Fundamental Generalized Inverse *-Semigroups

Dedicated to Professor Michihiko Kikkawa on his 60th birthday

Teruo Imaoka, Isamu Inata and Hiroaki Yokoyama

Department of Mathematics, Shimane University Matsue, Shimane 690, Japan (Received September 1, 1995)

Abstract

In [3] and [5], the authors gave a representation of a generalized inverse *-semigroup S, which is a generalization of the Preston-Vagner representation. If S is fundamental, we can obtain a more precise representation of S. The purpose of this paper is to give a generalization of the Munn representation (see [6]) for fundamental generalized inverse *-semigroups. This paper is the improvement of our earlier announcement [4].

By introducing a new concept of a strong π -groupoid $X(\pi; Y; \{\varphi_{e,f}\})$, we shall construct a fundamental generalized inverse *-semigroup $T_{\chi(\pi)}(\mathcal{M})$. Also, we shall show that a generalized inverse *-semigroup is fundamental if and only if it is *-isomorphic to a \mathcal{P} -full generalized inverse *-subsemigroup of $T_{\chi(\pi)}(\mathcal{M})$ on a strong π -groupoid $X(\pi; Y; \{\varphi_{e,f}\})$.

1 Introduction

A semigroup S with a unary operation $*: S \rightarrow S$ is called a *regular* *-semigroup if it satisfies

(i)	$(x^*)^* = x,$
(ii)	$(xy)^* = y^*x^*$

- $(xy)^* = y^*x^*,$
- $xx^*x = x$. (iii)

Let S be a regular *-semigroup. An idempotent e in S is called a projection if it satisfies $e^* = e$. For any subset A of S, denote the sets of idempotents and projections of A by E(A) and P(A), respectively. If E(S) forms a normal band, that is, E(S) satisfies the identity xyzw = xzyw, S is called a generalized inverse *-semigroup.

Let S and T be regular *-semigroups. A homomorphism $\phi: S \to T$ is called a *-homomorphism if $(a\phi)^* = a^*\phi$. A congruence σ on S is called a *-congruence if $(a\sigma)^* = a^*\sigma$. A *-congruence σ on S is said to be *idempotent-separating* if $\sigma \subseteq \mathcal{H}$, where \mathscr{H} is one of the Green's relations. Denote the maximum idempotentseparating *-congruence on S by μ_s or simply by μ . If μ_s is the identity relation on S, S is called *fundamental*. The following result is well-known, and we use it frequently throughout this paper.

RESULT 1.1 (see [2]). Let S be a regular *-semigroup. Then we have the

following:

- (1) $E(S) = P(S)^2$;
- (2) for any $a \in S$ and $e \in P(S)$, $a^*ea \in P(S)$;
- (3) each \mathcal{L} -class and each \mathcal{R} -class have one and only one projection;
- (4) for $e, f \in P(S)$, if $ef \in P(S)$ then $fe \in P(S)$ and ef = fe;
- (5) $\mu_s = \{(a, b) \in S \times S : a^*ea = b^*eb \text{ and } aea^* = beb^* \text{ for all } e \in P(S)\}.$

Let X be a set. By |X|, denote the cardinality of X. If $X = \bigcup \{X_i : i \in I\}$ is a partition of X, denote it by $X \sim \Sigma \{X_i : i \in I\}$. For a mapping $\alpha : A \to B$, denote the domain and the range of α by $d(\alpha)$ and $r(\alpha)$, respectively. For a subset C of A, $\alpha|_C$ means the restriction of α to C. The notation and the terminology are those of [1], unless otherwise stated.

In §2, we shall first introduce a concept of a strong π -groupoid $X(\pi; Y; \{\varphi_{e,f}\})$ with mappings $\{\varphi_{e,f}: e \ge f, e, f \in Y\}$, where Y is a semilattice, π is a partition $X \sim \Sigma\{X_e: e \in Y\}$ of a partial groupoid X and each $\varphi_{e,f}(e \ge f)$ is a mapping of X_e to X_f . Next, for a strong π -groupoid $X(\pi; Y; \{\varphi_{e,f}\})$, we shall construct a generalized inverse *-semigroup $T_{X(\pi)}(\mathcal{M})$ such that $P(T_{X(\pi)}(\mathcal{M}))$ is partially isomorphic to X.

In §3, for a given generalized inverse *-semigroup S, we shall construct a strong π -groupoid $P(S)(\pi; I; \{\varphi_{i,j}\})$, where I is the structure semilattice of a normal band E(S). For $a \in S$, define a mapping $\tau_a: P(Sa^*) \to P(Sa)$ by $e\tau_a = a^*ea$. Then we shall show that a mapping $\phi: S \to T_{P(S)(\pi)}(\mathcal{M})(a \mapsto \tau_a)$ is a *-homomorphism and that the kernel of ϕ is the maximum idempotent-separating *-congruence on S. Moreover, we shall show that a generalized inverse *-semigroup is fundamental if and only if it is *-isomorphic to a \mathscr{P} -full generalized inverse *-subsemigroup of $T_{X(\pi)}(\mathcal{M})$ on a strong π -groupoid $X(\pi)$.

$2 \quad T_{X(\pi)}(\mathcal{M})$

For a partial groupoid X, if there exist a semilattice Y, a partition $\pi: X \sim \Sigma \{X_e: e \in Y\}$ of X and mappings $\varphi_{e,f}: X_e \to X_f$ $(e \ge f \text{ in } Y)$ such that

- (1) for any $e \in Y$, $\varphi_{e,e} = 1_{X_e}$,
- (2) if $e \ge f \ge g$, then $\varphi_{e,f}\varphi_{f,g} = \varphi_{e,g}$,
- (3) for $x \in X_e$, $y \in X_f$, xy is defined in X if and only if $x\varphi_{e,ef} = y\varphi_{f,ef}$, and in this case $xy = x\varphi_{e,ef}$,

then X is called a strong π -groupoid with mappings $\{\varphi_{e,f}: e, f \in Y, e \ge f\}$, and it is denoted by $X(\pi; Y; \{\varphi_{e,f}\})$ or simply by $X(\pi)$.

Let $X(\pi; Y; \{\varphi_{e,f}\})$ be a strong π -groupoid. A subset A of X is called a π -singleton subset of $X(\pi; Y; \{\varphi_{e,f}\})$, if there exists $e \in Y$ such that

$$|A \cap X_f| = \begin{cases} 1 & \text{if } f \in Ye, \\ 0 & \text{otherwise,} \end{cases}$$

12

$$(A \cap X_f)\varphi_{f,g} = A \cap X_g$$
 for any $f, g \in Ye$ such that $f \ge g$,

where Ye is the principal ideal of Y generated by e. In this case, we sometimes denote the π -singleton subset A by A(e). If A(e) is a π -singleton subset, then $|A \cap X_f| = 1$ for any $f \in Ye$. We denote the only one element of $A \cap X_f$ by a_f . We remark that for any π -singleton subset A(e), $A(e) = \{a_e \varphi_{e,f} : f \in Ye\}$. Denote the set of all π -singleton subsets of $X(\pi; Y; \{\varphi_{e,f}\})$ by \mathscr{X} .

Two π -singleton subsets A(e) and B(f) are said to be π -isomorphic to each other, if there exists an isomorphism $\bar{\alpha}: Ye \to Yf$ as semilattices. In this case, the mapping $\alpha: A(e) \to B(f)$ defined by $a_g \alpha = b_{g\bar{\alpha}} (g \in Ye)$ is called a π -isomorphism of A(e) to B(f). It is obvious that α is a bijection of A(e) onto B(f), and hence $\alpha \in \mathscr{I}_X$.

Let $X(\pi; Y; \{\varphi_{e,f}\})$ be a strong π -groupoid. Define an equivalence relation \mathscr{U} on \mathscr{X} by

$$\mathscr{U} = \{ (A(e), B(f)) \in \mathscr{X} \times \mathscr{X} : Ye \cong Yf \text{ (as semilattices)} \}.$$

For $(A(e), B(f)) \in \mathcal{U}$, let $T_{A(e), B(f)}$ be the set of all π -isomorphisms of A(e) onto B(f), and let

$$T_{X(\pi)} = \bigcup_{(A(e), B(f)) \in \mathcal{U}} T_{A(e), B(f)}$$

REMARK. As we have seen in [2] and [5], the set $\mathscr{GI}_{X(\pi')}$ of all partial one-to-one π -mappings on a π -set $X(\pi'; \{\sigma_{e,f}\})$ is an inverse subsemigroup of the symmetric inverse semigroup \mathscr{I}_X on X. However, $T_{X(\pi)}$ is not generally an inverse subsemigroup of \mathscr{I}_X .

For any $\alpha, \beta \in T_{X(\alpha)}$, define a mapping $\theta_{\alpha,\beta}$ as follows:

$$d(\theta_{\alpha,\beta}) = \{a \in r(\alpha) : \text{ there exist } e \in Y \text{ and } b \in d(\beta) \text{ such that } a, b \in X_e\},$$

$$r(\theta_{\alpha,\beta}) = \{b \in d(\beta) : \text{ there exist } e \in Y \text{ and } a \in r(\alpha) \text{ such that } a, b \in X_e\},$$

$$a\theta_{\alpha,\beta} = b \text{ if } r(\alpha) \cap X_e = \{a\} \text{ and } d(\beta) \cap X_e = \{b\}.$$

Then $\theta_{\alpha,\beta} \in T_{X(\pi)}$. For, let $r(\alpha) = \{a_g : g \in Ye\}$ and $d(\beta) = \{b_h : h \in Yf\}$. Since $Ye \cap Yf = Yef$, $\theta_{\alpha,\beta}$ is a bijection of $\{a_g : g \in Yef\}$ onto $\{b_g : g \in Yef\}$ which maps a_g to b_g . Also, we can easily obtain that $\theta_{\alpha,\beta}^{-1} = \theta_{\beta^{-1},\alpha^{-1}}$.

Let $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha, \beta \in T_{X(\alpha)}\}$, and define a multiplication \circ and a unary operation * on $T_{X(\alpha)}$ by

$$\alpha \circ \beta = \alpha \theta_{\alpha,\beta} \beta,$$
$$\alpha^* = \alpha^{-1}.$$

Let $\alpha: A(e) \to B(f)$ and $\beta: C(g) \to D(h)$ be any elements of $T_{X(\pi)}$. Then it is obvious that $\alpha \circ \beta$ is a bijection of $\{a_i: i \in Y((fg)\bar{\alpha}^{-1})\}$ onto $\{d_i: j \in Y((fg)\bar{\beta})\}$ which maps

 a_i to $d_{i\overline{\alpha}\overline{\beta}}$. Thus the multiplication is closed. It is clear that $T_{X(\pi)}(\circ, \ast)$ is a regular \ast -semigroup. We denote it by $T_{X(\pi)}(\mathcal{M})$.

Next, we shall show that $E(T_{X(\pi)}) = \mathcal{M}$. It is obvious that $\mathcal{M} \subseteq E(T_{X(\pi)})$. Let $\alpha \in E(T_{X(\pi)})$. Then

$$\alpha \circ \alpha = \alpha \theta_{\alpha,\alpha} \alpha = \alpha.$$

Since $d(\theta_{\alpha,\alpha}) \subseteq r(\alpha)$ and $r(\theta_{\alpha,\alpha}) \subseteq d(\alpha)$, we have $\alpha = \theta_{\alpha,\alpha}^{-1} = \theta_{\alpha^{-1},\alpha^{-1}} \in \mathcal{M}$, and hence $E(T_{X(\alpha)}) = \mathcal{M}$.

It is clear that $P(T_{X(\pi)}) = \{1_{A(e)} : A(e) \in \mathcal{X}\}$. It follows immediately from the definition of the multiplication of $T_{X(\pi)}(\mathcal{M})$ that $T_{X(\pi)}(\mathcal{M})$ is a generalized inverse *-semigroup. Define a mapping $\psi : X \to P(T_{X(\pi)}(\mathcal{M}))$ as follows: for $x \in X_e$,

$$x\psi = 1_{A(e)}$$

where $A(e) = \{x \varphi_{e,f} : f \in Ye\}$. Then it is clear that ψ is a bijection. To show that ψ is a partial isomorphism, for $x \in X_e$ and $y \in X_f$, assume that xy is defined in X. By (3) above, $xy = x\varphi_{e,ef} = y\varphi_{f,ef} \in X_{ef}$. Let $A(e) = \{x\varphi_{e,g} : g \in Ye\}$, $B(f) = \{y\varphi_{f,g} : g \in Yf\}$ and $C(ef) = \{(xy)\varphi_{ef,g} : g \in Ye\}$. It follows from (2) above that $1_{A(e)} \circ 1_{B(f)} = 1_{C(ef)} \in P(T_{X(\pi)})$ and that $(xy)\psi = (x\psi) \circ (y\psi)$. Conversely, if $1_{A(e)} \circ 1_{B(f)} \in P(T_{X(\pi)})$, then $a_e\varphi_{e,ef} = b_f\varphi_{f,ef}$. By (3) above, a_eb_f is defined in X, and hence $(a_eb_f)\psi = 1_{A(e)} \circ 1_{B(f)}$. Thus ψ is a partial isomorphism of X onto $P(T_{X(\pi)})$. Now, we have the following theorem.

THEOREM 2.1 A regular *-semigroup $T_{X(\pi)}(\mathcal{M})$ is a generalized inverse *-semigroup whose set of projections is partially isomorphic to X.

COROLLARY 2.2 A partial groupoid X is partially isomorphic to the set of projections of a generalized inverse *-semigroup if and only if it is a strong π -groupoid.

3 Representations

Let S be a generalized inverse *-semigroup. Hereafter, denote E(S) and P(S) simply by E and P, respectively. Let $E \sim \Sigma \{E_i : i \in I\}$ be the structure decomposition of E, and let $P_i = P(E_i)$. Then $\pi : P \sim \Sigma \{P_i : i \in I\}$ is a partition of P. For any $i, j \in I$ $(i \ge j)$, define a mapping $\varphi_{i,j} : P_i \rightarrow P_j$ by

 $e\varphi_{i,j} = efe$ for some (any) $f \in P_j$.

It follows from [7] that each $\varphi_{i,j}$ is a mapping, and it is easy to see that $P(\pi; I; \{\varphi_{i,j}\})$ is a strong π -groupoid. Now, we can consider the generalized inverse *-semigroup $T_{P(\pi)}(\mathcal{M})$, where $\mathcal{M} = \{\theta_{\alpha,\beta} : \alpha \text{ and } \beta \text{ are } \pi\text{-isomorphisms among } \pi\text{-singleton subsets of } P(\pi)\}.$

LEMMA 3.1 For any $a \in S$, P(Sa) (= $P(Sa^*a)$) is a π -singleton subset of $P(\pi)$.

PROOF. Let $a \in S$ and let $a^*a \in P_i$. To show the lemma, it is sufficient to prove that P(Sa) is equal to $\{(a^*a)\varphi_{i,j}: j \in Ii\} = A$, say. Let $x \in P(Sa)$. Then there exist $y \in S$ and $j \in I$ such that $x = a^*y^*ya \in P_j$, whence $x = (a^*a)(a^*y^*ya)(a^*a) = (a^*a)\varphi_{i,j} \in A$. Thus $P(Sa) \subseteq A$. The opposite inclusion is obvious.

LEMMA 3.2 For any $a \in S$, define a mapping $\tau_a: P(Sa^*) \to P(Sa)$ by

 $e\tau_a = a^*ea.$

Then $\tau_a \in T_{P(\pi)}(\mathcal{M})$ and $\tau_a^* = \tau_{a^*}$.

PROOF. It is obvious that τ_a is a bijection of a π -singleton subset $P(Sa^*)$ onto a π -singleton subset P(Sa) with inverse mapping τ_{a^*} . Let γ be the smallest inverse semigroup congruence on S. Then it is easy to see that $E(S/\gamma) = I$ and $\{e\gamma: e \in P(Sa^*)\} = I((aa^*)\gamma)$. It follows from Theorem 4.9 of [1] that a mapping $\overline{\tau}_a: e\gamma \mapsto (a^*ea)\gamma$ is a (semilattice) isomorphism of $I((aa^*)\gamma)$ onto $I((a^*a)\gamma)$ and that for any $e \in P(Sa^*)$, $e\tau_a = (aa^*)\varphi_{(aa^*)\gamma,(e\gamma)\overline{\tau}_a}$. Hence $\tau_a \in T_{X(\pi)}(\mathcal{M})$.

LEMMA 3.3 For any $a, b \in S, \theta_{\tau_a, \tau_b} = \tau_{a^*abb^*}$.

PROOF. Let e be any element of $d(\theta_{\tau_a,\tau_b})$. Then $e \in P(Sa)$ and there exist $i \in I$ and $f \in P(Sb^*)$ such that $e, f \in P_i$, whence there exist $x, y \in S$ such that $e = a^*x^*xa$ and $f = by^*yb^*$. Since E is a normal band, $e = efe = (a^*x^*xa)(by^*yb^*)(a^*x^*xa) = (bb^*a^*a)^*(yb^*a^*x^*xa)^*(yb^*a^*x^*xa)(bb^*a^*a) \in P(Sbb^*a^*a) = d(\tau_{a^*abb^*})$.

Conversely, let e be any element of $d(\tau_{a^*abb^*})$. Then there exists $x \in S$ such that $e = a^*abb^*x^*xbb^*a^*a$, whence $e \in P(Sa)$. Put $f = bb^*a^*ax^*xa^*abb^*$. Then $f \in P(Sb^*)$ and $e, f \in P_i$ for some $i \in I$, since E is a band. Thus $e \in d(\theta_{\tau_a,\tau_b})$ and

$$e\tau_{a^*abb^*} = bb^*a^*aea^*abb^* = bb^*a^*ax^*xa^*abb^* = f = e\theta_{\tau_a,\tau_b}.$$

Hence we have $\theta_{\tau_a,\tau_b} = \tau_{a^*abb^*}$.

THEOREM 3.4 Let S be a generalized inverse *-semigroup such that E(S) = Eand P(S) = P. Let $E \sim \Sigma \{E_i : i \in I\}$ be the structure decomposition of E and $P_i = P(E_i)$. Denote the partition $P \sim \Sigma \{P_i : i \in I\}$ of P by π , and, for any $i, j \in I$ $(i \geq j)$, define a mapping $\varphi_{i,j} : P_i \rightarrow P_j$ by $e\varphi_{i,j} = efe$ for some $f \in P_j$. Then $P(\pi; I; \{\varphi_{i,j}\})$ is a strong π -groupoid and $T_{P(\pi)}(\mathcal{M})$ is a generalized inverse *-semigroup.

Moreover, for any $a \in S$, define a mapping $\tau_a \colon P(Sa^*) \to P(Sa)$ by $e\tau_a = a^*ea$. Then a mapping $\phi \colon S \to T_{P(\pi)}(\mathcal{M})$ $(a \mapsto \tau_a)$ is a *-homomorphism and the kernel of ϕ is the maximum idempotent-separating *-congruence on S.

PROOF. It remains to prove the last statement. To see that ϕ is a homomorphism, it is sufficient to show that $d(\tau_a \circ \tau_b) = d(\tau_{ab})$ for all $a, b \in S$. For any $a, b \in S$,

$$d(\tau_a \circ \tau_b) = d(\tau_a \tau_{a^*abb^*} \tau_b)$$

Teruo Imaoka, Isamu Inata and Hiroaki Yokoyama

$$= (P(Sa) \cap (P(Sa^*abb^*) \cap P(Sb^*))\tau_{a^*abb^*}^*)\tau_a^*$$

$$= (P(Sa) \cap P(Sbb^*a^*a))\tau_a^*$$

$$= (P(Sbb^*a^*a))\tau_a^*$$

$$= P(Sbb^*a^*aa^*)$$

$$= P(S(ab)^*)$$

$$= d(\tau_{ab}).$$

It is clear that $(a\phi)^* = a^*\phi$. Therefore, ϕ is a *-homomorphism.

Denote the maximum idempotent-separating *-congruence on S by μ . Assume that $(a, b) \in \mu$. Since $\mu \subseteq \mathcal{H}$, $aa^* = bb^*$ and $a^*a = b^*b$, whence τ_a and τ_b have the same domain and range. Let e be any element of $d(\tau_a)$. Since $e \in P$, $e\tau_a = a^*ea = b^*eb = e\tau_b$, whence $\tau_a = \tau_b$, and hence $\mu \subseteq ker \phi$. Conversely, let $(a, b) \in ker \phi$. Then τ_a and τ_b have the same domain and range, whence $aa^* = bb^*$ and $a^*a = b^*b$. For any $e \in P$,

$$a^*ea = a^*(aa^*eaa^*)a = (aa^*eaa^*)\tau_a = (bb^*ebb^*)\tau_b$$
$$= b^*(bb^*ebb^*)b = b^*eb.$$

On the othe hand, since ϕ is a *-homomorphism, $\tau_{a^*} = (\tau_a)^* = (\tau_b)^* = \tau_{b^*}$. By the similar calculation, we have $aea^* = beb^*$ for any $e \in P$, and hence $(a, b) \in \mu$. Thus we have the lemma.

A regular *-subsemigroup T of a regular *-semigroup S is said to be \mathcal{P} -full if P(T) = P(S).

THEOREM 3.5. A generalized inverse *-semigroup S is fundamental if and only if it is *-isomorphic to a \mathcal{P} -full generalized inverse *-subsemigroup of $T_{X(\pi)}(\mathcal{M})$ on a strong π -groupoid $X(\pi; I; \{\varphi_{i,j}\})$ such that $P(T_{X(\pi)}(\mathcal{M}))$ is partially isomorphic to P(S).

PROOF. If S is fundamental, it follows from Theorem 3.4 that $\ker \phi = \mu = 1_S$, and hence ϕ embeds S in $T_{P(\pi)}(\mathcal{M})$ on the strong π -groupoid $P(\pi; I; \{\varphi_{i,j}\})$, constructed above. By Lemma 2.1, P is partially isomorphic to $P(T_{P(\pi)}(\mathcal{M}))$, and hence $S\phi (\cong S)$ is a \mathcal{P} -full generalized inverse *-subsemigroup of $T_{P(\pi)}(\mathcal{M})$.

Conversely, if S is a *-isomorphic to a \mathscr{P} -full generalized inverse *-semigroup S' of $T_{X(\pi)}(\mathscr{M})$, then $1_{A(e)} \in S'$ for all π -singleton subsets A(e), where $A(e) = \{a_e \varphi_{e,f} : f \in Ie\}$. Let $\alpha : A(e) \to B(f)$ and $\beta : C(g) \to D(h)$ be elements of S' such that $(\alpha, \beta) \in \mu$. Then $(\alpha, \beta) \in \mathscr{H}$, and so $\alpha \circ \alpha^* = \beta \circ \beta^*$ and $\alpha^* \circ \alpha = \beta^* \circ \beta$. Since $A(e) = d(\alpha) = d(\alpha \circ \alpha^*) = d(\beta \circ \beta^*) = C(g)$, we have A(e) = C(g), whence e = g and $a_e = c_q$. Similarly, we have that B(f) = D(h), f = h and $b_f = d_h$.

Let x be any element of $d(\alpha)$ and set $x \in P_i$. Then $x = a_e \varphi_{e,i} = c_g \varphi_{g,i} \in A(e)$.

Since $(\alpha, \beta) \in \mu$,

$$\alpha^* \circ 1_{X(i)} \circ \alpha = \beta^* \circ 1_{X(i)} \circ \beta.$$

Since these two mappings must have the same range, $X(i\bar{\alpha}) = X(i\bar{\beta})$, whence $i\bar{\alpha} = i\bar{\beta}$ and

$$x\alpha = (a_e \varphi_{e,i})\alpha = b_f \varphi_{f,i\bar{\alpha}} = d_h \varphi_{h,i\bar{\beta}} = (c_g \varphi_{g,i})\beta = x\beta.$$

Thus $\alpha = \beta$, and hence S', and so S, is fundamental.

COROLLARY 3.6 For any strong π -groupoid $X(\pi; I; \{\varphi_{i,j}\})$, the generalized inverse *-semigroup $T_{X(\pi; I; \{\varphi_{i,j}\})}$ is fundamental.

References

- [1] J. M. Howie, An introduction to semigroup theory, Academic Press, London, 1976.
- [2] T. Imaoka, On fundamental regular *-semigroups, Mem. Fac. Sci. Shimane Univ. 14 (1980), 19-23.
- [3] T. Imaoka, Representations of generalized inverse *-semigroups, Acta Sci. Math. (Szeged), to appear.
- [4] T. Imaoka, I. Inata and H. Yokoyama, Some remarks on representations of fundamental generalized inverse *-semigroups, RIMS Kokyuroku 910; Semigroups, Formal Languages and Combinatorics on Words (Proceedings), Kyoto Univ., 1995, 14–18.
- [5] T. Imaoka, I. Inata and H. Yokoyama, *Representations of locally inverse *-semigroups*, Internat. J. Algebra Comput., to appear.
- [6] W. D. Munn, Uniform semilatties and bisimple inverse semigroups, Quart. J. Math. Oxford (2) 17 (1966), 151–159.
- [7] M. Yamada, Regular semigroups whose idempotents satisfy permutation identities, Pacific J. Math. 21 (1967), 371-392.