This note exhibits certain restrictions that are needed in the paper [3] where the
results are good only if the trees do not have any terminal vertices. The source of
the inconsistencies is that when the Laplacian is calculated, the terminal vertices
are ignored. For example, as in the Brelot axiomatic potential theory, it is asserted
that if u ≥ 0 is superharmonic on T and u = 0 at a vertex, then u ≡ 0. Now
consider the following example: Let T = {0, 1, 2...}. Let p(n, n + 1) = 1

2
and

p(n, n − 1) = 1
2

if n ≥ 1 and p(0, 1) = 1. Let u be the function on T such that
u(n) = n for all n. Then u ≥ 0 and ∆u(n) = 0 if n ≥ 1. Hence according to
the definition given in that paper, u ≥ 0 is harmonic on T , since the Laplacian is
taken only at the non-terminal vertices, that is n ≥ 1. However this contradicts
the Minimum Principle in a Brelot Space, since u(0) = 0.

Note that the constant function 1 is harmonic on any T ; if T has terminal
vertices, take u(x) = 0 if x is terminal and u(x) = 1 if x is not terminal. Then
u is a non-negative superharmonic function on T , that is not harmonic. Hence,
T considered as a Brelot Space should have potentials on T . In other words, if
we do not calculate the Laplacian at the terminal vertices of T , then every T with
some terminal vertices should be a hyperbolic tree (that is, a tree on which positive
potentials exist). Of course, if there are no terminal vertices in T , then T can be
either hyperbolic or parabolic in which case 0 is the only non-negative potential on
T .

Another definition [3, Definition 1.1] that disturbs the rhythm concerns the def-

initions of the interior and the boundary of a set S. The interior
◦
S consists of all

vertices v ∈ S such that every vertex of T which is a neighbour of v belongs to S;
the boundary ∂S is defined as the set of all vertices v ∈ S such that exactly one

neighbour of v is in
◦
S. Now suppose E is a set which contains a terminal vertex z

and its only neighbour. Then z ∈
◦
E. Also z has exactly one neighbour which is in

E so that z ∈ ∂E. Thus, for this set E,
◦
E ∩ ∂E ̸= ∅. This causes concern when

the Dirichlet problem is involved [3, p.722].

2. Terminal Vertices as boundary points

By a network X, we mean an infinite graph which is connected and locally
finite. We do not place any restrictions on cycles or self loops in X. There is a
collection of numbers t(x, y) ≥ 0, called conductance, such that t(x, y) > 0 if and
only of x ∼ y (the symbol x ∼ y denotes that x and y are neighbours in X). For
any vertex x ∈ X, we write t(x) =

∑
y∈X

t(x, y). Since X is locally finite, t(x) is

finite; since X is connected, t(x) > 0. Note that we have not placed the restriction
t(x, y) = t(y, x) for any pair x, y ∈ X as in Yamasaki [6]. Hence any tree T with the
nearest neighbour transition probability structure can be considered as an infinite
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network without self-loops or cycles. However if necessary, then we can define a
symmetric conductance on T as follows. Fix any x ∈ T , there is a unique path
{e = x0, x1, . . . , xn = x} connecting e and x. Define

ϕ(x) =
p(e, x1)p(x1, x2) . . . p(xn−1, xn)

p(xn, xn−1)p(xn−1, xn−2) . . . p(x1, e)

write t(x, y) = ϕ(x)p(x, y). If x ∼ y, then ϕ(y) = ϕ(x)
p(x, y)

p(y, x)
so that t(x, y) =

ϕ(x)p(x, y) = ϕ(y)p(y, x) = t(y, x). Consequently, {t(x, y)} is a set of symmetric
conductance on T .

In a network X, a vertex z is known as a terminal vertex if z has only one
neighbour in X. That is, z is the end of a path in X and it is natural to imagine
z as a boundary point of X. As such, the Laplacian at z is not calculated in a
tree T in [3]. However, this choice of terminal vertices as boundary points of X
necessitates a careful study of superharmonic functions on X, that is not analogous
to the usual potential theory on the Euclidean spaces. Since the results in [3] are
irreprochable when the infinite tree T does not have any terminal vertices (as in
the case of homogeneous trees), we assume that T has terminal vertices. In fact,
in this article we prove our results more generally on an infinte network X with
conductance t(x, y) which may or may not be symmetric, but X has at least one

terminal vertex. Let
◦
X consist of all non-terminal vertices of X and ∂X = X \

◦
X

the non-empty set consisting of all terminal vertices of X. Then
◦
X is connected.

For if a and b are in
◦
X, (since X is connected ) there is a path {a, x1, . . . , xn, b}

in X connecting a and b. Note that none of the vertices xi is a terminal vertex.

Hence the path is entirely in
◦
X. Hence

◦
X is connected. Moreover

◦
X is locally

finite. Now X is infinite and the neighbour of a terminal vertex should be a vertex

in
◦
X; consequently,

◦
X cannot be a finite set. In the special case of X being a tree,

remark that
◦
X also is a tree.

Definition 2.1. For a subset E of X, the interior
◦
E consists of all vertices v ∈

E∩
◦
X such that every vertex of X which is a neighbour of v is in E. The boundary

of E is ∂E = E \
◦
E; thus every terminal vertex in E is placed in ∂E.

Definition 2.2. Let u be a real-valued function on a subset E of X,
◦
E ̸= ∅.

Then u is superharmonic (respectively harmonic, subharmonic) on E if ∆u(x) =∑
y∈E

t(x, y)[u(y) − u(x)] ≤ 0 (respectively ∆u(x) = 0, ∆u(x) ≥ 0), for every x ∈
◦
E.

Theorem 2.3 (Minimum Principle). Let s(x) be a superharmonic function on a
finite set in E in X. Then s(x) ≥ min

z∈∂E
s(z) for all x ∈ E. In particular, if h is

harmonic on E and if h = 0 on ∂E, then h = 0 on E.
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Proof. Let β = min
x∈E

s(x). Then β ≤ α = min
z∈∂E

s(z). Suppose β < α. Then

there exists some x0 ∈
◦
E such that s(x0) = β. Take some y ∈

◦
X \ E. Let

{x0, x1, . . . , xn = y} be a path connecting x0 to y. Let i be the largest index such

that x0, x1, . . . , xi are all in
◦
E. Then xi+1 ̸∈

◦
E. Since xi+1 ∼ xi, xi+1 ∈ E and

hence xi+1 ∈ ∂E and s(xi+1) ≤ α < β. Since ∆s ≤ 0 on
◦
E and β is the minimum

value, the fact that s(x0) = β implies that s(x) = β for all x ∼ x0. In particular
s(x1) = β. This leads to the result s(x1) = s(x2) = . . . = s(xi) = s(xi+1) = β.
Thus β = s(xi+1) ≥ α > β, a contradiction, which shows that β ≥ α. Hence
min
x∈E

s(x) = min
z∈∂E

s(z). �

An arbitrary subset E in X is said to be circled if any z ∈ ∂E has at least one

neighbour in
◦
E. In this sense, X is circled and its interior

◦
X is connected. Let A

be a finite set of non-terminal vertices. Let E1 = V (A) be the set consisting of A
and also all vertices x in X such that x has a neighbour in A. Then E1 is a finite

set, A ⊂
◦

E1 and E1 is circled. Define by recurrence Ei+1 = V (Ei) for i ≥ 1. Since
X is connected, any x should be in some Ei. Thus {Ei} an increasing sequence of

finite circled sets such that A ⊂
◦
Ei ⊂

◦
Ei+1 for i ≥ 1 and X = ∪Ei and

◦
X = ∪

◦
Ei.

We shall refer to {Ei} as an exhaustion of X by finite circled sets.

Theorem 2.4. Suppose E is a circled set such that
◦
E is connected. Let s be a

superharmonic function on E attaining its minimum value α at a vertex in
◦
E.

Then s(x) = α for x ∈ E.

Proof. For some x0 ∈
◦
E, let s(x0) = α ≤ s(x) for all x ∈ E. Then since

◦
E is

connected, as in the case of Theorem 2.3, we prove that s(x) = α for all x ∈
◦
E.

Let z ∈ ∂E. Then z has a neighbour a in
◦
E. Since s(a) = α,

∆s(a) =
∑

y

t(a, y)[s(y) − s(a)] + t(a, z)[s(z) − s(a)] ≤ 0

will lead to a contradiction if s(z) > s(a). Hence s(z) ≤ α which implies that
s(z) = α. Hence s = α on ∂E also, so that s(x) = α for every x in E. �
Theorem 2.5 (Generalised Dirichlet Problem). Let F be an arbitrary subset of

X. Let E ⊂
◦
F . Let f be a real-valued function on F \ E such that there exists a

superharmonic function u and a subharmonic function v on F such that v ≤ f ≤ u
on F \ E and v ≤ u on F . Then there exists a function h on F such that h = f
on F \E, v ≤ h ≤ u on F and ∆h = 0 at every vertex in E. Moreover h can be so
chosen that if h

′
is another function on F such that h

′
= f on F \E and ∆h

′
= 0

on E, then h
′ ≤ h on F .

Proof. Let v1 be the function on F such that v1 = f on F \ E and v1 = v on E.
Similarly let u1 be the function on F such that u1 = f on F \E and u1 = u on E.
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Then v1 ≤ u1 on F by hypothesis; also ∆u1(x) ≤ 0 and ∆v1(x) ≥ 0 for x ∈ E. Let
F be the family of functions s on F such that s ≤ u1 on F , s = f on F \ E and
∆s ≥ 0 on E. Then v1 ∈ F and F is a Perron family of subharmonic functions
on E (as shown in [1]). If h(x) = sup

s∈F
s(x), then h has the properties stated in the

theorem. Moreover if h
′
is another such function, then h

′ ∈ F so that h
′ ≤ h on

F . �

Corollary 2.6. Let F be an arbitrary set in X. Let E ⊂
◦
F . Let f be a real-

valued function on F \ E such that |f | ≤ u on F \ E where u is a non-negative
superharmonic function on F . Then there exists a (largest) function h on F such
that h = f on F \ E, |h| ≤ u on F and ∆h = 0 at every vertex in E. Also,

(i) If u ≥ 0 is a superharmonic function on an arbitrary subset F of X, then
u has the greatest harmonic minorant h ≥ 0 on F such that h = u on ∂F.

(ii) If F is a finite subset of X and if f is a real-valued function on ∂F , then
there exists a unique harmonic function h on F such that h = f on ∂F.
(Here the uniqueness of the solution h is a consequence of the Minimum
Principle Theorem 2.3).

Definition 2.7. A superharmonic function p ≥ 0 on a set E is said to be a potential
on E if and only if the greatest harmonic minorant of p on E is 0. Equivalently,
p ≥ 0 is a potential on E if and only if

i) p is superharmonic on E, and
ii) if u is a subharmonic function on E such that u ≤ p, then u ≤ 0.

Remark 2.8.

a) If s ≥ 0 is a superharmonic function on E, then s is the unique sum of a
potential p and a non-negative harmonic function h on E. Here h is the
greatest harmonic minorant of s on E.

b) According to the above definition p ≡ 0 is also considered a potential on X.
Hence, we shall use the term non-zero potential on X to refer to a potential
p on X that is not identically 0.

Notation 2.9. Let f be a real-valued function on a subset E of X. Denote by f̂ the
function on E such that f̂(x) = f(x) if x is a non-terminal vertex and f̂(x) = 0 if
x is a terminal vertex.

Theorem 2.10. There always exist non-zero potentials on X.

Proof. The constant function 1 is a positive harmonic function on X. Then v(x) =
1̂(x) is a non-negative superharmonic, but not harmonic, function on X. For, if

x ∈
◦
X, then v(x) = 1, which is the maximum value of v and hence ∆v(x) ≤ 0.

Hence v is superharmonic on X.
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To see that v is not harmonic, take some z ∈ ∂X. Since z is terminal, if a ∼ z,

then a ∈
◦
X. Consequently,

∆v(a) =
∑

y

t(a, y)[v(y) − v(a)]

=
∑
y ̸=z

t(a, y)[v(y) − v(a)] + t(a, z)[v(z) − v(a)]

=
∑
y ̸=z

t(a, y)[v(y) − v(a)] + t(a, z)[0 − 1]

< 0.

That is, v(x) is not harmonic at x = a. Now if h is the greatest harmonic minorant
of v on X, then p = v − h is a non-zero potential on X. �

Proposition 2.11. If p ≥ 0 is a potential on a subset E of X, then p = 0 on ∂E.

Proof. Let h ≥ 0 be a harmonic function on E such that h = p on ∂E and h ≤ p on
E (Corollary 2.6(i)). Since p is a potential on E, its greatest harmonic minorant
on E is 0. In particular p = h = 0 on ∂E. �

Theorem 2.12 (Green’s function). Let e be a non-terminal vertex in X. Then
there exists a unique potential Ge(x) on X such that ∆Ge(x) = −δe(x) for every

x ∈
◦
X.

Proof. Let p be a non-zero potential on X. Take F = X in Theorem 2.5 so that
◦
F =

◦
X; let E =

◦
X \ e and f = p on F \ E. Then there exists a function g on X

such that g = p on X \E, 0 ≤ g ≤ p on X and ∆g = 0 at every vertex in E. Note
that

∆g(e) =
∑

y

t(e, y)[g(y) − g(e)]

=
∑

y

t(e, y)[g(y) − p(e)]

≤
∑

y

t(e, y)[p(y) − p(e)]

= ∆p(e)

≤ 0.

But ∆g(e) ̸= 0. For, if ∆g(e) = 0, then g is a non-negative harmonic function on
F = X and is majorized by a potential, hence g ≡ 0 which is not the case since

g(e) = p(e) > 0. Let ∆g(e) = −α where α > 0. Then Ge(x) = g(x)
α

is a potential

on X with point harmonic support at e and ∆Ge(x) = −δe(x) for every x ∈
◦
X.

To prove the uniqueness, suppose v is another potential on X such that ∆v(x) =

−δe(x) for every x ∈
◦
X. Then u(x) = Ge(x) − v(x) is such that ∆u(x) = 0 for
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every x in
◦
X, that is u is harmonic on X. Since u(x) ≤ Ge(x) on X, then u ≤ 0;

since −u ≤ v on X, then −u ≤ 0. Hence u ≡ 0. �
Remark 2.13. Cartier [5, p.226] introduces the Green’s kernal G(x, y) on a tree T ,
probabilistically; G(x, y) is the expected number of times the associated random
walks starting at x visits y. Then, assuming that 0 < G(x, y) < ∞ for all vertices
[5, p.222], for a real-valued function v ≥ 0 on T , Gv(x) =

∑
y∈T

G(x, y)v(y) is

called the potential of v. If Gv(x) is finite for one (and hence any) x in T , then
∆Gv(x) = −v(x) for every x in T .

In [3, Definition 1.2], potentials on a tree T are defined as in the above Definition
2.7 (as usual, the Laplacians being calculated at the non-terminal vertices only).
Then, making a reference to [5], it is wrongly claimed [3, p.721] that every potential
p on T is of the form Gf for a unique non-negative function f with support equal
to the harmonic support of p and this identification p = Gf is often invoked later.

We say that a superharmonic function s on X is said to have the harmonic

support in A if ∆s(x) = 0 for every x ∈
◦
X \A. If A is a finite set and if ∆s(x) = 0

for every x ∈
◦
X \ A, then we say that s has finite harmonic support.

Theorem 2.14. Let u be a superharmonic function defined outside a finite set in
X. Then there exist on X a superharmonic function v and two potentials p1 and
p2 with finite harmonic support such that u = p1 − p2 + v outside a finite set. If u
is harmonic, then v can be chosen to be harmonic on X.

Proof. Let u be defined outside a finite set A such that ∆u(x) ≤ 0 at every non-
terminal vertex x outside A. Assume u is defined on X by giving values 0 at
each vertex of A. Let B be the set of all non-terminal vertices on ∂A. Write
p1(x) =

∑
b∈B

[∆u(b)]−Gb(x) and p2(x) =
∑
b∈B

[∆u(b)]+Gb(x). Then p1 and p2 are

potentials on X with finite harmonic support in B. Define

v(x) = u(x) − p1(x) + p2(x) on X.

If x ∈
◦
A, then ∆v(x) = 0; if a non-terminal vertex x ̸∈ A, then ∆v(x) = ∆u(x) ≤ 0;

and if x = b ∈ B, then

∆v(b) = ∆u(b) + [∆u(b)]− − [∆u(b)]+ = 0.

Hence v is superharmonic function on X and u(x) = p1(x) − p2(x) + v(x) outside
A.

Suppose u is harmonic outside a finite set in X. Then we can take ∆u(x) = 0

at every non-terminal vertex x ̸∈ A. Then ∆v(x) = 0 at every x ∈
◦
X. Hence v is

harmonic on X. �
Theorem 2.15 (Domination principle). Let p be a potential on X with harmonic
support in A. Let s ≥ 0 be a superharmonic function on X such that s ≥ p on A.
Then s ≥ p on X.
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Proof. Let u = inf(s, p). Then u ≥ 0 is superharmonic on X and u = p on A. Let

v = p− u. Then at every a ∈
◦
X \A, ∆v(a) = ∆p(a)−∆u(a) ≥ 0 since ∆p(a) = 0

and ∆u(a) ≤ 0; and at every a ∈ A ∩
◦
X,

∆v(a) =
∑

y

t(a, y)[v(y) − v(a)]

≥ 0, since v(y) ≥ 0 and v(a) = 0.

Hence ∆v(a) ≥ 0 if a ∈
◦
X, that is v is subharmonic on X. Since 0 ≤ v ≤ p on X,

v ≡ 0. That is, s ≥ p on X. �

3. Parahyperbolic Networks

In the proof of Theorem 2.10, it was showed that 1̂ is a non-negative superhar-
monic, but not harmonic, function on X. It may turn out in some cases that 1̂ is
a potential on X.

Example 3.1. Let X = {a, b, x1, x2, . . .} be an arrow-shaped infinite tree with only
two terminal vertices a and b, each having x1 as the neighbour. Let p(x1, a) =
p(x1, b) = 1

4
and p(x, y) = 1

2
for any pair of neighbours x and y that are non-

terminal vertices. Then p(x) = 1̂(x) is a potential on X. For, let h, 0 ≤ h ≤ p, be
a harmonic function on X. Then h(a) = 0 = h(b). Let h(x1) = α and h(x2) = β.
Then

0 = ∆h(x1) =
1

2
(β − α) +

1

4
(0 − α) +

1

4
(0 − α)

so that β = 2α. Since h(x1) = α and h(x2) = 2α, the fact that

0 = ∆h(x2) =
1

2
(α − 2α) +

1

2
[h(x3) − 2α]

implies that h(x3) = 3α. It is clear now that if h(x) is harmonic on X, then
h(xn) = nα. But 0 ≤ h(x) ≤ 1 for all x ∈ X. Hence α = 0, that is h ≡ 0 and
p(x) = 1̂(x) is a potential on X.

Definition 3.2. A network X is said to be parahyperbolic if and only if the function
1̂ is a potential on X.

Remark 3.3. The term “parahyperbolic” is found in Anandam [2] in the context
of the potential theory associated with a second order elliptic differential operator
defined on a domain Ω in Rn, n ≥ 2. If 1̂ is a potential on X, then the superhar-
monic functions on X have many properties similar to those of the superharmonic
functions defined on a parabolic Riemann Surface, hence the term “parahyper-
bolic”.

Proposition 3.4. In a network X, the following statements are equivalent.

i) X is parahyperbolic.
ii) If s is a superharmonic function on X such that |s| ≤ 1̂ on X, then s is a

potential on X.
iii) If h is a harmonic function on X such that |h| ≤ 1̂, then h ≡ 0.
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Proof. i) ⇒ ii). Let s be a superharmonic function on X such that |s| ≤ 1̂. Since
1̂ is a potential by hypothesis and −1̂ ≤ s, we conclude that −s ≤ 0 and hence
s ≥ 0. Moreover s is majorized by the potential 1̂. Hence s is a potential on X.

ii) ⇒ iii). If h is a harmonic function such that |h| ≤ 1̂, then h is a potential on
X by the assumption. This is possible only if h ≡ 0.

iii) ⇒ i). We know that 1̂ is superharmonic on X. Let h be the greatest harmonic
minorant of 1̂. Then by assumption h ≡ 0, so that 1̂ is a potential on X, that is
X is parahyperbolic. �

Theorem 3.5. X is parahyperbolic if and only if the following Minimum Principle
is satisfied: Let F be any subset of X. Let u be a lower bounded superharmonic
function on F such that u ≥ 0 on ∂F . Then u ≥ 0 on F .

Proof. Let X be parahyperbolic. Let v be the function on X such that v = inf(u, 0)
on F and v = 0 outside F . Note that v is a lower bounded superharmonic function
on X. Since all the terminal vertices of F are in ∂F and the other terminal
vertices are outside F , v = 0 at each terminal vertex of X. Moreover, since v is
lower bounded by assumption, v ≥ −m on X for some m ≥ 0. Hence −v ≤ m1̂
on X. Since X is parahyperbolic, 1̂ is a potential; consequently, −v ≤ 0, that is
v ≥ 0. In particular u ≥ 0 on F .

Conversely, if the Minimum Principle is satisfied, then X should be parahy-
perbolic. For otherwise there is a bounded harmonic function h on X such that

0 < h < 1 on
◦
X and h = 0 on ∂X. We shall consider the two cases F = X and

F ̸= X separately.
i) Suppose F = X. Then u = −h is a lower bounded harmonic function on F

such that u = 0 on ∂F . If the Maximum Principle is satisfied, then u ≥ 0 on F , a
contradiction.

ii) Suppose F ̸= X. Take a vertex e ∈
◦
X and let A = v(e) be the set consisting of

e and all its neighbours. Let F = X\{e}. Then
◦
F =

◦
X\A and ∂F = (A\{e})∪∂X.

Let RA
h stand for the infimum of all non-negative superharmonic functions on X

that majorize h on A; note that RA
h = h on A ∪ ∂X ⊃ ∂F and ∆RA

h (x) = 0 for

every x ∈
◦
X \ A. Since potentials exist on X, and since A is a finite set, then we

can find a potential p on X that majorizes h on A. Hence the infimum RA
h which is

a non-negative superharmonic function is majorized by p so that RA
h is a non-zero

potential on X. Hence u = h − RA
h is a bounded harmonic function on F and

u = 0 on ∂F . Since the Minimum Principle is assumed to be valid, then u should
be identically 0 on F = X \ {e}; and since u = 0 on A ∪ ∂X ⊃ {e}, u ≡ 0 on X.
But this is not possible since h is harmonic on X and RA

h is a potential on X. This
shows that X should be parahyperbolic. �

Harmonic measure of the point at infinity: Let {En} be an exhaustion of X

by an increasing sequence of finite sets. Let hn be the Dirichlet solution in En \
◦

E1,
with boundary values 1̂ on ∂En and 0 on ∂E1. Extend hn by 1 outside En. Denote
this extension by sn. Then sn is superharmonic on X \E1 and sn = 0 on ∂E1. Note
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that sn is a decreasing sequence of non-negative superharmonic functions. Hence
s = lim sn is superharmonic on X \ E1, and s = 0 on ∂E1. If x is a non-terminal
vertex in X \E1, then for some integer m, sn is harmonic at the vertex x for n ≥ m.

Hence s is harmonic at x. Since x is an arbitrary vertex in
◦
X \ E1, s is harmonic,

non-negative and s = 0 at each terminal vertex in X \
◦

E1. This function s is called
the harmonic measure of the point at infinity of X. If s ≡ 0, the harmonic measure
of the point at infinity is said to be 0. The property that the harmonic measure of
the point at infinity is 0 is independent of the choice of the exhaustion of X will
be clear from the following result.

Theorem 3.6. X is parahyperbolic if and only if the harmonic measure of the
point at infinity is 0.

Proof. Let s be the harmonic measure of the point at infinity. Extend s by 0 on
E1. Then this extended function, also denoted by s, is a non-negative subharmonic
function on X and 0 ≤ s ≤ 1̂ on X. If X is parahyperbolic, then 1̂ is a potential
and hence s ≡ 0.

Conversely, suppose the harmonic measure of the point at infinity is 0. Then X
should be parahyperbolic. For, assume the contrary. Then there exists a harmonic

function h on X such that 0 < h < 1 on
◦
X and h = 0 on ∂X. Let v = h−RE1

h on

X. Since h is harmonic and RE1
h is a potential, v is not identically 0. Now v ≤ sn on

En \E1. Consequently, v ≤ s on X \E1 which implies that the harmonic measure
of the point at infinity is not 0, a contradiction. Hence X is parahyperbolic. �

We say that a function f on X tends to ∞ at the point at infinity, if for any

α > 0, there exists a finite set E such that f(x) > α for any vertex x ∈
◦
X \ E.

Example 3.7. Let X consist of non-terminal vertices x1, x2, . . . and terminal vertices
xi1 and xi2 for i ≥ 1. xi1 and xi2 have xi as neighbour for i ≥ 1; xj has xj+1 and
xj−1 as neighbours for j ≥ 2; p(x1, x2) = 1

2
and each xj has four neighbours for

j ≥ 2 with the same transition probability 1
4
; p(x1, x11) = p(x1, x12) = 1

4
. Let

h ≥ 0 be the function defined on X such that h(x11) = h(x12) = 0, h(x1) = 1 and
h(xj) = h(xj1) = h(xj2) = j for j ≥ 2. Then h(x) is a harmonic function on X
tending to infinity.

Theorem 3.8. If there exists a superharmonic function u ≥ 0 outside a finite set
tending to ∞ at the point at infinity, then X is parahyperbolic.

Proof. Choose an exhaustion of X by an increasing sequence of finite sets En, such

that ∆û(x) ≤ 0 if x ∈
◦
X \

◦
E1 and û(x) > n if x is any non-terminal vertex outside

En−1. Let z be any non-terminal vertex outside E1. Then for some n, z ∈
◦

En.

Now û(x)
n

≥ 1̂(x) if x ∈ ∂En. Since û(x)
n

≥ 0 on ∂E1, by the Minimum Principle,
û(x)

n
≥ sn(x) on En \

◦
E1, since ∂(En \

◦
E1) ⊂ ∂En ∪ ∂E1. Recall that sn is the

Dirichlet solution in En \
◦

E1 with boundary values 1̂ on ∂En and 0 on ∂E1(as in
the definition of the harmonic measure of the point at infinity).
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In particular, û(z)
n

≥ sn(z). Since the harmonic measure of the point at infinity
s(x) = lim sn(x), and since û(z) is finite, we conclude that s(z) ≤ 0. Since z is an
arbitrary non-terminal vertex outside E1, and since s = 0 at each terminal vertex

in X \
◦

E1, we can conclude that the harmonic measure of the point at infinity is 0.
Hence by Theorem 3.6, X is parahyperbolic. �

4. X
◦
-superharmonic functions

The properties of potentials obtained above in a network with terminal vertices
can be examined from a different perspective. We have mentioned earlier that
◦
X, the interior of X, is itself a connected network, with the conductance system

{t(x, y)} in X restricted to
◦
X. Recall t(x) =

∑
y∈X

t(x, y) for every x ∈ X.

Definition 4.1. A real-valued function f on
◦
X is said to be

◦
X- superharmonic at

a vertex a ∈
◦
X if and only if

t(a)f(a) ≥
∑
y∈

◦
X

t(a, y)f(y)

If f is
◦
X-superharmonic at each vertex in

◦
X, then we say that f is

◦
X-

superharmonic. The definitions of subharmonic and harmonic at a vertex are given
accordingly.

Note 4.2. In conformity with the above nomenclature, we shall say that f is X-
superharmonic if

t(a)f(a) ≥
∑
y∈X

t(a, y)f(y), for every a ∈
◦
X.

Notation 4.3. Earlier, if f is defined on X, then we have denoted by f̂ the function

on X, equal to f on
◦
X and to 0 on ∂X. Now, if g is defined on

◦
X, then we denote

by ǧ the function on X, equal to g on
◦
X and to 0 on ∂X.

Proposition 4.4. Let f be a real-valued function on
◦
X. Then f is

◦
X-

superharmonic (respectively
◦
X-subharmonic) if and only if f̌ is X-superharmonic

(respectively X-subharmonic).

Proof. Let f be
◦
X-superharmonic. Then for every a ∈

◦
X,

t(a)f̌(a) = t(a)f(a) ≥
∑
y∈

◦
X

t(x, y)f(y)

=
∑
y∈X

t(a, y)f̌(y), since f̌(y) = 0 if y ∈ ∂X.
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Hence f̌ is X-superharmonic. Conversely, let f̌ be X-superharmonic. Then for

every a ∈
◦
X,

t(a)f(a) = t(a)f̌(a) ≥
∑
y∈X

t(a, y)f̌(y)

=
∑
y∈

◦
X

t(a, y)f̌(y)

=
∑
y∈

◦
X

t(a, y)f(y)

Hence f is
◦
X-superharmonic.

Similar property for X-subharmonic function also holds good by changing ≥ into
≤ in the above proof. �

Corollary 4.5. The constant function 1 is a
◦
X-superharmonic function, that is

not
◦
X-harmonic.

Proof. 1̌ = 1̂ is known to be X-superharmonic (the proof of Theorem 2.10). Hence

1 is
◦
X-superharmonic.

Now, let a ∈
◦
X be such that there is a vertex z ∈ ∂X as a neighbour of a. Then,

t(a) =
∑
y∈X

t(a, y)

=
∑

y∈X,y ̸=z

t(a, y) + t(a, z)

>
∑

y∈X,y ̸=z

t(a, y)

≥
∑
y∈

◦
X

t(a, y)

Hence the constant function 1 is not
◦
X-harmonic at the vertex a. �

Lemma 4.6. If s is a X-potential, then s is a
◦
X-potential. If s is a

◦
X-potential,

then š is a X-potential.

Proof. Let s be a X-potential. Then s = š (Proposition 2.11) and by Proposition

4.4, s is a
◦
X-superharmonic function. To show that s is a

◦
X-potential, take a

◦
X-subharmonic function u such that 0 ≤ u ≤ s on

◦
X. Then, by Proposition 4.4,

ǔ(x) is X-subharmonic and 0 ≤ ǔ ≤ š = s. Hence ǔ ≡ 0, that is u ≡ 0 on
◦
X and

hence s is a
◦
X-potential.
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On the other hand, if s is a
◦
X-potential, then we show that š is a X-potential.

For that, let h be a X-subharmonic function on X, such that 0 ≤ h ≤ š. Then, for

any x ∈
◦
X,

t(x)h(x) ≤
∑
y∈X

t(x, y)h(y)

=
∑
y∈

◦
X

t(x, y)h(y), since h(y) = 0 if y ∈ ∂X.

Hence on
◦
X, h is

◦
X-subharmonic majorized by the

◦
X-potential s. Hence h ≡ 0.

This implies that š is a X-potential. �

Theorem 4.7. The constant function 1 is a
◦
X-potential if and only if X is

parahyperbolic.

Proof. Let X be parahyperbolic. That is 1̌ = 1̂ is a X-potential. Hence by Lemma

4.6, 1 is a
◦
X-potential. Conversely, let 1 be a

◦
X-potential. Then 1̌ = 1̂ is a

X-potential (Lemma 4.6), that is X is parahyperbolic. �

For a real-valued function f on X, let us write for x ∈
◦
X,

(−∆)f(x) = t(x)f(x) −
∑
y∈X

t(x, y)f(y),

(−∆
′
)f(x) = t(x)f(x) −

∑
y∈

◦
X

t(x, y)f(y)

Note 4.8. i) For any real-valued function g on
◦
X, (−∆

′
)g(x) is defined for every

vertex x ∈
◦
X. The function g is

◦
X-superharmonic (respectively

◦
X-harmonic or

◦
X − subharmonic) if and only if (−∆

′
)g(x) ≥ 0 (respectively (−∆

′
)g(x) = 0 or

(−∆
′
)g(x) ≤ 0) for every x ∈

◦
X.

ii) If f ≥ 0 is a real-valued function on X, then for any x ∈
◦
X,

(−∆)f(x) = t(x)f(x) −
∑
y∈X

t(x, y)f(y)

≤ t(x)f(x) −
∑
y∈

◦
X

t(x, y)f(y)

= (−∆
′
)f(x)

In fact, the problems related to potentials on a network X with a Laplacian
not defined at terminal vertices can be transformed into problems related to po-

tentials on the network
◦
X with a Laplacian defined at each vertex of

◦
X. Recall

that an infinite network X, in Yamasaki [6], is any connected infinite graph, with
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countable vertices and countable edges, and without self-loops and provided with
a conductance t(x, y) ≥ 0 associated with any pair of vertices x and y in X such
that t(x, y) = t(y, x) for every pair and t(x, y) > 0 if and only if x and y are
neighbours. As shown in [1], most of the results in a network X can be proved
potential-theoretically without the assumption that t(x, y) is symmetric, except

possibly the Green’s formulas. Thus, we can prove the following. (Note that
◦
X

as a network may have its own terminal vertices which are not accorded a special

status when the Laplacian ∆
′
is applied in

◦
X.)

(1) If s1 and s2 are
◦
X-superharmonic and if α1, α2 are two non-negative num-

bers, then α1s1 + α2s2 and inf(s1, s2) are
◦
X-superharmonic.

(2) If s ≥ u on
◦
X where s is

◦
X-superharmonic and u is

◦
X-subharmonic, then

there exists the greatest harmonic function h on
◦
X such that s ≥ h ≥ u on

◦
X.

(3) For any e ∈
◦
X, there exists a unique potential pe(x) on

◦
X such that

(−∆
′
)pe(x) = δe(x) for every x ∈

◦
X.

(4) The Minimum Principle and the solution to the Dirichlet problem on a

finite set in
◦
X are available for

◦
X-superharmonic functions.

(5) If sn is a sequence of
◦
X-superharmonic functions (respectively

◦
X-harmonic)

and if s(x) = lim sn(x) is finite at each x ∈
◦
X, then s is

◦
X-superharmonic

(respectively
◦
X-harmonic).

Proposition 4.9. For a vertex e ∈
◦
X, if Ge(x) is the Green’s function on X

with point harmonic support at e, then Ge(x) is the
◦
X-Green’s function with point

harmonic support at e. Conversely, if pe(x) is the
◦
X-Green’s function, then p̌(x) is

the X-Green’s function with point harmonic support at e.

Proof. For any x ∈
◦
X,

δe(x) = (−∆)Ge(x) = t(x)Ge(x) −
∑
y∈X

t(e, y)Ge(y)

= t(x)Ge(x) −
∑
y∈

◦
X

t(e, y)Ge(y), since Ge(y) = 0 if y ∈ ∂X

= (−∆
′
)Ge(x).
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Conversely, if (−∆)
′
pe(x) = δe(x) on

◦
X, then by Lemma 4.6, p̌e(x) is a X-potential.

For x ∈
◦
X,

(−∆)p̌e(x) = t(x)p̌e(x) −
∑
y∈X

t(x, y)p̌e(y)

= t(x)pe(x) −
∑
y∈

◦
X

t(x, y)p̌e(y), since p̌e(y) = 0 if y ∈ ∂X

= t(x)pe(x) −
∑
y∈

◦
X

t(x, y)pe(y), since p̌e(y) = pe(y) if y ∈
◦
X

= (−∆)pe(x)

= δe(x).

Hence the proposition follows. �
Theorem 4.10. X is a parahyperbolic network if and only if any X-superharmonic
function u defined outside a finite set in X such that |u| ≤ 1̂, is of the form
u = p1 − p2 outside a finite set where p1 and p2 are bounded X-potentials on X.

Proof. Let X be parahyperbolic. Without loss of generality, assume that u is
defined on the whole X by giving the value 0 at the undefined vertices. Then
|u| ≤ 1̂ and u is superharmonic outside a finite set A. Then, by Theorem 2.14,
there exist two X-potentials q1 and q2 with finite harmonic support and a X-
superharmonic function v such that u = q1 − q2 + v outside a finite set. Since
q1 and q2 are X-potentials with finite harmonic support, |qi| ≤ Mi1̂, i = 1, 2.
Consequently, since |v| ≤ |u| + q1 + q2 outside a finite set in X, |v| ≤ M 1̂ on X
for some constant M > 0. Then by Proposition 3.2, v is a potential on X. Write
p1 = q1 + v and p2 = q2. Then u = p1 − p2 outside a finite set in X, where p1 and
p2 are bounded X-potentials on X.

Conversely, suppose the representation is valid for u defined outside a finite set
in X such that |u| ≤ 1̂. Then X should be parahyperbolic. For otherwise there
exists a non-zero harmonic function h on X such that 0 ≤ h ≤ 1̂ on X. Now by
hypothesis h = p1 − p2 outside a finite set in X. Since h ≤ p1 outside a finite set
in X, then h ≤ 0 on X. Similarly, we show that −h ≤ 0 and consequently h ≡ 0,
a contradiction. This shows that X should be parahyperbolic. �
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