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Abstract

In [3] and [5], the authors gave a representation of a generalized inverse *-semigroup
S, which is a generalization of the Preston-Vagner representation. If S is fundamental, we
can obtain a more precise representation of S. The purpose of this paper is to give a
generalization of the Munn representation (see [6]) for fundamental generalized inverse
*-semigroups. This paper is the improvement of our earlier announcement [4].

By introducing a new concept of a strong n-groupoid X (n; Y; {9, ,}), we shall construct
a fundamental generalized inverse #-semigroup Tyq,(.#). Also, we shall show that a
generalized inverse *-semigroup is fundamental if and only if it is *-isomorphic to a 2-full
generalized inverse *-subsemigroup of Ty, (.#) on a strong n-groupoid X(z; Y; {¢, }).

1 Introduction

A semigroup S with a unary operation #: S — S is called a regular *-semigroup if
it satisfies

(i) (*)* = x,
(ii) (ey)* = y*x*,
(iii) xx*¥x = x.

Let S be a regular *-semigroup. An idempotent e in S is called a projection
if it satisfies e* = e. For any subset 4 of S, denote the sets of idempotents and
projections of A by E(A) and P(A), respectively. If E(S) forms a normal band,
that is, E(S) satisfies the identity xyzw = xzyw, S is called a generalized inverse
x-Semigroup.

Let S and T be regular *-semigroups. A homomorphism ¢: S — T is called
a x-homomorphism if (ad)* = a*¢. A congruence ¢ on S is called a *-congruence
if (ag)* = a*o. A *-congruence ¢ on S is said to be idempotent-separating if 6 < A,
where 5# is one of the Green’s relations. Denote the maximum idempotent-
separating s-congruence on S by u, or simply by u. If u; is the identity relation
on S, S is called fundamental. The following result is well-known, and we use it
frequently throughout this paper.

ResuLT 1.1 (see [2]). Let S be a regular x-semigroup. Then we have the
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following :
(1) E@S) = P(S7;
(2) for any aeS and ee P(S), a*eacP(S);
(3) each L-class and each R-class have one and only one projection;
(4) for e, feP(S), if efeP(S) then fec P(S) and ef = fe;
(5) u;={(a, b)eS x S: a*ea = b*eb and aea* = beb* for all ecP(S)}.

Let X be a set. By |X|, denote the cardinality of X. If X =u{X,:iel} is
a partition of X, denote it by X ~Z{X;:iel}. For a mapping «: A — B, denote
the domain and the range of o by d(x) and r(x), respectively. For a subset C of
A, o|c means the restriction of « to C. The notation and the terminology are
those of [1], unless otherwise stated.

In §2, we shall first introduce a concept of a strong n-groupoid X (n; Y; {o.,s})
with mappings {@,. ,:e>f, e,feY}, where Y is a semilattice, 7= is a partition
X ~Z{X,:eeY} of a partial groupoid X and each ¢, (e >f) is a mapping of
X, to X;. Next, for a strong zn-groupoid X(z; Y; {®..r}), we shall construct a
generalized inverse #-semigroup Ty, (#) such that P(Tyxq(4)) is partially
isomorphic to X.

In §3, for a given generalized inverse *-semigroup S, we shall construct a
strong 7-groupoid P(S)(r; I; {¢;;}), where I is the structure semilattice of a normal
band E(S). For aeS, define a mapping t,: P(Sa*) - P(Sa) by er, = a*ea. Then
we shall show that a mapping @: S = Tpes)@(#)(@—1,) is a *-homomorphism and
that the kernel of ¢ is the maximum idempotent-separating *-congruence on
S. Moreover, we shall show that a generalized inverse #-semigroup is fundamental
if and only if it is *-isomorphic to a 2-full generalized inverse *-subsemigroup of
Tx () on a strong n-groupoid X(x).

2 Txm(H4)

For a partial groupoid X, if there exist a semilattice Y, a partition m: X ~ 2{X,:
ecY} of X and mappings ¢, ;: X,— X, (¢e>f in Y) such that

(1) for any ec¥, g, = Iy,

(2 ifex>f=g, then ¢, ;@s,= Pcys

(3) for xeX,, yeX,, xy is defined in X if and only if X, .; = y@; s, and

in this case xy = x@, .,

then X is called a strong m-groupoid with mappings {¢, ;i e, feY,e>f }, and it
is denoted by X(n; Y; {¢, ;}) or simply by X(n).

Let X(n; Y; {¢.;}) be a strong z-groupoid. A subset A of X is called a
n-singleton subset of X(n; Y; {, r}), if there exists ee Y such that

1 iffeYe

AnX,|l =
| /! { 0 otherwise,
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AnXpe,,=AnX, for any f, ge Ye such that f>g,

where Ye is the principal ideal of Y generated by e. In this case, we sometimes
denote the z-singleton subset A by A{e). If A(e) is a n-singleton subset, then
|[AnX,| =1 for any fe Ye. We denote the only one element of ANX, by a,. We
remark that for any n-singleton subset A(e), A(e) = {a.¢., : fe Ye}. Denote the set
of all n-singleton subsets of X(z; Y; {9, }) by Z.

Two r-singleton subsets A(e) and B(f) are said to be m-isomorphic to each
other, if there exists an isomorphism &: Ye — Yf as semilattices. In this case, the
mapping a: A(e) = B(f) defined by a,a = b,; (g€ Ye) is called a n-isomorphism of A(e)
to B(f). It is obvious that « is a bijection of A(e) onto B(f), and hence axe #y.

Let X(n; Y; {¢, ;}) be a strong 7m-groupoid. Define an equivalence relation
U on ¥ by

U = {(A(e), B(f))eZ x &: Ye x> Yf (as semilattices)}.

For (A(e), B(f))e%, let T, p;, be the set of all m-isomorphisms of A(e) onto
B(f), and let

Ty = U TA(e),B(f)
(A(e), B()e¥

REMARK. As we have seen in [2] and [5], the set 9.#y, of all partial
one-to-one n-mappings on a m-set X (n'; {d,, ,}) is an inverse subsemigroup of the
symmetric inverse semigroup $x on X. However, Ty, is not generally an inverse
subsemigroup of #y.

For any «, Be Ty, define a mapping 6, ; as follows:

d(0,,5) = {acr(a): there exist ee Y and bed(B) such that a, be X},
(0,4 = {bed(P): there exist ee Y and aer(x) such that a, be X,},
ab, 5 =b if r(@nX,={a} and dB)nX, = {b}.

Then 6, ;€ Ty For, let r(o) = {a,: ge Ye} and d() = {b,: he ¥f}. Since YenYf
= Yef, 0,, is a bijection of {a,: ge Yef} onto {b,: g€ Yef} which maps a, to b,.
Also, we can easily obtain that 6, ; = 65-1 ,-1.

Let 4 = {6,4: & p€ Ty}, and define a multiplication - and a unary operation
* on Ty, by

Let a: A(e) = B(f) and B: C(g) - D(h) be any elements of Ty(,. Then it is obvious
that ao B is a bijection of {a;: ie Y((fg)a™')} onto {d;:je Y((fg)B)} which maps
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a; to dizz. Thus the multiplication is closed. It is clear that Ty (o, *) is a regular
x-semigroup. We denote it by Ty, (A).

Next, we shall show that E(Tx,) = 4. It is obvious that /# < E(Ty,). Let
a€E(Tx). Then

ooa =af,,n=ma.

Since d(6,,) = r(®) and r(0,,) < d(x), we have o =0, & =0,-1,-1€M, and hence
E(Txq) = M.

It is clear that P(Ty() = {la0: A(e)eZ}. It follows immediately from the
definition of the multiplication of Ty, (#) that Ty, (#) is a generalized inverse
x-semigroup. Define a mapping ¢ : X — P(Tx,(-#)) as follows: for xe X,

x¢ =140,

where A(e) = {x¢, ;: feYe}. Then it is clear that  is a bijection. To show that
Y is a partial isomorphism, for xe X, and yeX,, assume that xy is defined in
X. By (3) above, xy = x0, .; = y@so,€X,;. Let Ale) = {x¢,.,: geYe}, B(f)=
{yp;,:9€ Y} and Clef) = {(xy)@.ysq: ge Yef}. It follows from (2) above that
Lae © 1s(n) = lcen € P(Tx) and that (xy)y = (x¢) o (y§). Conversely, if 1,4, 15
€ P(Tyw), then a,¢, . =bp,... By (3) above, a.b, is defined in X, and hence
(@b )Y =144y ° 1p). Thus ¥ is a partial isomorphism of X onto P(Tx(). Now,
we have the following theorem.

THEOREM 2.1 A regular *-semigroup Ty (#) is a generalized inverse
x-semigroup whose set of projections is partially isomorphic to X.

COROLLARY 2.2 A partial groupoid X is partially isomorphic to the set of
projections of a generalized inverse x-semigroup if and only if it is a strong m-groupoid.

3 Representations

Let S be a generalized inverse *-semigroup. Hereafter, denote E(S) and P(S) simply
by E and P, respectively. Let E ~X{E;: iel} be the structure decomposition of
E, and let P, = P(E). Then n: P ~X{P;:iel} is a partition of P. For any i, jel
(i = j), define a mapping ¢, ;: P;— P; by

ep;;=efe  for some (any) feP;.

It follows from [7] that each ¢,; is a mapping, and it is easy to see that
P(z; I; {@;;}) is a strong n-groupoid. Now, we can consider the generalized inverse
x-semigroup Tp,(#), where 4 ={0,5:a and f are n-isomorphisms among
n-singleton subsets of P(n)}.

LeMMA 3.1 For any a€S, P(Sa) (= P(Sa*a)) is a m-singleton subset of P(7m).
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ProOF. Let aeS and let a*aeP;. To show the lemma, it is sufficient to
prove that P(Sa) is equal to {(a*a)e,;:jeli} = A, say. Let xeP(Sa). Then there
exist yeS and jel such that x =a*y*yaeP;, whence x = (a*a)(a*y*ya)(a*a) =
(a*a)g; ;e A. Thus P(Sa) = A. The opposite inclusion is obvious.

LemMA 3.2 For any a€S, define a mapping t,: P(Sa*) - P(Sa) by
et, = a*ea.
Then t,€ Tp (M) and ¥ = 7,.

Proor. It is obvious that 7, is a bijection of a n-singleton subset P(Sa*) onto
a 7-singleton subset P(Sa) with inverse mapping 7,.. Let 7 be the smallest inverse
semigroup congruence on S. Then it is easy to see that E(S/y)=1 and
{ey: ee P(Sa*)} = I((aa*)y). It follows from Theorem 4.9 of [1] that a mapping
7,: ey+—>(a*ea)y is a (semilattice) isomorphism of I((aa*)y) onto I((a*a)y) and that
for any ee P(Sa*), et, = (aa*)Quayy,enz,- Hence 1,€ Ty (A).

LEMMA 3.3 For any a, beS, 0, ., = Taapp-

PrOOF. Let e be any element of d(@,, ). Then ecP(Sa) and there exist iel
and feP(Sb*) such that e, fe P,, whence there exist x, yeS such that e = a*x*xa
and f = by*yb*. Since E is a normal band, e = efe = (a*x*xa) (by* yb*)(a*x*xa) =
(bb*a*a)* (yb*a*x*xa)* (yb*a*x*xa) (bb*a*a)e P(Sbb*a*a) = d(T ygpp)-

Conversely, let e be any element of d(7,.,;+). Then there exists xe S such that
e = a*abb*x*xbb*a*a, whence eeP(Sa). Put f=bb*a*ax*xa*abb*. Then fe
P(Sb*) and e, feP; for some iel, since E is a band. Thus ecd(d,, ) and

eTgappr = bb*a*aea*abb* = bb*a*ax*xa*abb* = f = e,

TasTb "

Hence we have 6

Ta,Th = Ta"abb* .

THEOREM 3.4 Let S be a generalized inverse %-semigroup such that E(S)=E
and P(S)=P. Let E~Z{E;:i€l} be the structure decomposition of E and P; =
P(E)). Denote the partition P ~X{P;:iel} of P by =, and, for any i,jel (i >j),
define a mappig ¢, ;: P;— P; by eo, ; = efe for some feP;. Then P(n;1;{¢p;;})isa
strong m-groupoid and Tp (M) is a generalized inverse *-semigroup.

Moreover, for any a€S, define a mapping t,: P(Sa*)— P(Sa) by et, = a*ea.
Then a mapping ¢: S — Tp(M) (a—>1,) is a *-homomorphism and the kernel of ¢
is the maximum idempotent-separating =-congruence on S.

Proor. It remains to prove the last statement. To see that ¢ is a
homomorphism, it is sufficient to show that d(z, o t,) = d(z,,) for all a, beS. For
any a, beSs,

d(Ta ° tb) = d(Tara*abh‘Tb)
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= (P(Sa)n(P(Sa*abb*)n P(Sb*)) ) T
= (P(Sa)n P(Sbb*a*a)) ¥

= (P(Sbb*a*a))t¥

= P(Sbb*a*aa*)

= P(S(ab)*)

= d(ty).

It is clear that (ad)* = a*¢. Therefore, ¢ is a *-homomorphism.

Denote the maximum idempotent-separating *-congruence on S by u. Assume
that (a, b)ep. Since u S H#, aa* = bb* and a*a = b*b, whence 7, and 7, have the
same domain and range. Let e be any element of d(r,). Since e€P, et, = a*ea =
b*eb = et,, whence 1, =1,, and hence p < ker¢. Conversely, let (a, b)eker ¢.
Then t, and 7, have the same domain and range, whence aa* = bb* and
a*a = b*b. For any ecP,

a*ea = a*(aa*eaa*)a = (aa*eaa*)t, = (bb*ebb™)1,
= b*(bb*ebb*)b = b*eb.

On the othe hand, since ¢ is a *-homomorphism, 7, = (t,)* = (t,)* = 7,». By the
similar calculation, we have aea* = beb* for any ee P, and hence (a, b)eu. Thus
we have the lemma.

A regular *-subsemigroup T of a regular *-semigroup § is said to be 2-full
if P(T) = P(S).

THEOREM 3.5. A generalized inverse x-semigroup S is fundamental if and only
if it is x-isomorphic to a P-full generalized inverse -subsemigroup of Ty (H#) on
a strong m-groupoid X (n; I; {¢;;}) such that P(Txq(H)) is partially isomorphic to
P(S).

Proor. If S is fundamental, it follows from Theorem 3.4 that ker ¢ = pu = 15,
and hence ¢ embeds S in Tpu(#) on the strong m-groupoid P(z;I; {o; s
constructed above. By Lemma 2.1, P is partially isomorphic to P(Tp,(-#)), and
hence S¢ (= S) is a P-full generalized inverse *-subsemigroup of Tp(-#).

Conversely, if S is a *-isomorphic to a #-full generalized inverse *-semigroup S’
of Ty(m(#), then 14, €S for all n-singleton subsets A(e), where A(e) = {a.0, ;: f€
Ie}. Let a:A(e)—B(f) and B:C(g)— D(h) be elements of S’ such that
(@, p)ep. Then (o, pe#, and so acoa*=pfof* and a*oa=f*op. Since
Ae) = d(0) = d(x o o) = d(B o p*) = C(g), we have A(e) = C(g), whence e=g and
a, = c,. Similarly, we have that B(f)=D(h), f=h and b, = d,.

Let x be any element of d(x) and set xe P;. Then x = a,0,; = c,0,,;€ Ale).
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Since (a, ey,

* —
a¥olypoa= B* o Lyw o B.

Since these two mappings must have the same range, X (i&) = X (i), whence ia = iff

and

X0 = (A, Q. )0 = bf‘l’f,ia? = dhq’h,iﬁ = (ng’g,i)ﬂ = xp.

Thus o = B, and hence §', and so S, is fundamental.

COROLLARY 3.6 For any strong m-groupoid X(m;1;{e;;}), the generalized

inverse *-semigroup Ty (u.1,p. ) iS fundamental.
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