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Abstract. A geodesic sphere G(r) of radius r (0 < r < π/
√

c ) of a complex
projecive space CPn(c) is one of the most interesting objects in differential ge-
ometry. This expository paper consists of two parts. In the first half, we study
curve theory on G(r) (see [4, 9]). In the latter half, we investigate G(r) from the
viewpoint of submanifold theory ([2, 11]).

1. Introduction

A geodesic sphere G(r) of radius r (0 < r < π/
√

c ) in an n-dimensional complex
projective space CP n(c) (n = 2) of constant holomorphic sectional curvature c(> 0)
is impotant in intrinsic geometry as well as extrinsic geometry (i.e., submanifold
theory).

In intrinsic geometry, for example it is known that G(r) is a naturally reductive
Riemannian homogeneous manifold, so that every geodesic of G(r) is a homoge-
neous curve, namely it is an orbit of a one-parameter subgroup of the isometry
group I(G(r)) of G(r) (cf. [12]). Moreover, when tan2(

√
c r/2) > 2, G(r) is a

Berger sphere (see [15]). Inspired by these facts, we are interested in geodesics
on G(r) of radius r (0 < r < π/

√
c ) in CP n(c). We first investigate the length

spectrum of G(r) in detail (see [4]). We next study non-geodesic homogeneous
curves on G(r). We construct a family of closed non-geodesic homogeneous curves
on G(r) with the same length by using an isometric embedding

(1.1) f ◦ ιG(r) : G(r)
ιG(r)−→ CP n(c)

f−→ Sn(n+2)−1

(
n + 1

2n
c

)
,

where ιG(r) is a natural inclusion mapping of G(r) into CP n(c) and f is so-called
the first standard minimal embedding of CP n(c) into an (n(n+2)−1)-dimensional
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sphere Sn(n+2)−1 ((n + 1)c/(2n)) of constant sectional curvature (n + 1)c/(2n)
(see [9]).

In extrinsic geometry, again by using the above minimal embedding f we
immerse each real hypersurface M2n−1 of CP n(c) into the ambient sphere
Sn(n+2)−1 ((n + 1)c/(2n)) as follows:

(1.2) f ◦ ιM : M
ιM−→ CP n(c)

f−→ Sn(n+2)−1

(
n + 1

2n
c

)
,

where ιM is an isometric immersion of M2n−1 into CP n(c). Note that the isometric
immersion f ◦ ιM does not have parallel second fundamental form for each real
hypersurface M of CP n(c). On the other hand, by direct computation we can see
that f ◦ ιM has parallel mean curvature vector in this sphere if and only if M is
locally congruent to the geodesic sphere G(r) with tan2(

√
c r/2) = 2n+1 in CP n(c)

(cf. [11]). Needless to say, this geodesic sphere is a Berger sphere. Furthermore, it
has an almost contact metric structure (ϕ, ξ, η, ⟨ , ⟩). In particular, when c = 8n+4,
this geodesic sphere is a Sasakian space form of constant ϕ-sectional curvature
8n + 5 (see [2]). These facts imply that for each of c(> 0) and n(= 2), every N -
dimensional sphere SN(c̃) of constant sectional curvature c̃ with (n + 1)c/(2n) = c̃
and N > n(n + 2) − 1 admits a (2n − 1)-dimensional Riemannian submanifold
M2n−1 satisfying the following properties.

(1) M is diffeomorphic but not isometric to a Euclidean sphere.
(2) M is a homogeneous submanifold of the ambient sphere SN(c̃), i.e., M is an

orbit of some subgroup of the isometry group SO(N +1) of SN(c̃). However,
M is not a Riemannian symmetric space.

(3) The mean curvature vector of M in SN(c̃) is nonzero-parallel with respect
the normal connection of M .

(4) M has an almost contact metric structure (ϕ, ξ, η, ⟨ , ⟩). Especially, in the
case of c = 8n + 4, M is a Sasakian space form of constant ϕ-sectional
curvature 8n + 5.

In the latter half of this paper, we clarify these fundamental properties of a certain
geodesic sphere G(r) in CP n(c).

2. Length spectrum of geodesic spheres G(r) in CP n(c)

Let M2n−1 (n = 2) be a real hypersurface with a unit nomal local vector field N
in CP n(c). We denote by (ϕ, ξ, η, ⟨ , ⟩) the almost contact metric structure of M
induced from the Kähler structure J of the ambient space CP n(c). That is, this
structure is defined by

ξ = −JN , η(X) = ⟨X, ξ⟩ and ϕX = JX − η(JX)ξ for all vectors X on M,

so that it satisfies

ϕ2X = −X + η(X)ξ, η(ξ) = 1 and η(ϕX) = 0 for arbitrary X on TM.
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We here recall the following fundamental equations for M , which are so-called
Gauss formula and Weingarten formula, respectively.

(2.1) ∇̃XY = ∇XY + ⟨AX, Y ⟩N and ∇̃XN = −AX,

where ∇̃ and ∇ are the Riemannian connections of CP n(c) and M , respectively,
and A is the shape operator of M in CP n(c). Then it follows from the fact that

∇̃J = 0 and (2.1) that

(2.2) ∇Xξ = ϕAX

and

(2.3) (∇Xϕ)Y = η(Y )AX − ⟨AX, Y ⟩ξ,

where X and Y are any vectors on M .
In the following, we consider a geodesic sphere G(r) of radius r (0 < r < π/

√
c )

in CP n(c). So we use the commutative condition ϕA = Aϕ without explanation.
We recall the invariance ργ for a geodesic γ = γ(s) on G(r), which is defined by
ργ = ⟨γ̇(s), ξγ(s)⟩ for −∞ < s < ∞. Equation (2.2) guarantees the constancy of ργ

with −1 5 ργ 5 1.

∇γ̇ργ = ∇γ̇⟨γ̇, ξ⟩ = ⟨γ̇,∇γ̇ξ⟩
= ⟨γ̇, ϕAγ̇⟩ = ⟨γ̇, Aϕγ̇⟩ = ⟨Aγ̇, ϕγ̇⟩
= −⟨ϕAγ̇, γ̇⟩ = 0.

This invariance ργ is said to be the structure torsion of a geodesic γ on G(r). We
shall state the congruence theorem on geodesics of G(r) in terms of their structure
torsions. For this purpose we review fundamental notions on congruency for curves
in Riemannian manifolds. Two curves γ1, γ2 on a Riemannian manifold N are said
to be congruent to each other in the usual sense if there exist an isometry of φ of
N and a constant s0 satisfying γ2(s) = (φ ◦ γ1)(s + s0) for all s. In the case we can
take s0 = 0, they are said to be strongly congruent to each other. That is, we call
two curves γ1, γ2 on N strongly congruent to each other if there is an isometry φ of
N with γ2(s) = (φ ◦ γ1)(s) for all s. Trivially, a Riemannian manifold N is either
a Euclidean space or a Riemannian symmetric space of rank one if and only if for
every pair of geodesics γ1, γ2 on N they are strongly congruent to each other. In
this paper, we treat a curve on a Riemannian manifold N is a mapping of the real
line R into N .

Lemma 1 ([4]). On a geodesic sphere G(r) (0 < r < π/
√

c ) of CP n(c), two
geodesics γ1, γ2 are strongly congruent to each other if and only if their structure
torsions ργ1 , ργ2 satisfy |ργ1 | = |ργ2 |.

We are now in a position to study lengths of closed geodesics of G(r). It suffices
to consider the case of c = 4. Let Π : S2n+1(1) → CP n(4) denote the Hopf fibration
of a unit sphere. For a smooth curve γ on CP n(4) a smooth curve γ̃ on S2n+1(1)
is called a horizontal lift of γ if ˙̃γ(s) is a horizontal vector and dΠ( ˙̃γ(s)) = γ̇(s) for
all s. We note that a curve γ on G(r) is closed if and only if its horizontal lift γ̃ on
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S2n+1(1) satisfies γ̃(s) = eiθγ̃(s + s0) with some cnstants θ ∈ [0, 2π) and s0(> 0)
for each s ∈ (−∞,∞). The following elementary lemma is a key in our argument.

Lemma 2 ([4]). Let σ be a smooth simple curve on CP n(4). Suppose that a
horizontal lift σ̃ of σ on S2n+1(1) is represented as

σ̃(s) = Ae
√
−1 as + Be

√
−1 bs + Ce

√
−1 cs + De

√
−1 ds,

which is a curve in Cn+1 with nonzero vectors A,B,C, D ∈ Cn+1 and mutually
distinct real numbers a, b, c, d satisfying a + b + c + d = 0 and a ̸= 0. Then σ is
closed if and only if all the ratios b/a, c/a, d/a are rational. In this case, its length
is

length(σ) = 2π × L.C.M.

{
1

|b − a|
,

1

|c − a|
,

1

|d − a|

}
.

Here, for positive numbers α1, α2, α3, we denote by L.C.M.{α1, α2, α3} the mini-
mum value of the set {jα1|j = 1, 2, . . .} ∩ {jα2|j = 1, 2, . . .} ∩ {jα3|j = 1, 2, . . .}.

We remember that every geodesic of G(r) (0 < r < π/
√

c ) in CP n(c) is a
homogeneous curve (see [12]), so that it is a simple curve. Then by Lemma 2 we
obtain the following sufficient condition for a geodesic γ = γ(s) on G(r) to be
closed, which can be written by its structure torsion ργ:

Theorem 1 ([4]). For a geodesic γ on a geodesic sphere G(r) of radius r (0 <
r < π/

√
c ) in CP n(c) we have the following properties according to their structure

torsions:

(1) When ργ = ±1, it is closed and its length is π sin(
√

c r);
(2) When ργ = 0, it is also closed and its length is 2π sin(

√
c r/2);

(3) When 0 < |ργ| < 1, it is closed if and only if its structure torsion ργ is
given by

ργ =
±q

sin(
√

c r/2)
√

p2 tan2(
√

c r/2) + q2

with some relatively prime positive integers p and q with q < p tan2(
√

c r/2).
In this case, its length is

length(r) = 2δ(p, q)π
√(

p2 sin2(
√

c r/2) + q2 cos2(
√

c r/2)
)
/c .

Here, δ(p, q) takes the value 2 when pq is even and takes the value 1 when
pq is odd.

In consideration of Lemma 1 and Theorem 1 we find the following:

Theorem 2 ([4]). On a geodesic sphere G(r) (0 < r < π/
√

c ) in CP n(c), there
exist countably infinite congruence classes of closed geodesics. The length spectrum
LSpec(G(r)) of G(r) is a discrete unbounded subset in the real line R.

We here investigate the first length spectrum λ1, the second length spectrum λ2

and the third length spectrum λ3 of G(r) in detail.

Proposition 1 ([4]). A geodesic sphere G(r) (0 < r < π/
√

c ) in CP n(c) has the
following properties on the lengths of closed geodesics.
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(1) λ1, λ2 and λ3 are simple, that is, each of their multiplicities is one.
(2) λ1 = (2π/

√
c ) sin(

√
c r), which is the length of the geodesics of structure

torsion ±1.
(3) When 0 < r 5 π/(2

√
c ), we have λ2 = (4π/

√
c ) sin(

√
c r/2), which is the

length of the geodesics with null structure torsion.
When π/(2

√
c ) < r < π/

√
c , we have λ2 = 2π/

√
c , which is the length of

the geodesics with structure torsion ± cot(
√

c r/2).
(4) When π/(2

√
c ) < r < π/

√
c we have λ3 = (4π/

√
c ) sin(

√
c r/2), which is

the length of the geodesics with null structure torsion.
When 0 < r 5 π/(2

√
c ) and it satisfies

√
2k − 1 5 cot r <

√
2k + 1 (k =

1, 2, . . .), we have λ3 = 2π
√
{4k(k + 1) sin2(

√
c r/2) + 1}/c , which is the

length of the geodesics with structure torsion

±1/
(
sin(

√
c r/2)

√
(2k + 1)2 tan2(

√
c r/2) + 1

)
.

We remark that the sectional curvature K of G(r) (0 < r < π/
√

c ) lies in the
closed interval [(c/4) cot2(

√
c r/2), c + (c/4) cot2(

√
c r/2)]. Hence, as mentioned in

Introduction, in the case of tan2(
√

c r/2) > 2 we find that it is an example of a
so-called Berger sphere. But for all lengths except the bottom λ1 of LSpec(G(r)),
we find that the following inequality of Klingerberg’s type holds.

Corollary 1. Except geodesics with structure torsion ±1, every geodesic γ of a
geodesic sphere G(r) (0 < r < π/

√
c ) in CP n(c) satisfies

length(r) > 4π/
√

c (4 + cot2(
√

c r/2)) .

Each element of LSpec(G(r)) is not necessarily simple. For example, for G(π/4)
in CP n(4) we have

LSpec(G(π/4))=
{

π,
√

2 π,
√

5 π,
√

10 π,
√

13 π,
√

17 π, 5π,
√

26 π,
√

29 π,
√

34 π,

√
37 π,

√
41 π,

√
50 π,

√
53 π,

√
58 π,

√
61 π,

√
65 π,

√
73 π, . . .

}
.

Though each element from λ1 = π to λ16 =
√

61 π is simple, we find that the
multiplicity of λ17 =

√
65 π is two. It is the common length of the geodesics with

structure torsions 3/
√

65 and 7/
√

65 .

Theorem 3 ([4]). For a geodesic sphere G(r) (0 < r < π/
√

c ) in CP n(c) we
obtain the following:

(1) If tan2(
√

c r/2) is irrational, every element of LSpec(G(r)) is simple.
(2) If tan2(

√
c r/2) is rational, the multiplicity of each element of LSpec(G(r))

is finite, but not uniformly bounded and satisfies lim supλ→∞ m(λ) = ∞. Its
growth is less than polynomial growth. It satisfies limλ→∞ λ−δm(λ) = 0 for
arbitrary positive δ.

(3) We denote by n(λ) the number of congruency classes of closed geodesics
whose length is not longer than λ. Its growth is polynomial order of the
second degree and satisfies limλ→∞ λ−2n(λ) = 3cr/ (4π4 sin(

√
c r)).
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This theorem guarantees that on a geodesic sphere G(r) (0 < r < π/
√

c ) with
irrational tan2(

√
c r/2) in CP n(c) two closed geodesics are congruent if and only

if they have the same length. On the other hand, if tan2(
√

c r/2) is rational, we
cannot classify congruency classes of closed geodesics only by their lengths.

3. Non-geodesic homogeneous curves of G(r) in CP n(c)

We are interested in finding a nice family of curves including all geodesics of
G(r) (0 < r < π/

√
c ). To do this, we recall the notion of Sasakian curves.

On a real hypersurface N in a Kähler manifold (M̃, J) a smooth curve γ is said
to be a Sasakian curve if it satisfies

(3.1) ∇γ̇ γ̇ = kϕγ̇

with some constant k, where ϕ is the structure tensor of N induced by J . Needless
to say, for an arbitrary constant k and a unit vector v at each point x ∈ N ,
there exists the unique Sasakian curve γ satisfying (3.1) with initial condition that
γ(0) = x and γ̇(0) = v. Sasakian curves on a manifold admitting an almost contact
metric structure can be considered as correspondences of Kähler circles on Kähler
manifolds.

We here recall two invariances for a Sasakian curve γ = γ(s) on G(r) in CP n(c).
One is the structure torsion ργ = ⟨γ̇(s), ξγ(s)⟩. The other is the normal curvatue
κγ = ⟨Aγ̇(s), γ̇(s)⟩. By the same computation as above and (3.1) we find the
constancy of ργ:

∇γ̇ργ = ⟨∇γ̇ γ̇, ξ⟩ + ⟨γ̇,∇γ̇ξ⟩ = k⟨ϕγ̇, ξ⟩ + ⟨γ̇, ϕAγ̇⟩
= ⟨γ̇, ϕAγ̇⟩ = ⟨γ̇, Aϕγ̇⟩ = −⟨ϕAγ̇, γ̇⟩ = 0.

Furthermore, by the fact ⟨(∇XA)X, X⟩ = 0 for all vectors X on G(r), we see the
constancy of κγ. We remark that for a Sasakian curve γ satisfying (3.1) on G(r) the
first curvature κ1 = ∥∇γ̇ γ̇∥ of γ is given by κ1 = |k|

√
1 − ρ2

γ , so that it is constant
along γ. Hence, in the following we say the constant k to be the coefficient of
a Sasakian curve γ satisfying (3.1). As a matter of course we treat geodesics as
Sasakian curves in a trivial sense.

For about Sasakian curves on G(r) (0 < r < π/
√

c ) in CP n(c), the following is
obtained in [3].

Lemma 3. Let γi (i = 1, 2) be Sasakian curves of coefficients κi and structure
torsions ργi

on a geodesic sphere G(r) (0 < r < π/
√

c ) in CP n(c). They are
strongly congruent to each other if and only if one of the following conditions holds:

i) |ργ1 | = |ργ2 | = 1;
ii) ργ1 = ργ2 = 0 and |κ1| = |κ2|;
iii) 0 < |ργ1 | = |ργ2 | < 1 and κ1ργ1 = κ2ργ2.

As immediate consequences of this lemma we obtain the following corollary on
the homogeneity of Sasakian curves on G(r).
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Corollary 2. Every Sasakian curve on G(r) (0 < r < π/
√

c ) in CP n(c) is homo-
geneous. That is, it is an orbit of a one-parameter subgroup of the isometry group
I(G(r)) of G(r).

In order to get geometric properties of Sasakian curves on a geodesic sphere
G(r) (0 < r < π/

√
c ) in CP n(c), we study them through the isometric embedding

f ◦ ιG(r) given by (1.1). As mentioned in Introduction, this embedding f ◦ ιG(r)

does not have parallel second fundamental form but is equivariant. So we can
hence treat our geodesic sphere G(r) as a homogeneous submanifold in this sphere
through this embedding f ◦ ιG(r).

Proposition 1 tells us that every integral curve γ of the characteristic vector field ξ
on G(r) is the shortest closed geodesic for each radius r ∈ (0, π/

√
c ). Furthermore,

its shape ιG(r) ◦ γ through the inclusion ιG(r) : G(r) → CP n(c) is a Kähler circle
of curvature

√
c cot(

√
c r) in CP n(c), namely this integral curve γ satisfies either

∇̃γ̇ γ̇ =
√

c cot(
√

c r)Jγ̇ or ∇̃γ̇ γ̇ = −
√

c cot(
√

c r)Jγ̇. If we see this curve through
the embedding f ◦ ιG(r), we find the curve f ◦ ιG(r) ◦ γ is a small circle on a sphere

Sn(n+2)−1 ((n+1)c/(2n)) by the following lemma.

Lemma 4 ([6]). A smooth curve µ on CP n(c) is a Kähler circle of curvature κ
if and only if the curve f ◦ µ on Sn(n+2)−1 ((n+1)c/(2n)) is a circle of positive

curvature
√

κ2 + ((n−1)c/(2n)).

In this context, we naturally come to the position to pose the following problem:

Problem 1. Find and classify smooth curves γ on G(r) whose shape f ◦ ιG(r) ◦ γ

through the equivariant isometric embedding f ◦ ιG(r) are circles in Sn(n+2)−1
(
(n+

1)c/(2n)
)
.

By virtue of Lemma 4 this problem is equivalent to the problem to find and to
classify curves on G(r) which are mapped to Kähler circles in CP n(c) through the
inclusion ιG(r). For a smooth curve γ on G(r) we get by the Gauss formula that

∇̃γ̇ γ̇ = ∇γ̇ γ̇ + ⟨Aγ̇, γ̇⟩N and Jγ̇ = ϕγ̇ + ργN . We can hence obtain the following.

Lemma 5 ([10]). A smooth curve γ on G(r) can be seen as a Kähler circle of
curvature κ on CP n(c) through the inclusion ι if and only if it satisfies both of the
equations ∇γ̇ γ̇ = ±κϕγ̇ and ⟨Aγ̇, γ̇⟩ = ±κργ, where double signs take the same
signatures.

By use of this lemma we can get the following answer to our problem. The
answer depends on the radius of a geodesic sphere.

Theorem 4. Let G(r) be a geodesic sphere of radius 0<r 5 π/(2
√

c ) in CP n(c).

(1) For 0 5 k < c
{
cot2(

√
c r)+(n−1)/(2n)

}
, there are no curves on G(r) whose

shape through f ◦ ιG(r) is a circle of curvature k on Sn(n+2)−1
(
(n+1)c/(2n)

)
.

(2) When k2 = c
{
cot2(

√
c r) + (n−1)/(2n)

}
, the shape of a curve γ on G(r)

through f ◦ ιG(r) is a circle of curvature k if and only if it is a geodesic with
structure torsion ργ = ±1, which is an integral curve of ξ on G(r).
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(3) When k2 > c
{
cot2(

√
c r) + (n−1)/(2n)

}
, the shape of a curve γ on G(r)

through f ◦ ιG(r) is a circle of curvature k if and only if it is a Sasakian

curve of coefficient ±
√

k2 − (n−1)c/(2n) whose structure torsion is

ργ = ±c−1/2
{√

k2 + (n+1)c/(2n) −
√

k2 − (n+1)c/(2n)
}

cot(
√

c r/2),

where double signs take the same signatures.

Trivially these curves in (2), (3) are closed with length 2π/
√

k2 + (n+1)c/(2n) .

Theorem 5. Let G(r) be a geodesic sphere of radius r with π/(2
√

c ) < r < π/
√

c
in CP n(c).

(1) For 0 5 k <
√

(n−1)c/(2n) , there are no curves on G(r) whose shape

thorough f ◦ ιG(r) is a circle of curvature k on Sn(n+2)−1
(
(n+1)c/(2n)

)
.

(2) When k =
√

(n−1)c/(2n) , the shape of a curve on G(r) through f ◦ ιG(r) is
a circle of curvature k if and only if it is a geodesic with structure torsion
ργ = ± cot(

√
c r/2).

(3) When
√

(n−1)c/(2n) < k < c
{
cot2(

√
c r) + (n−1)/(2n)

}
, the shape of a

curve γ on G(r) through f ◦ ιG(r) is a circle of curvature k if and only if

it is a Sasakian curve of coefficient ±
√

k2 − (n−1)c/(2n) whose structure
torsion is

ργ = ±c−1/2
{√

k2 + (n+1)c/(2n) −
√

k2 − (n+1)c/(2n)
}

cot(
√

c r/2)

or

ργ = ±c−1/2
{
−

√
k2 + (n+1)c/(2n) −

√
k2 − (n+1)c/(2n)

}
cot(

√
c r/2),

where double signs take the same signatures.
(4) When k = c

{
cot2(

√
c r) + (n− 1)/(2n)

}
, the shape of a curve on G(r)

through f ◦ ιG(r) is a circle of curvature k if and only if it is a geodesic with
structure torsion ργ = ±1.

(5) When k > c
{
cot2(

√
c r) + (n−1)/(2n)

}
, the shape of a curve γ on G(r)

through f ◦ ιG(r) is a circle of curvature k if and only if it is a Sasakian

curve of coefficient ±
√

k2 − (n−1)c/(2n) whose structure torsion is

ργ = ±c−1/2
{√

k2 + (n+1)c/(2n) −
√

k2 − (n+1)c/(2n)
}

cot(
√

c r/2),

where double signs take the same signatures.

Trivially these curves in (2),(3),(4),(5) are closed with length 2π/
√

k2+(n+1)c/(2n).

Remark 1. (1) For each curve γ in Theorems 4 and 5, the curve ιG(r) ◦ γ is
a homogeneous curve on totally geodesic CP 1(c)(= S2(c)) of CP n(c) (see
[3]). This fact shows that each curve in Theorems 4 and 5 is an orbit of a
one-parameter subgroup of SO(3).

(2) For each Sasakian curve γ on G(r) the curve ιG(r) ◦ γ is a homogeneous
curve on totally geodesic CP 2(c) of CP n(c) (see [1]). Hence every Sasakian
curve on G(r) is an orbit of a one-parameter subgroup of SU(3).
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(3) Curves in Theorem 4(3), Theorem 5(3) and Theorem 5(5) are non-geodesic
Sasakian curves.

(4) There exist two non-geodesic Sasakian curves in Theorem 5(3) which are
not congruent to each other with respect to I(G(r)), but they are mapped
to a circle of the same curvature k on Sn(n+2)−1

(
(n+1)c/(2n)

)
. Hence these

curves, considered as curves on this sphere, are congruent to each other
with respect to the isometry group SO(n(n + 2)) of the sphere.

4. Properties of certain geodesic spheres G(r) in CP n(c) in
submanifold theory

We first investigate the minimal embedding f : CP n(c)→Sn(n+2)−1
(
(n+1)c/(2n)

)
which is defined by eigenfunctions of the first eigenvalue of the Laplacian ∆ on
CP n(c). The inner product of the first normal space of f is given by

⟨σ1(X,Y ), σ1(Z, W )⟩ = −(c/(2n))⟨X,Y ⟩⟨Z,W ⟩ + (c/4)
(
⟨X, W ⟩⟨Y, Z⟩(4.1)

+ ⟨X,Z⟩⟨Y,W ⟩ + ⟨JX, W ⟩⟨JY, Z⟩ + ⟨JX, Z⟩⟨JY, W ⟩
)
.

Here, σ1 denotes the second fundamental form of f . Equation (4.1) shows the
following properties of f :

i) f1 is minimal;
ii) σ1(JX, JY ) = σ1(X, Y ) for ∀X,Y ∈ TCP n(c) (namely, σ is J-invariant);

iii) ∥σ1(X,X)∥ =
√

(n − 1)c/(2n) for each unit vector X on CP n(c) (that is,

f is
√

(n − 1)c/(2n) -isotropic (cf. [14])).

We remark that σ1 is J-invariant is equivalent to saying that the second funda-
mental form σ1 of our embedding f is parallel. As mentioned in Introduction, the
embedding f is usually called the first standard minimal embedding.

In this section, we immerse all real hypersurfaces M of CP n(c) into the sphere
Sn(n+2)−1

(
(n + 1)c/(2n)

)
(see (1.2)). Note that for every real hypersurface M , the

second fundamental form of the isometric immersion f ◦ ιM : M → Sn(n+2)−1
(
(n +

1)c/(2n)
)

is not parallel. However, in this class {(M, f ◦ ιM)|ιM : M → CP n(c) is

an isometric immersion} of all submanifolds in the sphere Sn(n+2)−1
(
(n+1)c/(2n)

)
,

there exist nonzero-constant mean curvature submanifolds. For example, direct
calculation tells us that the mean curvature Hr (0 < r < π/

√
c ) defined by

the length of the mean curvature vector of the embedding f ◦ ιG(r) : G(r) →
Sn(n+2)−1

(
(n + 1)c/(2n)

)
given by (1.1) is expressed as

H2
r =

c

4(2n − 1)2

{
(2n − 1)2 cot2

(√c

2
r
)

+ tan2
(√c

2
r
)

+
−4n2 + 4n − 2

n

}
̸= 0.

In this context, it is natural to pose the following problem:

Problem 2. Classify submanifolds (M, f ◦ ιM) given by (1.2) having parallel mean
curvature vector with respect to the normal connection in the sphere Sn(n+2)−1

(
(n+

1)c/(2n)
)
.

The following proposition plays as a key in this section.
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Proposition 2. Let M2n−1 be a real hypersurface of CP n(c) through an isomet-
ric immersion ιM and f : CP n(c) → Sn(n+2)−1

(
(n + 1)c/(2n)

)
the first standard

minimal embedding. Then M is locally congruent to the geodesic sphere G(r) with
tan2(

√
c r/2) = 2n + 1 in CP n(c) if and only if the immersion f ◦ ιM : M →

Sn(n+2)−1
(
(n + 1)c/(2n)

)
has parallel mean curvature vector with respect to the

normal connection. Moreover, this submanifold (M, f ◦ ιM) is homogeneous in this
ambient sphere.

Remark 2. The geodesic sphere G(r) in Proposition 2 is a Berger sphere, since
tan2(

√
c r/2) = 2n + 1 > 2.

We next study the almost contact structure of our geodesic sphere in Propsition 2.
For this purpose we review fundamental notions in contact geometry. Let M2m+1

be an almost contact metric manifold endowed with an almost contact metric
structure (ϕ, ξ, η, ⟨ , ⟩). That is, this structure satisfies the following identities:

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ξ) = 1, ⟨ϕX, ϕY ⟩ = ⟨X, Y ⟩ − η(X)η(Y )

for all vectors X, Y on M . M is called a Sasakian manifold if the structure tensor
ϕ of M satisfies the following differential equation:

(4.2) (∇Xϕ)Y = ⟨X, Y ⟩ξ − η(Y )X for ∀X, Y ∈ TM,

where ∇ denotes the Riemannian connection of the Riemannian metric ⟨ , ⟩ of M .
A Sasakian manifold is called a Sasakian space form of constant ϕ-sectional cur-
vature c if the sectional curvature K(u, ϕu) := ⟨R(u, ϕu)ϕu, u⟩ = c holds for every
unit vector u orthogonal to ξ, where R is its curvature tensor. For construction of
Sasakian space forms, see pp. 99-100 in [5].

In the following, we shall consider case that a real hypersurface M of CP n(c)
is a Sasakian manifold with respect to the alomost contact metric structure
(ϕ, ξ, η, ⟨ , ⟩) induced from the Kähler structure J of the ambient space CP n(c).
Then it follows from (4.2) and (2.3) that ξ is principal. Hence, again by using
(4.2) and (2.3) we find that Au = −u for each vector u orthogonal to ξ, so that
our real hypersurface M is a member of totally η-umbilic hypersurfaces in CP n(c).
Hence, using the classification theorem of totally η-umbilic hypersurfaces in CP n(c)
(see [13]), we see that the shape operator A of our Sasakian manifold M in CP n(c)
is written as

(4.3) AX = −X + (c/4)η(X)ξ for each vector X ∈ TM.

Conversely, it follows from (2.3) and (4.3) that Equation (4.2) holds. Thus we
know that M is a Sasakian manifold if and only if M has the shape operator A
satisfying (4.3). Furthermore, M has constant ϕ-sectional curvature c + 1.

Therefore, from the discussion here and Proposition 2 we obtain the following:

Proposition 3 ([2]). The geodesic sphere G(r) with tan2(
√

c r/2) = 2n + 1 in
CP n(c) is a Sasakian manifold with respect to the almost contact metric structure
induced from the ambient space CP n(c) if and only if c = 8n + 4. Moreover, this
geodesic sphere is a Sasakian space form of constant ϕ-sectional curvature c + 1.

By virtue of our discussion we establish the following:
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Theorem 6 ([11]). For each of c > 0, n(= 2) and N > n(n + 2) − 1, there
exists a (2n−1)-dimensional Riemannian submanifold M2n−1 in an N-dimensional
sphere SN(c̃) of constant sectional curvature c̃ with (n+1)c/(2n) = c̃ satisfying the
following three conditions:

(1) M2n−1 is a homogeneous submanifold with nonzero parallel mean curvature
vector with respect to the normal connection in the ambient sphere SN(c̃);

(2) M2n−1 is a Bereger sphere;
(3) M2n−1 has an almost contact metric structure (ϕ, ξ, η, ⟨ , ⟩). In particular,

when c = 8n + 4, this submanifold M is a Sasakian space form of constant
ϕ-sectional curvature 8n + 5.

Moreover, for each of c > 0 and n(= 2), when N = n(n+2)−1, there exists a (2n−
1)-dimensional Riemannian submanifold M2n−1 in an N-dimensional sphere SN(c̃)
of constant sectional curvature c̃ = (n + 1)c/(2n) satisfying the above conditions
(1), (2), (3).
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