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Abstract. In this paper we will study compact Lagrangian submanifold M in
Kähler manifolds and in particular complex space forms, such that the induced
metric on the Lagrangian submanifold is a Ricci soliton with respect to potential
vector field given by mean curvature vector field and complex structure.

1. Introduction

A Ricci soliton is defined on a Riemannian manifold (M, g) by

(1.1)
1

2
£V g + Ric−λg = 0,

where V is a vector field (the potential vector field), λ is a constant. Obviously, a
trivial Ricci soliton is an Einstein metric with V zero or Killing. Compact Ricci
solitons are the fixed points of the Ricci flow: ∂g/∂t = −2Ric projected from the
space of metrics onto its quotient modulo diffeomorphisms and scalings, and often
arise as blow-up limits for the Ricci flow on compact manifolds. The Ricci soliton
is said to be shrinking, steady, and expanding according as λ > 0, λ = 0 and λ < 0
respectively. If the vector field V is the gradient of a potential function f , then g
is called a gradient Ricci soliton. Due to Perelman’s result [13, Remark 3.2], we
know that in a compact Ricci soliton, the potential vector field is written as the
sum of a gradient and a Killing vector field. We refer to [3] for details about Ricci
solitons or gradient Ricci solitons.

On the other hand, Lagrangian submanifolds have been important geometric
objects of study in symplectic geometry. The problem of minimizing the volume
of Lagrangian submanifolds under Hamiltonian deformations was proposed by Oh
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[10], and critical points of the problem, Hamiltonian minimal submanifolds are in-
teresting and important objects among Lagrangian submanifolds (cf. [7]). Using
Oh’s result, we can see that compact Lagrangian submanifold M in a Kähler man-

ifold M̃ is Hamiltonian minimal if and only if tangent vector field JH is divergence

free, where J and H denote complex structure of M̃ and mean curvature vector
field of M , respectively. In this paper, we investigate Lagrangian submanifolds,
whose induced metric is a Ricci soliton with potential vector field JH, in Kähler
manifolds and in particular in complex space forms. Typical examples of such
Lagrangian submanifolds are: (i) Einstein minimal Lagrangian submanifolds, (ii)
irreducible Lagrangian submanifolds with parallel second fundamental form in Her-
mitian symmetric spaces (cf. [8], [9]) and (iii) Ricci-flat Lagrangian submanifolds
with parallel mean curvature vector field H (cf. [11]).

The primary result is concerned with compact oriented Lagrangian submanifold

M in a Kähler manifold M̃ : Suppose that the induced metric g on M is a Ricci
soliton with potential vector field JH. If M is Hamiltonian minimal, then M
is Einstein and either M is minimal or the mean curvature vector field H of M
is non-zero and parallel with respect to the normal connection ∇⊥(Theorem 5).
Furthermore if the scalar curvature ρ of (M, g) satisfies either ρ ≥ nλ or ρ ≤ nλ,
then ρ = nλ and M is Hamiltonian minimal. Secondly, let M be a compact oriented
Lagrangian submanifold M in a complex space form, and suppose the induced
metric g is a Ricci soliton with potential vector field JH. With respect to the Ricci
tensor of M , if Ric(JH, JH) ≤ 0, then ∇⊥H = 0 and M is Ricci-flat (Theorem 7).
Finally for either 2 or 3-dimensional case, using results of Hamilton [5] and Ivey
[6], we obtain (Theorem 8): Let Mn be a compact Lagrangian submanifold in a
complex space form with n = 2, 3 and let g be the induced metric on M . Suppose
(M, g) is a Ricci soliton with V = JH. Then (M, g) is either totally geodesic or
flat with ∇⊥H = 0.

2. Ricci solitons

On Riemannian manifold (M, g), we have

(2.1) (£V g)(X,Y ) = g(∇XV, Y ) + g(X,∇Y V ),

where ∇ denotes the the Levi-Civita connection of M . Hence if (M, g) is a Ricci
soliton with potential vector field V , then (1.1) and (2.1) imply

(2.2) div V + ρ − λn = 0,

where div V = traceg(X 7→ ∇XV ) and ρ denote divergence of V and the scalar
curvature of M , respectively. By (2.2) and Green’s Theorem

∫
M

div V µg = 0 for a
compact oriented Riemannian manifold M (µg is the volume form of (M, g)), we
obtain:

Proposition 1. Let (M, g) be a compact oriented Ricci soliton satisfying (1.1) with
respect to potential vector field V on M . Then

(i)
∫

M
ρµg = λn vol(M). Hence λ is uniquely determined by g.

(ii) The scalar curvature ρ of M is constant if and only if div V = 0.
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(iii) If either ρ ≤ λn or ρ ≥ λn on M , then ρ = λn and div V = 0.

Now we recall the following results due to Hamilton and Ivey:

Theorem 2. [5], [6] Let (M, g) is either 2 or 3-dimensional compact Ricci soliton
with potential vector field V . Then sectional curvatures of M are constant.

Also the following is known:

Proposition 3. On compact Ricci soliton (M, g), if the scalar curvature is con-
stant, then (M, g) is Einstein.

3. Lagrangian submanifolds in complex space forms

First we recall about Hamiltonian deformation of Lagrangian submanifolds in

Kähler manifolds, defined by Oh [10]. Let M̃ be a complex n-dimensional Kähler
manifold with Kähler form ω, Riemannian metric ⟨ , ⟩, and complex structure J .

Let x : M → M̃ be a Lagrangian immersion from a real n-dimensional manifold

M to M̃ , i.e., ω|TM = 0. For a vector field V along x, we define a 1-form αV

on M as αV = ⟨JV, ·⟩|TM . Smooth family of embeddings ιt : M → P is called
Hamiltonian deformation if for the variational vector field V , the 1-form αV is
exact. A Lagrangian submanifold M is Hamiltonian minimal (or H-minimal) if
M is stationary for any Hamiltonian deformation. Oh [10] showed that when M is
compact, M is H-minimal if and only if αH is co-closed, i.e., δαH = 0 where H is
the mean curvature vector field of M . We have

(3.1) M is Hamiltonian minimal ⇔ div JH = 0.

With respect to Lagrangian submanifold M in a Kähler manifold M̃ and the induced
metric g on M , the following relations hold:

(3.2) ∇σ = 0 ⇒ ∇⊥H = 0 ⇒ £JHg = 0 ⇒ div JH = 0,

where σ and ∇⊥ denote second fundamental form and normal connection of M in
M̃ respectively, and ∇σ is defined by (∇Xσ)(Y, Z) = ∇⊥

Xσ(Y, Z) − σ(∇XY, Z) −
σ(Y,∇XZ) for tangent vector fields X, Y, Z on M . We note that ∇X(JH) =
J∇⊥

XH.

Let M̃n(4c) be an n-dimensional complex space form with constant holomorphic

sectional curvature 4c and let M = Mn be a Lagrangian submanifold in M̃n(4c).
Then Gauss equation is

R(X, Y )Z = c{g(Y, Z)X − g(X, Z)Y } + Aσ(Y,Z)X − Aσ(X,Z)Y,

where R and A denote curvature tensor and shape operator of M with
⟨σ(X,Y ), ξ⟩ = g(AξX, Y ) for tangent vector field X,Y and normal vector field
ξ on M , respectively. The Ricci tensor of M is then given by

(3.3) Ric(Y, Z) = (n − 1)cg(Y, Z) + ⟨σ(Y, Z), H⟩ − traceg(X 7→ Aσ(X,Z)Y ).

The scalar curvature ρ of M is

(3.4) ρ = n(n − 1)c + ∥H∥2 − ∥σ∥2.
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Let T be a symmetric (0, 3)-tensor field on M defined by T (X,Y, Z) =
⟨σ(X,Y ), JZ⟩. Then Codazzi equation

(3.5) (∇Xσ)(Y, Z) = (∇Y σ)(X,Z)

implies that

∇T is a symmetric (0, 4)-tensor field on M .

Combining with (3.2), we can easily obtain the following local result:

Proposition 4. Let M be a Lagrangian submanifold in a complex space form of
constant holomorphic sectional curvature.Then the mean curvature vector field H
is parallel with respect to the normal connection ∇⊥ if and only if JH is a Killing
vector field on M .

4. Ricci soliton of Lagrangian submanifolds

Let M = Mn be a Lagrangian submanifolds in a Kähler manifold M̃n, and let g
be the induced metric on M . Suppose (M, g) is a Ricci soliton (1.1) with V = JH.
By Proposition 1, Proposition 3, (2.2) and (3.1), we obtain:

Theorem 5. Let Mn be a compact oriented Lagrangian submanifold in a Kähler

manifold M̃n and let g be the induced metric on M . Suppose (M, g) is a Ricci
soliton with V = JH. Then we have:

(i) If M is Hamiltonian minimal, then M is Einstein and JH is a Killing
vector field on M .

(ii) If the scalar curvature ρ of (M, g) satisfies either ρ ≥ nλ or ρ ≤ nλ, then
ρ = nλ and M is Einstein and the same conclusion as (i) holds.

We note that Lagrangian submanifolds Mn with parallel second fundamental
form in complex space forms are classified by Naitoh [8], [9]. By (3.1) and (3.2),
they are Hamiltonian minimal. Also they are locally symmetric and for irreducible
ones, they are Einstein. Hence irreducible Lagrangian submanifolds in complex
space forms satisfying ∇σ = 0 are considered as Ricci solitons with Killing potential
vector field JH.

When dimRM = 2 or 3, by Theorem 2, (3.1) and (3.2), we get:

Proposition 6. Let M be a compact Lagrangian submanifold in a Kähler manifold

M̃ with dimC M̃ = 2 or 3, and let g be the induced metric on M . Suppose (M, g)
is a Ricci soliton with V = JH. Then (M, g) is constant curvature and ∇⊥H = 0.

Let M̃n(4c) be an n-dimensional complex space form with constant holomorphic

sectional curvature 4c. For Lagrangian submanifold (M, g) in M̃n(4c), using (2.1)
and (3.3) we obtain that Ricci soliton equation (1.1) with V = JH is written as

1

2
{g(∇X(JH), Y ) + g(X,∇Y (JH))} − ⟨σ(X,Y ), H⟩(4.1)

+ traceg(Z 7→ Aσ(Z,Y )X) + ((n − 1)c − λ)g(X,Y ) = 0.
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By contracting with respect to X and Y , we obtain

(4.2) div JH − ∥H∥2 + ∥σ∥2 + n((n − 1)c − λ) = 0,

which is clearly equivalent to (2.2) with V = JH by (3.4).
By taking covariant differentiation of (4.1) by W , we get

1

2
g(∇W∇X(JH) −∇∇W X(JH), Y ) +

1

2
g(X,∇W∇Y (JH) −∇∇W Y (JH))

−⟨(∇W σ)(X, Y ), H⟩ − ⟨σ(X, Y ),∇⊥
W H⟩

+ traceg(Z 7→ (∇W A)σ(Z,Y )X) + traceg(Z 7→ A(∇W σ)(Z,Y )X) = 0.

Then Codazzi equation (3.5) yields that

1

2
g(R(W,X)JH, Y ) +

1

2
g(X,∇W∇Y (JH) −∇∇W Y (JH))

−1

2
g(W,∇X∇Y (JH) −∇∇XY (JH)) − ⟨σ(X, Y ),∇⊥

W H⟩ + ⟨σ(W,Y ),∇⊥
XH⟩

+ traceg(Z 7→ (∇W A)σ(Z,Y )X) + traceg(Z 7→ A(∇W σ)(Z,Y )X)

− traceg(Z 7→ (∇XA)σ(Z,Y )W ) − traceg(Z 7→ A(∇Xσ)(Z,Y )W ) = 0.

By contracting with respect to W and Y , and using (3.5) and (4.2) we get

Ric(X, JH) + g(X, ∆(JH)) = 0.

Because of
1

2
∆∥H∥2 =

1

2
∆∥JH∥2 = g(∆(JH), JH) + ∥∇(JH)∥2

= −Ric(JH, JH) + ∥∇⊥H∥2,

and
∫

M
∆∥H∥2µg = 0 when M is compact and oriented, the following result holds:

Theorem 7. Let Mn be a compact oriented Lagrangian submanifold in a complex

space form M̃n(4c), and let g be the induced metric on M . Suppose (M, g) is a
Ricci soliton with V = JH. If Ric(JH, JH) ≤ 0 on M , then ∇⊥H = 0 and (M, g)
is Ricci-flat.

With respect to either 2 or 3-dimensional Lagrangian submanifolds in complex
space forms, Proposition 6 is reduced to:

Theorem 8. Let Mn be a compact Lagrangian submanifold in a complex space

form M̃n(4c) with n = 2, 3 and let g be the induced metric on M . Suppose (M, g)
is a Ricci soliton with V = JH. Then (M, g) is either totally geodesic or flat with
parallel mean curvature vector field.

In fact the assumption yields that, by Propositions 4 and 6, ∇⊥H = 0. When
H = 0, Ejiri’s result [4] implies that (M, g) is either totally geodesic or flat. When
H ̸= 0, (M, g) is constant curvature and has parallel non-zero tangent vector field
JH. Hence M is flat.

For Lagrangian flat surfaces in M̃2(4c) = CP2: complex projective plane with
c > 0, Ogata [11] proved the following: Let x : R2 → CP2 be an isometric
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immersion with non-zero parallel mean curvature vector field H. Then x(R2) is an
orbit of the Abelian Lie subgroup G of U(3).
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