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Abstract 

We study relativistic bound states of two kinds of the massive Dirac particles with a 

current-current interaction in 2-dimensional space-time. We have two types of the solutions ; 

normal and abnormal solutions. The former solution shows that the binding energy of the 

particle-particle pair from the positron theory is smaller than that from the single electron 

theory 

1 Introduction 

Several years ago, Glockle, Nogami and Fukui (GNF) proposed a two dimensional 

quantum mechanical model consisting of two kinds of the massive Dirac particles 

which mteract with each other through a 6-function potential. [1] This model 

satisfies all the requirements of quantum mechanics and special relativity. They 

derived exact two-body bound state solutions and clarified the structures of 

relativrstic composite states. Extension of this model to the case of more than two 

bodies has been done and n-body bound state solutions have been found. [2, 3, 4] 

The GNF model is, however, based on the single electron theory instead of 

the positron theory, and their Hamiltonian is not positive-definite. Hence, their 

equation allows a bound state solution composed of the particles with positive and 

negative masses. They have considered that this solution is a counterpart of a 

solution of a particle-anti-particle bound state in the positron theory. In order to 

overcome this defect of negative energy, Munakata, Ino and Nagamura (MlN) 
introduced the Bethe-Salpeter (BS) equation with a Fermi-type interaction. [5] 

They have shown that GNF equation is derived from the BS equation by using 

the retarded propagators instead of the Feynman propagators. They have also 

found that the BS equation contains divergence when the Feynman propagators 
are made use of, i.e. when the model is treated positron-theoretically, and that all 

the bound states disappear. MlN have considered that this is because the effect 

of pair-creation of the particle and anti-particle makes the interaction so weak that 

the bound state cannot exist 

After MlN, Glockle, Nogami and Toyama have modified the 6-function 
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potential to an analytic function with a finite range to investigate behaviors of the 

solutions for different inter~ction ranges numerically. [6] They have found that 

there is a critical value of the interaction range for a finite coupling constant g 

and that the interaction range must be larger than this critical value so that a 

bound state may be composed. Contrary to the explanation of MlN above, they 

conjectured that for the 6-function potential the non-zero g rs too strong no matter 

how small it may be 

Motivated by their observation, Ino has shown that the BS equation above 

can be dealt with rationally by a kind of renormalization of the coupling constant 

and he has given bound state solutions in the positron theory. [7] 

In this article we investigate the model field-theoretically. The GNF equatron 

or the corresponding BS equation can be derived from the massive Thirring-like 

model consisting of the Dirac fields with different species. ' In the next section we 

start with Lagrangian of two kinds of the Dirac fields with a Fermi-type 

current-current interaction. A model of the Dirac fields with a Fermi-type 

interaction diverges generally but it is renormalizable in two dimensional 

space-tyme. We renormalize the theory by the conventional procedure and derive 

the Green function for a particle-particle scattering process by the chain 

approximation. In section 3 we search poles of the 4-point Green function which 

corresponds to the particle-particle bound states. We also consider the particle-

anti-particle bound states. The last section is devoted to discussron 

2 Four-Point Green Function 

Lagrangian of our model is given by 

90 . 
~7 = ~ ~o,(l~ mo)~o, ' + J8uj~b, (1) i=.,b 2 where a and b denote the species of the Dirac fields. Current jbp is given as 

j~p = ~Oiyp~oi' (2) 
Here we do neither discuss the case mo = O [8] nor treat the mass term as a 

perturbation to the massless theory, [9] though these seem to have rich structures 

It rs seen that only two and four-point Green functions diverge m I + I dimensional 

space-time, and the model is renormalizable. Then following the conventional 

renormalization procedure, we rewrite Lagrangian (1) by renormalized variables with 

counter-terms as 

~P = ~(i~ - m)~ + -j~j~ + ~ (ZI ~ 1)j~jt + (Z2 - 1)~i~ ~ 

2 b - ~{(Z2 - 1)m - Z26m}~, (3) 
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where Z1' Z2 and ~m are the coupling constant, the wave function and the mass 

renormalization parameters, respectively. As is seen later, in the higher order terms 

of perturbation, other types of interactions, i.e. scalar and pseudoscalar type 

interactions as (~~ ~.) (~b~b) and (~.y5~.) (~by5~b) are induced. But these interac-

tions do not cause any other divergences. Therefore, we do not need any other 

counter-terms than in Eq. (3). These induced interactions, however, force us a 

different definition of the renormalized coupling constant from the conventional 

one. We can see that the self-energy diagram diverges logarithmically and its 

divergent part does not depend on its external momentum. This means that wave 

function renormalization is finite and in the followings we neglect the wave function 

renormalization. We also regard that the mass renormalization is finished. These 

mean that we neglect the last two terms of Eq. (3) 

Now we consider the 4-point Green function which is defined by 

G(x~, x y y ) = 
 (4) b, b, * * 

m the Hersenberg representation where x~ , xO > y~ , yO We neglect all the 

counter-terms in Eq. (3) at the moment and by chain approxlmation we find that 

G satisfies the following BS equation 

G(x., xb, yb, y*) = S~(x~ - y.)S~(xb - yb) (5) 
lg y~ ybG(z, z, yb, y~), 

+ d2zS~(x~ - z) S~(xb - z) ' 
2
 

where y~ ' yb = y~y~･ (See Fig. 1) Here yt(i = a, b) denotes y-matrix operated on the 

i field 

Fig. 1. Chain diagram of the particle-particle scattermg process 

The homogeneous BS equation for the bound state is obtained by omittmg the 

first term in the above equation as [10] 

i
9
 = d2zS~(xa ~ z)S~(xb - z) ' yp(xa' xb) 2 ya yb yp(z, z) (6) 

where the BS amplitude yp(x., xb) is defined as 

yp(x., xb) = 
 (7) 

with I P> denoting the two-body bound state of a and b partrcles wrth total 

momentum Pu . In momentum space we put 
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yp(x~, xb) = d2p e~iP*cp(P)e~iPX (8) 
(2 7c)2 

where xp = x~u - xbp, Xu 2 (x.p + xbp)' PP p + p and pP ~ (p~ - pg). Eq. (6) 

is rewritten into 

~b + m ig 
cP(P) p~ - m2 + i8 p~ (27c)2 cP(k) (9) - m2 + i8 2 y* 'yb 

This equation, however, contains divergence, which is seen by integration of the 

both sides of the above equation over p. The right-hand side diverges 
logarithmically. This divergence origmates from a loop integration of the chain 

diagram. We can eliminate this divergence by renormalization 

Now we consider the chain expansion of G given by Eq. (5). We convert G 

mto G m momentum space as 

(27c)2i6(p +pb-q -q)G(p p q q) 

* * ~' b, b' . (10) 
rldxdye P"'e'Pb'be 'q'y'e 'q'y' G(x~, xb, yb' y~), 

where Hdxdy E d2x.d2xbd2y.d2yb' The I Ioop term of G 

ig ig ~(p p q q yl) = S~(p.)S~(pb) 2 y ' y I(P) 2 y~ ' 

., b' b' ' * b 

i
s
 

ybS~(q.) S~ (qb) ' (11) 

where 

d2k d2k (~ + m)~ (P-~ + m)b I(P) = (2lc)2 S~(k)SF(P k) - - (27t)2 k2 - m2 ' (P - k)2 - m2 (12) 

Here m2 is an abbreviation of m2 - ie. The term above diverges logarithmically 

as mentioned before. We regularize it by analytic continuation to n-dimensional 

momentum space to obtain 

9 I(~)(p) - 92 1 P P + x(P. + Fb) m + m2 ~ dx (x - x2)-_-"2b kt2 ~ 
p
t
 

1 P2 m2 2 y y (x - x2) /l2 /l2 2 - n (13) 2" b 
i(- 7c)"/2 F(2 - nl2) 1 

x 

(27c)" P2 m2 2~*/2 F (2) 
(x - x2) 

/l2 Il2 

where p is a renormalizatron parameter with the same dimensron as mass m The 
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equation, then, is given as 

ig2 y* ･ yb 

167c (2 - n) 

ig2 

47c(2 - n) 
S~ (p.) S~(pb) y~ ' ybS~(q~) SF (qb) ' 

29 

( 1 4) 

(15) 

to G(1) where we use 

term 9-2 (ZI ~ 1)j~jg m 

identrty (y. ' 

Lagrangran 

yb)3 = 4y~ ' 

(3). The 

yb ' 

finite 

This is 

part 

canceled 

of I(P) is 

by the counter-

given by 

lr(P) = I ya ' 

87C 

y dx (x - x2)P2 
o (x - x2)P2 - m 

m + In 

2
 

+ I dx m2 
47c o (x - x2)P2 m2 

2
 

- (x - x2)P2 
p
2
 ( 1 6) 

where we have 

have made use 

taken into account that I, is eventually 

of identities ; 

1
 2 ~ (ya ' y" ' ybPaPby. ' yb = 2y. ' ybP = 

ya ' yb(P. + pb)ya ' yb = O. 

sandwiched 

yb)3 P2 

by ya ' yb's and 

( 1 7) 

(18) 

The last term of 
pseudo-scalar types, 

(10) as 

Eq. 

as 

( 1 6) corresponds 

mentioned before, 

to induced 
because this 

mteraction of 

term 

scalar and 

const. (ya ' yb)2 = 2 const (1 - y~ y~), 

contributes to G(1) Of 

(19) 

where y5 = yoyl. This term, however, does not cause any other divergence to G 

than those from the terms with y. ' yb even in a higher order chain diagram, and 

g
 hence we don't need any other counter-terms but - (ZI ~ 1)j. , jb ' We put the 
2
 

renormalization point at P2 = m210c(oc > I /4) where we make the term with y. ' yb 

m I, vanish. We write I, as 

I.(P) = iy. ' ybA(P) + iB(P), (20) 
where 
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m2 1 

P2 2 20c - 1 tan ~ 1 1 tan ~ 1 1 
m2 2 m2 1 J4rr ~rr ' 1

 

P2 4 P2 ~ 
1 m2 

B(P) = - 47T P2 
2
 tan -1 

1
 

m2 1 
P2 ~ ~ 

m2 1 
2 P2 4 

(2 1 ) 

(22) 

In the above there is a cut for P2 ~ 4m2 as is expected. Renormalization of G 

is, therefore, performed by replacing I, for I 

Let us introduce a truncated chain function ~(p) defined by 

~~(p) = ~ 9y. ' yb + ~ 9y. ' ybl. 2 9y I gy~ ' ybl, I gy~ ' ybl, I gy. ' yb + " 
yb + 2 

(2 3 ) 

which is shown graphically in Fig. 2 

'+O + C-~+Cl-)+ " ' 
Fig. 2. Truncated diagram ~~ defined in the text ior the particle-partide bound states 

We should note that (23) gives different definition of the renormalized coupling 

constant from that of the conventional procedure. The renormalized coupling 

constant is defined conventionally as the value of 4-point Green function at the 

renormalization point or in this case here ~~(p2 = m210c) may be put equal to 

l gy* ' yb' However, in (23) I, does not vanish at P2 = m2/0e and there remain 
2
 
scalar and pseudo-scalar type terms 

Eq. (23) can be summed up as 

1 y ' yb I + 2A I (24) ~~(p) _ 2 1 + 2A ~ (y. ' yb) B g
 - B2 

g
 

The Green function ~~ should not depend on the renormalization point 
explicitly. Therefore I + 2A is independent of cc, and this defines oc-dependence of 

g
 

the renormalized coupling constant g. We put 

1 1 1 20c - 1 1 9. ~ 27c ~//~T~r4cc - I tan~1 (25) J4~l:' 
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rewntten as 

1
 

2 1 + 2A ya 2
 

- B2 
9r 

yb g, ~ (y~ ' y ) B +2A -

31 

(26) 

where 

I
 A=: 

47c 

m2 

P2 

1
 
2
 tan -1 

1
 

(27) 

m2 1 
P2 4 

2 m2 1 
P2 7 

The function ~ also satisfies the BS-type equation as 

2 9'y. ' yb + 2 9 y. ybl,~~, 

and for the bound state we have 

. 2 9'y~ ybl.c. 

To compare this equation with the unrenormalized BS equation (9), we operate 

(p~ - m) (~b - m) on the both sides of (9) and obtain 

i d2k ck = (p~ - m) C~b - m)c (p) cp(k). 2 ( 3 O) = - - gy. ' yb 
2
 

(2lc) 

This shows that c; does not depend on p. We rewrite cp(k) on the right-hand 

side of the above equation by c; to obtain 

cp = ~ 9y. ' ybl(P)c~･ (31) 

Thus, the renormalized BS equation (29) is obtained by the substitution of I, and 

g. for I and g to the unrenormalized BS equation (31), respectively 

3 Bound States 

The function ~~ of (26) has poles at 

1 +2A 2 
' - B2 = O, 

9r 

(32) 
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i. e. 

g (2A + B) = - 1, (33) 
or 

g.(2A' - B) = - 1, (34) 

which correspond to the bound states of the particle-particle pair. These are 

obtainable also from the renormalized BS equation (29) . We have two solutions 

for the bound states. As is shown below, the first one (33) is a normal solution 

and the other (34) is an abnormal one. We discuss them separately 

(i) Normal solution (33) 

Substituting (27) and (22) into (33) we get an eigenvalue equation for the bound 

state mass ¥/p~ 

1 _ 1 1 47c (35) tan 

m2 1 2 m2 1 9. 
P2 4 P2 4 

The term on the left-hand side of (35) increases monotonously with respect to P2 

and diverges for P2 - 4m2. Then g, vanishes at P2 = 4m2. Therefore, this is a 

normal solution of the particle-particle bound state. We see that the above solution 

corresponds to that of Ino. [7] We find that for a small value of g., Eq. (35) gives 

22 P2 = 4m2 - 9' m (36) 4' 
which corresponds to the consquence from the single-electron theoretical treatment 

[1, 5] We find that even the single-electron theoretical treatment is still valid at 

least when g, is very small. We investigate the behavior of square 'mass P2 of the 

bound state numerically more in detail, comparing with those of GNF and MlN 

See Fig. 3. We see that binding energy in the positron theory is smaller than those 

in the single-electron theory. Then the conJecture of MlN mentioned before is 

partly correct 

(ii) Abnorma/ solution (34) 

We get from (34) 

m2 1 _ 1 7c (37) tan 1 

P2 4 2 m2 1 9. 
P2 4 

The left-hand side of the above decreases from I /2 to 
O 
 4m2 and 

O monotonously with 
this is an abnormal 
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Behavior of the normal bound state mass ~/f~~p2 for coupling constant g.. Our 

consequence from the renormalized BS equation (R-BSE) is shown here with those 

of the single electron theory (GNF : g = 4 tan~1 ¥l~~~~~ [1] and MlN 

~/~~~~ g = 4 4m2/P2 - I [5]). It is seen that the binding energy from the positron 

theory is smaller than those from single electron theory 

solution. It is found that there exists a solution only for g. 

that the homogeneous BS equation generally contains such abnormal solutions and 

there are some arguments about the existence of the abnormal solutions in the real 

world. [10] In our case here, we consider that the details of solutron (34) or (37) 

may be out of the validity of our approximation because it exists only for large 

l 9, I and our argument here is based on perturbation theory 

Next we consider the bound state of a particle-anti-particle parr. We put 

GA(x., xb, yb, y.) 

 (38) 
with xg , xo > yO yO The cham dragram of the above Green function is shown 

b ., b' 
in Fig. 4. 

Fig. 4. Chain diagram of the particle-anti-particle scattering process 
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Then we can obtain the expressions of the Green functions in momentum space 
from the corresponding particle-particle Green functions by replacing all yb's with 

their transposed ones and putting the signs of b-particle momenta opposite. For 

instance, the 1-loop term of GA, which corresponds to (11), is given by 

~A(P., Pb, qb, q.)(1) = _ SF(P.)SbFT(- p ) Ig b y. ' y~lA(P) 2 y. ' y~S~(q.)SbFT(- qb), 
2
 

(39) 

where 

d 2k 

IA (P) = (27c)2 S~ (k) SbFT (k P) (40) 

By the similar procedure to the case of the particle-particle bound state, we obtain 

the renormalized 4-point Green function for the particle-anti-particle pair as 

1 1 _ 2A' I (y. ' y~)2B . (41) T
 ~A(P) - 2 1 2A - B2 y~ ' yb 

g. 2 g. 

Here A and B are grven by (27) and (22). ~~A has poles at 

g (2A B) = 1, (42) 
and 

g.(2A' + B) = 1. (43) 

These show that the sign of g. is opposite to that of the particle-particle case. This 

means, therefore, that in the validity of our approximation, i.e. for a small value 

of g., the bound states of particle-particle and particle-anti-particle pairs cannot 

exrst at the same time 

4 Discussion 

In this article we calculate the four-point Green function for the massive Dirac 

fields with the current-current interaction in the 2-dimensional space-time. We see 

from Eq. (36) that even the single-electron theoretical treatment has its validity for 

the normal solution when coupling constant is small 

As for the abnormal solutions, however, the situation is very different. In the 

GNF model the abnormal solution has been regarded as a counterpart of the 
bound state solution of the particle-anti-particle pair, because it is composed of the 

posrtive and the negative energy particles. There does not exist, of course, the 

J
 

= dxlj? is anti-particle in the single-electron theory, where conserved charge Qi 
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positive-definite. In the positron theory, on the other hand, Qi Is not positive-

definite and the particle and the anti-particle states are distinguishable from each 

other by the signs of their eigenvalues of Qi. The abnormal solution (34) has 

obviously Q~ = 1, Qb = 1, and hence it is another solution of the particle-particle 

bound state, though the sign of coupling constant is opposite to that of the normal 

solution and is same as that of the particle-anti-particle case 

As mentioned before, the definition of the renormalized coupling constant here 

is different from the conventional one. This is because vector type mteraction 

induces scalar and pseudo-scalar type interactions through the higher order 
perturbations though the latter interactions are not included in original Lagrangian 

When we start with Langragian which contains scalar and pseudo-scalar type 
interactions as well as vector type one, such discrepancy would not occur 
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