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Abstract. In the present note, we present a brief survey on the order-theoretic
structures on the spaces of formal balls on metric spaces from the topological
point of view. Some open questions are also included.

1. Introduction

The concept of formal balls was introduced by Weihrauch and Schreiber [19] to
represent a metric space in a domain, and several authors studies the posets of the
formal balls as a computational model for a metric space [6, 2, 11, 12].

Let R and R+ denote the sets of real numbers and non-negative real numbers,
respectively. Let (X, d) be a metric space and B+(X, d) = X ×R+. An element of
B+(X, d) is called a formal ball.

In [17], Tsuiki and Hattori extended the notion of formal balls to balls having
negative radii, say generalized formal balls, i.e., let B(X, d) = X × R and we call
an element of B(X, d) a generalized formal ball.

We induce an partial order in B+(X, d) (B(X, d)) as (x, r) ⊑ (y, s) if d(x, y) ≤
r − s. Then (B+(X, d),⊑) and (B(X, d),⊑) are continuous posets, and they have
the Lawson, and the Martin topologies. Tsuiki and Hattori ([10], [17]) investigated
the Lawson topology of B+(X, d) and B(X, d), and Hashiriura [11] investigated
the Martin topology of B+(X, d) and B(X, d) from the topological point of view.
In the present note, we sketch these recent studies of the relationship between
order-theoretic structures and topological structures in B+(X, d) (B(X, d)).

We give some preliminaries from the domain theory and spaces of (generalized)
formal balls in section 2. In section 3, we discuss on the relation between the Lawson
topology and the product topology on B+(X, d) (B(X, d)) which were obtained in
[17] and [10]. The relation between the Martin topology and the product topology
on B+(X, d) (B(X, d)) which were obtained in [11] are presented in section 4. In
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14 Y. HATTORI

section 5, we discuss on topologies of the set of real numbers R which are between
the Euclidean topology and the topology of the Sorgenfrey line. We also ask some
open questions.

2. Preliminaries and notation

We present preliminary results from domain theory. The reader would refer [8]
for the details of the domain theory.

2.1. Fundamental concepts from the domain theory. Let (L,≤) be a par-
tially ordered set (abbrev. poset). Then a non-empty subset D of (L,≤) is called a
directed set if every finite subset of D has an upper bound. For elements x, y ∈ L,
we say that x is way below y, and we write x ≪ y, if for every directed subset D of
L for which sup D exists and y ≤ sup D, there exists d ∈ D such that x ≤ d. For
a poset (L,≤), x ∈ L and A ⊂ L we use the following notation:

⇑x = {y ∈ L : x ≪ y},
⇓x = {y ∈ L : x ≫ y},
⇑A = {y ∈ L : x ≪ y for some x ∈ A}, and
⇓A = {y ∈ L : x ≫ y for some x ∈ A}.

Similarly, we write

↑x = {y ∈ L : x ≤ y},
↓x = {y ∈ L : x ≥ y},
↑A = {y ∈ L : x ≤ y for some x ∈ A}, and
↓A = {y ∈ L : x ≥ y for some x ∈ A}.

A poset L is called a directed complete poset (abbrev. dcpo) if every directed subset
of L has a least upper bound, and L is said to be continuous, if ⇓ x is directed and
x = sup ↓ x for each x ∈ L. A poset L is called a domain if L is a continuous dcpo.

Let L be a poset and U a subset of L. Then U is said to be Scott open if U = ↑U
and, for every directed set D of L with sup D ∈ U , D ∩ U ̸= ∅. The family σ(L)
of all Scott open sets of L is a topology of L and we say it the Scott topology. It is
well known that ⇑x is a Scott open set for every x ∈ L and {⇑x : x ∈ L} forms an
open base for the Scott topology if L is continuous (cf. [8] and [13]).

We call the topology of a poset L generated by {L − ↑x : x ∈ L} the lower
topology and we denote it by ω(L). The join σ(L) ∨ ω(L) of the Scott topology
σ(L) and the lower topology ω(L) is called the Lawson topology. The Lawson
topology of L is denoted by λ(L). If L is continuous, then the Lawson topology
of L is generated by {⇑x : x ∈ L} ∪ {L − ↑x : x ∈ L}. The Scott topology and
the lower topology satisfy only the T0-separation axiom. On the other hand, the
Lawson topology of a continuous poset is regular T1.

Let L be a continuous poset. The Martin topology µ(L) of L is a topology on L
generating by the sets of the form ↓ x ∩ ⇑y for x, y ∈ L. The Martin topology was
introduced by K. Martin [14] to study a quantitative statements on programs. It
is easy to see that the Martin topology is stronger than the Lawson topology, and
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the sets ↓ x ∩ ⇑y, x, y ∈ L are clopen in µ(L). Hence the Martin topology µ(L) is
regular and zero-dimensioanl.

2.2. Domains of formal balls of metric spaces. Let (X, d) be a metric space.
For each point x of (X, d) and each r ∈ R+ we denote the r-open ball at x by
Sr(x) = {y ∈ X : d(x, y) < r} and the r-closed ball at x by Br(x) = {y ∈ X :
d(x, y) ≤ r}.

For a metric space (X, d) let B+(X, d) = X × R+ and B(X, d) = X × R. An
element of B+(X, d) (B(X, d)) is called a formal ball (generalized formal ball). We
usually denote B+(X, d) and B(X, d) by B+X and BX, respectively.

We induce an partial order in B+X (BX) as follows:

(x, r) ⊑ (y, s) if d(x, y) ≤ r − s.

Roughly speaking, for formal balls (x, r) and (y, s) the relation (x, r) ⊑ (y, s) im-
plies that the closed ball Bs(y) is contained in the closed ball Br(x). Furthermore,
(x, r) ≪ (y, s) implies that the closed ball Bs(y) is strictly included in the closed
ball Br(x) (see Lemma 2.1 below). The concept of formal balls was introduced
by Weihrauch and Schreiber [19], and Tsuiki and Hattori [17] extended them to
generalized formal balls. Edalat and Heckmann [6] gave the following fundamental
results on the posets of formal balls.

Lemma 2.1 ([6]). Let (X, d) be a metric space and (x, r), (y, s) ∈ B+X. Then
(x, r) ≪ (y, s) if and only if d(x, y) < r − s.

Theorem 2.2 ([6]). For a metric space (X, d) B+X is a continuous poset. Fur-
thermore, B+X is a dcpo if and only if (X, d) is complete.

Let Max (L) denote the set of all maximal elements of a poset L. A poset L
is said to be a computational model for a topological space X if the relative Scott
and the relative Lawson topologies on Max (L) coincide and X is homeomorphic
to Max (L). The following theorem implies that the posets of formal balls have
approximation structures for metric spaces.

Theorem 2.3 ([6]). For a metric space (X, d) B+X is a computational model for
(X, d).

We refer the reader to [8] for the details of the domain theory, and [7] for topology.

3. The Lawson topology on the space of formal balls

In this section, we describe several properties of the Lawson topology of the
posets of formal balls.

3.1. The Lawson topology and the product topology. Let λd denote the
Lawson topology of the set B+X (BX) of formal balls (generalized formal balls)
of a metric space (X, d). The sets B+X and BX also naturally have the product
topology of the metric topology of X and the Euclidean topology of R+ and R,
respectively. We denote π by the product topology of B+X and BX. It is natural to
ask whether the Lawson topologies λd of B+X and BX coincide with the product
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topology π. We can easily see that the Lawson topology λd is weaker than the
product topology π in B+X and BX (cf. [17, Corollary 7]). Since the Lawson
and the product topologies of B+X are the subspace topologies of the Lawson
topology and the product topology of BX respectively, if the Lawson and the
product topologies coincide in the poset of the generalized formal balls BX then
they coincide in B+X. In [17], we have the following.

Theorem 3.1 ([17, Theorem 9]). If (X, d) is a totally bounded metric space (in
particular, (X, d) is compact), then the Lawson topology λd and the product topology
π coincide in BX.

For the case of B+X, we can generalize the theorem above.

Theorem 3.2 ([17, Theorem 14]). Let (X, d) be a metric space. If for each bounded
subset A of X the restriction of d on A is totally bounded, then the Lawson topology
λd and the product topology π coincide in B+X.

Now, we have the examples concerning the theorems above.

Example 3.3 ([17, Examples 12 and 15]). Let N be the set of natural numbers.
Then there are metrics d1, d2 and d3 in N which induce the discrete topology in N
such that

(a) λd1 ̸= π neither in B+N nor BN,
(b) λd2 = π in B+N, but λd2 ̸= π in BN,
(c) λd3 = π in B+N and BN.

Proof. We define the metrics d1, d2 and d3 on N as follows:

d1(x, y) =

 0, if x = y,
1, if 1 ∈ {x, y} and x ̸= y,
2, otherwise,

d2(x, y) =

{
0, if x = y,

x + y, if x ̸= y,

d3(x, y) =

{
0, if x = y,
1, if x ̸= y.

Then one can show that d1, d2 and d3 are desired. �
By Example 3.3 (b), it follows that the total boundedness in Theorem 3.1 can

not be generalized to the totally boundedness for bounded sets as in Theorem
3.2. It also follows from Example 3.3 that the Lawson topology of the poset of
(generalized) formal balls depends on a metric function, not an induced topology.

Now, we turn our attention to normed linear spaces. As we have shown in
Example 3.3, even when the Lawson and the product topologies coincide on B+X,
they may not coincide on BX in general. Now, we show that the Lawson and the
product topologies of BX coincide if X is a normed linear space.

Proposition 3.4 ([17, Proposition 16]). Let (X, ∥ · ∥) be a normed linear space
and d the metric induced by the norm ∥ · ∥. If the Lawson topology and the product
topology coincide on B+X, then they coincide also on BX.
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Since every finite dimensional normed linear space satisfies the condition in
Theorem 3.2, it follows that for every finite dimensional normed linear space
X the Lawson and the product topologies coincide on B+X and BX. Hence,
(B+Rn, λd) = (Rn × R+, π) and (BRn, λd) = (Rn+1, π), where d is the Euclidean
metric on Rn.

Let dim denote the covering dimension of a topological space (cf. [7]). Since
dim(X × I) = dim X + 1 for every space X (cf. [16]), by Theorem 3.1, it follows
that if a metric space (X, d) is totally bounded, then dim(BX, λd) = dim X + 1.
Now, we may ask the following.

Question 3.5. Let (X, d) a metric space. Does the equality dim(BX,λd)) = dim X+
1 (or the inequality dim(BX,λd) ≤ dim X + 1) hold?

We give some comments from the topological point of view. Let (X, d) be a
metric space and B(X) = {Br(x) : x ∈ X, r > 0} denote the set of ”real” closed
balls in X. Then B(X) is a subset of the set F(X) of all (non-empty) closed
subsets of X. It is well known that F(X) has several hyperspace topologies, say
the Hausdorff metric topology, the Wijsman topology, the Fell topology and the
hit-and miss topology, etc (cf. [1]). It might be interested in topological properties
of B(X) as a subspace of hyperspace topology. Now, we naturally introduce the
Lawson topology λ in B(X) as follows:

Definition 3.6. Let (X, d) a metric space. For each Br(x) ∈ B(X), we put

(Br(x)c)+ = {B ∈ B(X) : B \ Br(x) ̸= ∅},

Br(x)++ = {B ∈ B(X) : Sε(B) ⊂ Br(x) for some ε > 0}.
We call the topology τλ of B(X) generated by the sets of the form (Br(x)c)+ and
Br(x)++ for Br(x) ∈ B(X), the Lawson topology of B(X).

For each F ∈ F(X), we put

(F c)+ = {E ∈ F(X) : E \ F ̸= ∅},

F++ = {E ∈ F(X) : Sε(E) ⊂ F for some ε > 0}.
We call the topology sup-τλ of F(X) generated by the sets of the form (F c)+ and
F++ for F ∈ F(X) the sup-Lawson topology of F(X).

It is clear that the subspace topology of B(X) of sup-Lawson topology of F(X)
is stronger than the Lawson topology of B(X). One can show easily the following.

Proposition 3.7. Let (X, ∥ · ∥) be a normed linear space and d the metric induced
by the norm ∥ · ∥. Then (B+X,λd) is homeomorphic to (B(X), τλ).

We may ask the following.

Question 3.8. Investigate the topological properties of the Lawson topology in
B(X). In particular, how are the relations between the Lawson topology and
other hyperspace topologies in B(X)?
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3.2. The hyperbolic topology of metric spaces. In [17], we introduced the
hyperbolic topology in a metric space (X, d) motivated by an argument of the
Lawson topology of the space of generalized formal balls. In this section, we de-
scribe several properties of the hyperbolic topology which are given in [17] and
[10].

Let (X, d) be a metric space. We consider a new topology derived from by a
subspace topology of certain subspaces of the space of generalized formal balls
(BX,λd). Let p : BX → X be the natural projection, p(x, s) = x for each
(x, s) ∈ BX. It is clear that the restriction of p over X ×{t} is a homeomorphism
onto X for each t ∈ R. Now, we consider the subspace Bd(a, u) = {(y, s) ∈ BX :
d(a, y) = u−s} of (BX, λd) for (a, u) ∈ BX. Since the restriction of p over Bd(a, u)
is a bijection, this derives a topology θ(a,u) of X, i.e., θ(a,u) = {p(Bd(a, u) ∩ U) :
U ∈ λd}. What is the topology θ(a,u)? It is easy to see that the subspaces Bd(a, u)
and Bd(a, v) drive the same topology of X by the projection p for each u, v ∈ R.
Hence, it suffices to consider about Bd(a, 0), i.e., u = 0.

Since the Lawson topology of BX is generated by sets of the form ⇑(x, r) =
{(y, s) : d(x, y) < r − s} and BX − ↑(x, r) = {(y, s) : d(x, y) > r − s} for
(x, r) ∈ BX, the subspace topology of the set Bd(a, 0) = {(y, s) ∈ BX : d(a, y) =
−s} is generated by sets of the form {(y, s) ∈ Bd(a, 0) : d(y, x) < r − s} =
{(y,−d(a, y)) ∈ BX : d(y, x) − d(a, y) < r} and {(y, s) ∈ Bd(a, 0) : d(y, x) >
r − s} = {(y,−d(a, y)) ∈ BX : d(y, x) − d(a, y) > r} for (x, r) ∈ BX. Hence, θa is
generated by sets of the form {y : d(y, x)−d(a, y) < r} and {y : d(y, x)−d(a, y) > r}
for x ∈ X and r ∈ R. Since d(y, x) − d(a, y) ≥ −d(a, x), if r ≤ −d(a, x) then
{y : d(y, x) − d(a, y) < r} = ∅ and {y : d(y, x) − d(a, y) > r} = X. Similarly,
since d(y, x) − d(a, y) ≤ d(a, x), if r ≥ d(a, x) then {y : d(y, x) − d(a, y) < r} = X
and {y : d(y, x) − d(a, y) > r} = ∅. Hence, we can assume that −d(a, x) < r <
d(x, a). In [17], we obtained that θa does not depend on the choice of the point
a ∈ X ([17, Theorem 25]). Hence, we write the topology θa by θ, and call this
topology the hyperbolic topology of a metric space (X, d). Since the hyperbolic
topology does not depend on the choice of the point a ∈ X, θ can be generated
by {y : d(y, b) − d(a, y) < r} and {y : d(y, b) − d(a, y) > r} for a, b ∈ X and
−d(a, b) < r < d(a, b). Hence, it follows that θ is generated by sets of the form
{y : d(a, y) − d(b, y) < r} for a, b ∈ X with −d(a, b) < r < d(a, b).

It is natural to ask how different is the hyperbolic topology from the metric
topology. At first we present an example which shows that the hyperbolic topology
depends on the metric, but it does not depend on the induced topology.

Example 3.9 ([17, Example 30]). Let X be an uncountable set and x0 ∈ X. Then
we define a metric d1 of X as follows (cf. Example 3.1):

d1(x, y) =

 0, if x = y,
1, if x0 ∈ {x, y} and x ̸= y,
2, otherwise,

Then the hyperbolic topology of (X, d1) is generated by those sets {x} for x ∈
X −{x0} and X −A, where A is a finite subset of X with x0 ̸∈ A. Hence, since X



THE FORMAL BALLS ON METRIC SPACES 19

is uncountable, the hyperbolic topology of (X, d1) is not first countable at x0. On
the other hand, let d be the discrete metric on X, i.e.,

d(x, y) =

{
0, if x = y,
1, if x ̸= y.

Then the hyperbolic topology of (X, d) is the discrete topology, and hence it is first
countable.

It is easy to see the following.

Proposition 3.10 ([17, Proposition 23]). For a metric space (X, d) the hyperbolic
topology is weaker than the topology induced by the metric d.

In [17], we obtained the following result, which shows that the Lawson topology
of the poset of formal balls is closely related to the hyperbolic topology of a metric
space.

Theorem 3.11 ([17, Theorem 29]). For a metric space (X, d), the following are
equivalent.

(1) The Lawson topology λd coincides with the product topology π in BX.
(2) The hyperbolic topology θ induced by the metric d coincides with the metric

topology in X.

Example 3.9 also shows that the hyperbolic topology and the metric topology
do not coincide in general. As a corollary to Theorems 3.1 and 3.11, we have the
following.

Corollary 3.12 ([10, Proposition 2.3]). If (X, d) is a totally bounded metric space
(in particular, (X, d) is a compact metric space), then the hyperbolic topology and
the metric topology coincide.

Now, we turn our attention to normed linear spaces. For normed linear spaces,
we have the following.

Theorem 3.13 ([10, Theorem 2.7]). The hyperbolic topology and the norm topology
coincide for finite-dimensional normed linear spaces.

We consider about the normed linear spaces Lp(Ω, Σ, µ), where 1 ≤ p ≤ ∞.
We recall some definitions. For an infinite sequence x = (x1, x2, x3, . . . ) of real

numbers, we define the p-norm ∥x∥p = p
√∑∞

i=1 |xi|p for 1 ≤ p < ∞ and ∥x∥∞ =
sup{|xi| : i = 1, 2, 3, . . . }. For 1 ≤ p ≤ ∞, we define the normed space ℓp to be the
set of all infinite sequences x = (x1, x2, x3, . . . ) with ∥x∥p < ∞.

Let Σ be a σ-algebra of subsets of a set Ω and µ a positive measure on Σ. We
assume that Ω ∈ Σ. For a real number p with 1 ≤ p < ∞ let Lp(Ω, Σ, µ) be the set
of all measurable functions f such that |f |p is integrable. For each f ∈ Lp(Ω, Σ, µ)
we define the p-norm ∥f∥p as

∥f∥p =

(∫
Ω

|f |pdµ

)1/p

.
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A measurable function f is said to be essentially bounded if there is a constant
t such that |f | ≤ t a.e. Let L∞(Ω, Σ, µ) be the set of all essentially bounded
measurable functions. For f ∈ L∞(Ω, Σ, µ), we define

∥f∥∞ = inf{t : t > 0, µ({x : x ∈ Ω, |f(x)| > t}) = 0}.

For 1 ≤ p ≤ ∞ and f, g ∈ Lp(Ω, Σ, µ), we say that f and g are equivalent if f = g

a.e. Let f̃ denote the class of all functions in Lp(Ω, Σ, µ) which are equivalent to f .
We define the normed space Lp(Ω, Σ, µ) to be the space of all equivalence classes
of functions in Lp(Ω, Σ, µ) with the p-norm. We notice that we use ∥ · ∥ for the
p-norm in Lp(Ω, Σ, µ) instead of ∥ · ∥p without any confusions.

If we consider the interval I = [0, 1] as Ω, the collection of Lebesgue-measurable
subsets of I as Σ, and the Lebesgue measure on I as µ, then Lp(Ω, Σ, µ) is denoted
by Lp(I). We notice that if Ω is N, Σ is the collection of all subsets of N, and µ is
the counting measure on Σ, then Lp(Ω, Σ, µ) coincides with ℓp. Finally, we define
C(I) to be the Banach space of real-valued continuous functions on the interval
I = [0, 1] with the norm ∥f∥ = sup{|f(x)| : x ∈ I}.

Further, we refer the reader to [5] for the details about normed linear spaces.

Now, we consider the relation between the hyperbolic topology and the norm
topology for normed linear spaces Lp(Ω, Σ, µ), where Σ is a σ-algebra of subsets of
a set Ω, and µ is a positive measure on Σ.

Definition 3.14 ([4]). A normed linear space (X, ∥ · ∥) is said to be uniformly
convex if for every ε > 0 there is δ(ε) > 0 such that for each x, y ∈ X with

∥x∥ = ∥y∥ = 1 and ∥x − y∥ ≥ ε, ∥x+y∥
2

< 1 − δ(ε).
A normed linear space (X, ∥ · ∥) is said to be locally uniformly convex if for each

x ∈ X with ∥x∥ = 1 and ε > 0 there is δ(x, ε) > 0 such that for each y ∈ X with

∥y∥ = 1 and ∥x − y∥ ≥ ε, ∥x+y∥
2

< 1 − δ(x, ε).

We notice that the sum norm and the max norm on R2 are not locally uniformly
convex. It is known that Lp(Ω, Σ, µ) for 1 < p < ∞ are uniformly convex ([4]), and
hence it is locally uniformly convex.

Theorem 3.15 ([10, Theorem 3.2]). If (X, ∥ · ∥) is a locally uniformly convex
normed linear space, then the hyperbolic topology coincides with the norm topology
on X.

As we noticed above, for 1 < p < ∞, the normed space Lp(Ω, Σ, µ) is uniformly
convex, we have the following.

Corollary 3.16 ([10, Corollary 3.3]). Let 1 < p < ∞, Σ a σ-algebra of subsets
of a set Ω, and µ a positive measure on Σ. The hyperbolic topology and the norm
topology coincide on Lp(Ω, Σ, µ).

Corollary 3.17 ([10, Corollary 3.4]). If 1 < p < ∞, then the hyperbolic topology
coincides with the norm topology on ℓp and Lp[0, 1].
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Next, we consider the cases p = 1 and p = ∞. Let (Ω, Σ, µ) be a measure space.
A set A ∈ Σ is said to be an atom if µ(A) > 0 and for each B ⊂ A with B ∈ Σ we
have µ(B) = 0 or µ(B) = µ(A).

We say that a measure space (Ω, Σ, µ) has a finite partition by atoms if there
are finitely many atoms Ai ∈ Σ, i = 1, . . . , n such that Ω = A1 ∪ · · · ∪ An and
Ai ∩ Aj = ∅ if i ̸= j.

We notice that the measure space (N, 2N, µ), where µ is the counting measure,
contains atoms, but it does not have a finite partition by atoms.

Then we have the following.

Theorem 3.18 ([10, Corollary 3.6]). Let (Ω, Σ, µ) be a measure space and 1 ≤ p ≤
∞. If µ(Ω) = 0, or (Ω, Σ, µ) has a finite partition by atoms, then the hyperbolic
topology coincides with the norm topology in Lp(Ω, Σ, µ).

Now we have results for the cases p = 1 and p = ∞.

Theorem 3.19 ([10, Theorems 3.8 and 3.10]). Let (Ω, Σ, µ) be a measure space.
Then we have the following.

(1) The hyperbolic topology coincides with the norm topology in L1(Ω, Σ, µ) if
and only if µ(Ω) = 0 or (Ω, Σ, µ) has a finite partition by atoms.

(2) The hyperbolic topology coincides with the norm topology in L∞(Ω, Σ, µ) if
and only if µ(Ω) = 0 or (Ω, Σ, µ) has an atom.

Since the measure space (N, 2N, µ), where µ is the counting measure, does not
have a finite partition by atoms, the following are direct consequences of Theorem
3.19 (1) and (2), respectively.

Corollary 3.20 ([10, Corollary 3.9]). The hyperbolic topology is strictly weaker
than the norm topology in ℓ1.

Corollary 3.21 ([10, Corollary 3.11]). The hyperbolic topology coincides with the
norm topology in ℓ∞.

We can also have the following.

Corollary 3.22 ([10, Corollary 3.12]). The hyperbolic topology does not coincide
with the norm topology in C([0, 1]).

4. The Martin topology on the space of formal balls

In this section, we describe several properties of the Martin topology of the
posets of generalized formal balls in the same direction as the previous section.
In the sequel, we present certain relationships between the Martin topology µ on
continuous posets of generalized formal balls and certain product topology.

Let (X, d) be a metric space. It is clear that the subspace X × {t} of (BX,µ)
is a discrete space for each t ∈ R, and the subspace {x} × R of (BX, µ) is the
Sorgenfrey line S for each x ∈ X. This suggests that the Martin topology µ of BX
is relating to the product topology of the discrete topology of X and the Sorgenfrey
line topology. We denote the product topology of the metric space (X, d) and the
Sorgenfrey line by TX×S. In [11], Hashiriura obtained the following.



22 Y. HATTORI

Proposition 4.1 ([11, Proposition 3.1]). Let (X, d) be a metric space. Then,
TX×S = µ if and only if d induces the discrete topology.

The proposition above implies that for almost all metric spaces the Martin topol-
ogy differs from the product topology of X and S. However, we have some possibil-
ity that µ is homeomorphic to the product topology of X and S. Now, we consider
the homeomorphic relation between (BX, µ) and X×S. As we noticed in section 2,
the Martin topology is zero-dimensional. Hence, we consider only zero-dimensional
metric spaces. For a special subspace of the real line, the Martin topology may
homeomorphic to the product topology with the Sorgenfrey line.

Proposition 4.2 ([11, Proposition 3.2]). Let A be a subspace of R. If for each
a ∈ A, there exists ε > 0 such that (a−ε, a)∩A = ∅, then (BA, µ) is homeomorphic
to A × S.

Corollary 4.3. Let c0 be a convergent sequence in R, then (Bc0, µ) is homeomor-
phic to c0 × S.

On the other hand, the space of irrational numbers and the Cantor set are not
the case.

Theorem 4.4 ([11, Proposition 3.3]). If X is an uncountable separable metric
space, then X × S is not homeomorphic to (BX,µ).

Corollary 4.5 ([11, Corollary 3.1]). Let P and C be the space of irrational numbers
and the Cantor set respectively. Then P × S is not homeomorphic to (BP, µ), and
C × S is not homeomorphic to (BC, µ).

Now, we may ask the following.

Question 4.6 ([11, Question 3.2]). Let X be a countable metric space. Is (BX,µ)
homeomorphic to X × S? In particular, how about the space of rational numbers
Q?

As we mentioned above, for the real line R the Martin topology of the poset of
generalized formal balls is not homeomorphic to the product space R×S. Further-
more, we can describe on (BR, µ) as follows.

Theorem 4.7 ([11, Proposition 3.4]). (BR, µ) is homeomorphic to S2.

Concerning the theorem above, we may ask the following questions.

Question 4.8. Is (BRn, µ) homeomorphic to Sn+1 for each natural number n ≥ 2?

Question 4.9 ([11, Question 3.3]). For each subset X of R, XS denotes the subspace
X of S. Then, is (BX,µ) homeomorphic to XS × S? In particular, how about QS
or PS ?

Remark 4.10. It is clear that the usual topology of Q is strictly weaker than the
topology of QS, however it follows from the topological characterization of the
space of the rationals (e.g., see [15, Theorem 1.9.6]) that Q is homeomorphic to QS
(cf. [3]). Hence, the positive answer to to Question 4.9 for the space Q gives the
positive answer to the second part of Question 4.6.
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Now, we consider special subspaces of (BR, µ) as we considered in section 3.2.
Let (X, d) be a metric space. Let p : BX → X be the natural projection,

p(x, s) = x for each (x, s) ∈ BX. We consider the subsets Bd(a, u) = {(y, s) ∈
BX : d(a, y) = u − s} and Bd−(a, u) = {(y, s) ∈ BX : d(a, y) = s − u} of BX for
(a, u) ∈ BX. Since the restriction of p over Bd(a, u) and Bd−(a, u) are bijections,
these derive topologies τ(a,u) τ−

(a,u) of X respectively, i.e., τ(a,u) = {p(Bd(a, u)∩U) :

U ∈ µ} and τ−
(a,u) = {p(Bd−(a, u) ∩ U) : U ∈ µ}. What are the topologies τ(a,u)

and τ−
(a,u)? It is easy to see that the subspaces Bd(a, u) and Bd(a, v) (Bd−(a, u)

and Bd−(a, v)) drive the same topology of X by the projection p for each u, v ∈ R.
Hence, it suffices to consider about Bd(a, 0) and Bd−(a, 0), i.e., u = 0, and we
write τa = τ(a,0) and τ−

a = τ−
(a,0).

Since the Martin topology of BX is generated by sets of the form ⇑(x, r) =
{(y, s) : d(x, y) < r − s} and ↓(x, r) = {(y, s) : d(x, y) ≤ s − r} for (x, r) ∈ BX,
the subspace topology of the set Bd(a, 0) is generated by sets of the form {(y, s) ∈
Bd(a, 0) : d(y, x) < r − s} = {(y,−d(a, y)) ∈ BX : d(y, x) − d(a, y) < r} and
{(y, s) ∈ Bd(a, 0) : d(y, x) ≤ s−r} = {(y,−d(a, y)) ∈ BX : d(y, x)+d(a, y) ≤ −r}
for (x, r) ∈ BX. Hence, τa is generated by sets of the form {y : d(y, x)−d(a, y) < r}
and {y : d(y, x) + d(a, y) ≤ −r} for x ∈ X and r ∈ R. Since d(y, x) − d(a, y) ≥
−d(a, x), if r ≤ −d(a, x) then {y : d(y, x) − d(a, y) < r} = ∅. Similarly, if
r > −d(a, x) then {y : d(y, x) + d(a, y) ≤ −r} = ∅. Hence, τa is generated by
{{y : d(y, x) − d(a, y) < r} : x ∈ X, r > −d(a, x)} ∪ {{y : d(y, x) + d(a, y) ≤ −r} :
x ∈ X, r ≤ −d(a, x)}.

Similarly, it follows that τ−
a is generated by {{y : d(y, x) + d(a, y) < r} : x ∈

X, r > d(a, x)} ∪ {{y : d(y, x) − d(a, y) ≤ −r} : x ∈ X, r ≤ d(a, x)}.
We notice that a is an isolated point of (X, τa) for each a ∈ X. Hence, τa

may differ from τb if a ̸= b. However, we do not know whether (X, τa) may be
homeomorphic to (X, τb). Further, we do not know whether τ−

a depend on the
choice of the point a ∈ X.

Lemma 4.11. (1) For each a, b ∈ R with a < b, the subspace [a, b) of the Sorgenfrey
line S is homeomorphic to S.

(2) The topological sum of countably many copies of the Sorgenfrey line is home-
omorphic to the Sorgenfrey line S.

Proof. (1) The Sorgenfrey line S can be represented as a topological sum of count-
ably many half-open intervals [n, n + 1), n ∈ Z, and the subspace [a, b) of the
Sorgenfrey line can be also represented as a topological sum of countably many
half-open intervals [xn, xn+1), n ∈ N, where a = x1 < x2 · · · < b and lim xn = b.
Further, it obvious that the half-open intervals [n, n + 1) and [xn, xn+1) are home-
omorphic. Hence, S is homeomorphic to the subspace [a, b).

(2) Since the Sorgenfrey line is a topological sum of countably many copies of
half-open intervals [n, n+1), n ∈ Z which is homeomorphic to S by (1), a topological
sum of countably many copies of the Sorgenfrey line is also a topological sum of
countably many copies of half-open intervals. As we showed in the proof of (1), a
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topological sum of countably many copies of half-open intervals is homeomorphic
to S. �
Proposition 4.12. Let a ∈ R. Then we have the following.

(1) (R, τa) is homeomorphic to the subspace (−∞, 0] of the Sorgenfrey line.
(2) (R, τ−

a ) is homeomorphic to the Sorgenfrey line.

Proof. (1) It is easy to see that the following is a basic neighborhood system of each
point x of (R, τa): {(y, x] : y < x} if x < a, {{a}} if x = a, and {[x, y) : y > x} if
x > a. Then (R, τa) is a topological sum of two copies of the Sorgenfrey line and
an isolated point. Since a topological sum of two copies of the Sorgenfrey line is
homeomorphic to the Sorgenfrey line, (R, τa) is homeomorphic to the topological
sum of the Sorgenfrey line and an isolated point, and hence it is homeomorphic to
the subspace (−∞, 0] of the Sorgenfrey line.

(2) It is easy to see that the following is a basic neighborhood system of each
point x of (R, τ−

a ): {(y, x] : y < x} if x < a, {(y, z) : y < x < z} if x = a,
and {[x, y) : y > x} if x > a. Hence (R, τ−

a ) = (−∞, a) ∪ {a} ∪ (a,∞), where
(−∞, a) and (a,∞) are homeomorphic to the Sorgenfrey line and a has the usual
neighborhood system. We put A1 = (−∞, a − 1

2
] and B1 = [a + 1

2
,∞). Then for

each n ≥ 2 we put An = (a − 1
n
, a − 1

n+1
] and Bn = [a + 1

n+1
, a + 1

n
). Now, we can

define a homeomorphism f : (R, τ−
a ) → [0, 1)(⊂ S) such as

(i) f(An) = [ 1
2n

, 1
2n−1

) for each n = 1, 2, . . . ,

(ii) f(Bn) = [ 1
2n+1

, 1
2n

) for each n = 1, 2, . . . and,
(iii) f(a) = 0.

By Lemma 4.11, it follows that [0, 1) is homeomorphic to the Sorgenfrey line, and
hence (R, τ−

a ) is homeomorphic to the Sorgenfrey line. �

5. Several topologies on the set of the real numbers

Concerning the observation in the previous section, we may be interested in the
relation between several topologies on the set R of real numbers and the topology
of the Sorgenfrey line. The results and the questions described in this section may
be already known or stupid. However, I could not find the results in the literature,
so we shall mention them.

Let τE and τS denote the usual (Euclidean) topology of R and the topology of
the Sorgenfrey line S, respectively.

As we mentioned in Proposition 4.12, it follows that τ−
a is homeomorphic to τS,

but it is obvious that τE ( τ−
a ( τS.

Definition 5.1. Let A be a subset of the set R of the real numbers. We define the
topology τ(A) on the set R as follows:

(1) For each x ∈ A, {(x − ε, x + ε) : ε > 0} is the neighborhood base at x.
(2) For each x ∈ R − A, {[x, x + ε) : ε > 0} is the neighborhood base at x.

It is clear that τ(R) = τE and τ(∅) = τS, and it follows from Proposition 4.12
that τ({a}) is homeomorphic to τS for each a ∈ R. Now, we may ask the following
question.
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Question 5.2. How different are the topologies τ(A) for A ⊂ R?

Remark 5.3. If F ⊂ R is finite, then (R, τ(R− F )) has |F |-many components, and
each components are half-open intervals with the usual topology. Hence τ(R−F1)
and τ(R − F2) is not homeomorphic for every finite subsets F1 and F2 of R with
|F1| ̸= |F2|.

Remark 5.4. By an argument similar to Proposition 4.12, we have that τ(A) is
homeomorphic to τS if A ⊂ R is a discrete subspace of (R, τE).

It is clear that if A has a non-empty interior in (R, τE), τ(A) is not homeomorphic
to τS. We ask the following.

Question 5.5. Let A be a nowhere dense subset of (R, τE). Is τ(A) homeomorphic
to τS?

We may also ask the following question.

Question 5.6. Let PS be the subspace of irrational numbers of the Sorgenfrey line.
Is PS homeomorphic to S?
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