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Abstract 

In [3] and [5] , the authors gave a representation of a generalized inverse *-semigroup 

S, which is a generalization of the Preston-Vagner representation. If S is fundamental, we 

can obtain a more precise representation of S. The purpose of this paper is to give a 

generalization of the Munn representation (see [6] ) for fundamental generalized inverse 

*-sermgroups. This paper is the improvement of our earlier announcement [4] 

By introducing a new concept of a strong 7c-groupoid X(7c ; Y; {(p.,f})' we shall construct 

a fundamental generalized inverse *-semigroup Tx(.)(~f). Also, we shall show that a 

generalized inverse *-semigroup is fundamental if and only if it is *-isomorphic to a ~P-full 

generalized inverse *-subsemigroup of Tx(*)(~f) on a strong lc-groupoid X(7T ; Y; {ep.,f} ) 

1 Introduction 

A semigroup S with a unary operation * : S -> S is called a regular *-semigroup if 

it satisfies 

(i) (x*)* = x, 
( ii ) (xy)* = y*x* 
(iii) xx*x = x. 

Let S be a regular *-semigroup. An idempotent e in S is called a projection 

if it satisfies e* = e. For any subset A of S, denote the sets of idempotents and 

projections of A by E(A) and P(A), respectively. If E(S) forms a nonnal band 

that is. E(S) satisfies the identity xyzw = xzyw, S is called a generalized inverse 

* -seuagroup 

Let S and T be regular *-semigroups. A homomorphism ip : S -~ T is called 

a *-homomorphism if (aip)* = a*ip. A congruence a on S is called a *-congruence 

if (aa)* = a*a. A *-congruence a on S is said to be idempotent-separating if a ~ ~p, 

where ~~ is one of the Green's relations. Denote the maximum idempotent-
separatmg *-congruence on S by p* or simply by p. If p* is the identity relation 

on S, S is called fundamental. The following result is well-known, and we use it 

frequently throughout this paper 

RESULT 1.1 (see [2]). Let S be a regular *-semigroup. Then we have the 
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following : 

(1) E(S) = P(S)2 ; 

(2) for any aeS and eeP(S), a*eaeP(S); 

(3) each ~-class and each ~-class have one and only one projection ; 

(4) for e, feP(S), tf efeP(S) then feeP(S) and ef =fe; 

(5) p. = {(a, b)eS x S: a*ea = b*eb and aea* = beb* for all eeP(S)}. 

Let X be a set. By IXl, denote the cardinality of X. If X = U {Xi : iel} is 

a partition of X, denote it by X - ~ {Xi : i e I}. For a mapping oc : A ~' B, denote 

the domain and the range of oc by d(oc) and r(oc), respectively. For a subset C of 

A, oc jc means the restnction of oc to C. The notation and the terminology are 

those of [1], unless otherwise stated 

In S 2, we shall first introduce a concept of a strong 7c-groupoid X(7r ; Y; {(p.,f} ) 

with mappings {q).,f: e ~ f, e, fe Y}, where Y is a semilattice, Il is a partition 

X - ~ {X. : e e Y} of a partial groupoid X and each ep.,f(e ~f) is a mapping of 

X. to Xf' Next, for a strong 7c-groupoid X(7c ; Y; {q).,f})' we shall construct a 

generalized inverse *-semigroup Tx(*)(~f) such that P(Tx(.)(~f)) is partially 

isomorphic to X 

In S 3, for a given generalized inverse *-semigroup S, we shall construct a 
strong 7c-groupoid P(S) (7c ; I ; {epi,j} ), where I is the structure semilattice of a normal 

band E(S). For a e S, define a mapping T. : P(Sa*) -~ P(Sa) by ex* = a*ea. Then 

we shall show that a mapping c : S H> Tp(s)(*)(~f) (a h~ T.) is a *-homomorphism and 

that the kernel of c is the maximum idempotent-separating *-congruence on 
S. Moreover, we shall show that a generalized inverse *-semigroup is fundamental 

if and only if it is *-isomorphic to a ~~_full generalized inverse *-subsemigroup of 

Tx(*)(~f) on a strong 7c-groupoid X(7c) 

2 Tx(*)(AO 

For a partial groupoid X, if there exist a semilattice Y, a partition 7c : X - ~ {X 

e e Y} of X and mappings (p.,f: X. -~ Xf (e ~ f in Y) such that 

(1) for any eeY, ep.,* = Ix., 

(2) if e ~ f ~ 9, then q'.,f(pf,g = (p.,g, 

(3) for x eX., y eXf' xy is defined in X if and only if x(p...f = y(pf 'f' and 

m this case xy = xep.,.f' 

then X is called a strong 7r-groupoid with mappings {ep.,f: e, fe Y, e ~ f}, and it 

is denoted by X(1c ; Y; {q).,f}) or simply by X(7c) 

Let X(7c ; Y; {ep.,f}) be a strong 7c-groupoid. A subset A of X is called a 

7c-singleton subset of X(It ; Y; {ep.,f})' if there exists e e Y such that 

1 if fe Ye, 
I A n Xfl - O otherwise, 
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(A n Xf)epf,g = A n Xg for any f, g e Ye such that f ~ 9, 

where Ye is the principal ideal of Y generated by e. In this case, we sometimes 

denote the 7c-singleton subset A by A (e). If A (e) is a 7z:-singleton subset, then 

IAnXfl = I for any fe Ye. We denote the only one element of A n Xf by af' We 
remark that for any 7c-singleton subset A(e), A(e) = {a.q).,f: fe Ye} . Denote the set 

of all 7c-singleton subsets of X(7t ; Y; {ep.,f}) by er 

Two 7r-singleton subsets A(e) and B(f) are said to be 7c-isomorphic to each 

other, if there exists an isomorphism ~ : Ye -~ Yf as semilattices. In this case, the 

mapping oc : A(e) ~' B(f) defined by agcc = bg~ (9 e Ye) is called a lc-isomorphism of A(e) 

to B(f). It is obvious that oe is a bijection of A(e) onto B(f), and hence oc e fx 

Let X(7c ; Y; {q).,f}) be a strong 7c-groupoid. Define an equivalence relation 

~~/ on ~ by 

~~/ = {(A(e), B(f))e~ x er : Ye ~; Yf (as semilattrces)} 

For (A(e) B(f))e~~/ Iet T be the set of all 7c-isomorphisms of A(e) onto 
' ' A (').B( f ) 

B(f), and let 

= U Tx(~) TA (.).B( f ) 
(A (').B( f ))~~~ 

REMARK As we have seen m [2] and [5] the set ~~Jtfx(*') of all partial 
one-to-one 7c-mappings on a 7c-set X(7c' ; {a.,f}) is an inverse subsemigroup of the 

symmetnc mverse semrgroup fx On X. However, Tx(*) rs not generally an inverse 

subsemigroup of fx 

For any oc, P e Tx(*)' define a mapping 6*,p as follows 

d(e.,p) = {aer(oc) : there exist e e Y and b e d(p) such that a, b e X.}, 

r(O.,p) = {bed(p) : there exrst e e Y and a e r(oc) such that a b e X.}, 

aO.,p = b if r(oc) n X. = {a} and d(p) n X. = {b}-

Then 6.,peTx(~)' For, Iet r(oc) = {ag: geYe} and d(p) = {bh: heYf}. Since Yen Yf 

= Yef, O.,p rs a bijection of {ag : g e Yef} onto {bg : g e Yef} which maps ag to bg 

Also, we can easily obtain that 6*1; = 6p-*,*-* 

Let ~f = {6.,p : oc, P e Tx(.)}' and define a multiplication ' and a unary operation 

* on Tx(*) by 

oc ' p = oc6*,pp, 

cc* = oc~1. 

Let oc : A(e) -> B(f) and p : C(g) -> D(h) be any elements of Tx(*)' Then it is obvious 

that oc ' P is a bijection of {ai : i e Y((fg)~~1)} onto {dj:je Y((fg)p)} which maps 
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ai to di~F' Thus the multiplication is closed. It is clear that Tx(.)(" *) is a regular 

*-semigroup. We denote it by Tx(~) (~f) 

Next, we shall show that E(Tx(*)) = ~f. It is obvious that ~f ~ E(Tx(*))' Let 

oc eE(Tx(~))' Then 

cc ' ce = oce*,*oc = cc. 

Slnce d(O. .) c r(cc) and r(O.,.) ~ d(oc), we have oc = 6.1.1 = e._,,._,e~f, and hence 
E(Tx(*)) = '~f. 

It is clear that P(Tx(.)) = {1A(.) : A(e) e er} . It follows immediately from the 

definition of the multiplication of Tx(.)(~f) that Tx(~)(~f) is a generalized mverse 

* semrgroup. Define a mapping ~ : X -> P(Tx(*)(~f)) as follows : for x e X., 

x~ = IA(.), 

where A(e) = {xq).,f:fe Ye} . Then it is clear that ~ is a bijection. To show that 

~ is a partial isomorphism, for x e X. and y e Xf' assume that xy is defined m 

X. By (3) above, xy = xq).,.f = y(pf,'feX.f' Let A(e) = {xep.,g: geYe}, B(f) = 

{yepf,g: geYf} and C(ef) = {(xy )ep.f,g: geYef}. It follows from (2) above that 

IA(.) ･ IB(f) = Ic(.f) e P(Tx(~)) and that (xy)~ = (x~) . (y~). Conversely, if IA(.) ･ IB(f) 

e P(Tx(.))' then a.q).,.f = bfepf,'r By (3) above, a.bf rs defined in X, and hence 

(a.bf)~ = IA(.) ･ IB(f)' Thus ~ is a partial isomorphism of X onto P(Tx(.))' Now, 

we have the following theorem 

THEOREM 2. I A regular *-semigroup Tx(*)(~f) is a generalized inverse 
*-semigroup whose set of projections is partially isomorphic to X. 

COROLLARY 2.2 A partial groupoid X is partially isomorphic to the set of 
projections of a generalized inverse * -semigroup tf and only tf it is a strong 7c-groupoid 

3 Representations 

Let S be a generalized inverse * semrgroup. Hereafter, denote E(S) and P(S) simply 

oy E and P, respectively. Let E - ~ {E I e I} be the structure decompostuon of 

E, and let Pi = P(Ei). Then 7c : P - ~ {Pi : iel} is a partition of P. For any i, j e I 

(i ~ j), define a mapping (pi,j: Pi H, Pj by 

e(pi,j = efe for some (any) fePj. 

It follows from [7] that each q'i,j is a mapping, and it is easy to see that 
P(1c ; I ; {epi,j} ) is a strong 7c-groupoid. Now, we can consider the generalized inverse 

*-semigroup Tp(.)(~f), where ~f = {O.,p: cc and p are 7c-isomorphisms among 
7c-singleton subsets of P(1T) } 

LEMMA 3.1 For any a e S, P(Sa) ( = P(Sa*a)) is a 7c-singleton subset of P(7c). 
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PRooF. Let aeS and let a*aePi. To show the lemma, it is sufficient to 
prove that P(Sa) is equal to {(a*a)epi,j : jeli} = A, say. Let x e P(Sa). Then there 

exist y e S and j e I such that x = a*y*ya e Pj, whence x = (a*a) (a*y*ya) (a*a) = 

(a*a)q)i,jeA. Thus P(Sa) ~ A. The opposite inclusion is obvious 

LEMMA 3.2 For any a e S, define a mapping T* : P(Sa*) -> P(Sa) by 

ex. = a*ea. 

Then T. e Tp(~)(~f) and T~ = T.･ . 

PRooF. It rs obvrous that T* is a bijection of a 7c-singleton subset P(Sa*) onto 

a 7c-singleton subset P(Sa) with inverse mapping T*. . Let y be the smallest inverse 

semrgroup congruence on S. Then it is easy to see that E(S/v) = I and 
{ey : e eP(Sa*)} = I((aa*)y). It follows from Theorem 4.9 of [1] that a mapping 

T~" : ey H> (a*ea)y is a (semilattice) isomorphism of I((aa*)y) onto I((a*a)y) and that 

for any e e P(Sa*), ex~ = (aa*)q)(...)y,(.y)i~' Hence T. e Tx(*)(J~f) 

LEMMA 3.3 For any a, b e S, O..,** = T...bb 

PRooF. Let e be any element of d(6..,.*). Then e e P(Sa) and there exist i e I 

and feP(Sb*) such that e, fePi, whence there exist x, y e S such that e = a*x*xa 

and f = by*yb*. Since E is a normal band, e = efe = (a*x*xa) (by*yb*) (a*x*xa) = 

(bb *a*a)* O/b *a*x*xa)* (yb*a*x*xa) (bb*a*a) e P(Sbb*a*a) = d (T..~bb') 

Conversely, Iet e be any element of d(T...bb.). Then there exists x e S such that 

e = a*abb*x*xbb*a*a, whence e e P(Sa). Put f = bb*a*ax*xa*abb*. Then fe 
P(Sb*) and e, fePi for some i e I, since E is a band. Thus e e d(6..,,b) and 

ex...bb' bb *a*aea*abb bb*a*ax*xa*abb f = e6*.,** 

Hence we have 6**,** = T***bb 

THEOREM 3.4 Let S be a generalized inverse *-semigroup such that E(S) = E 

and P(S) P Let E - ~ {Ei : i e I} be the structure decomposition of E and Pi = 

P(E ) Denote the partttron P - ~ {P Iel} of P by lc, and, for any i, jel (i ~j), 

define a mappig epi,j: Pi -~ Pj by e(pi,j = efe for some fePj. Then P(7c; I; {epi,j}) is a 

strong 7c-groupoid and Tp(*)(~f) is a generalized inverse *-semigroup 

Moreover, for any a e S, define a mapping 1:~ : P(Sa*) -> P(Sa) by ex~ = a*ea 

Then a mapping ip : S -> Tp(.)(~f) (a H~ T*) is a *-homomorphism and the kernel of ip 

is the maximum idempotent-separating *-congruence on S 

PRooF. It remains to prove the last statement. To see that c is a 
homomorphism, it is sufficient to show that d(T. . Tb) = d(T.b) for all a, b e S. For 

any a, b eS, 

d(T. . Tb) = d(T~1c..~bb'Tb) 
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= (P(Sa) n (p(Sa*abb*) n p(Sb*))T* )T* 
***bb* * 

= (P(Sa) n p(Sbb*a*a))T~ 

= (P(Sbb*a*a))T~ 

= P(Sbb*a*aa*) 

= P(S(ab)*) 

= d (T.b) ' 

It is clear that (ac)* = a*ip. Therefore, c is a *-homomorphism 

Denote the maximum idempotent-separating *-congruence on S by /1' Assume 

that (a, b) e //' Since // ~ ~~, aa* = bb* and a*a = b*b, whence T. and Tb have the 

same domain and range. Let e be any element of d(T~). Since e e P, ex. = a*ea = 

b*eb = exb' whence ?. = Tb' and hence // ~ ker ip. Conversely, Iet (a, b) e ker ip 

Then T* and Tb have the same domain and range, whence aa* = bb and 

a*a = b*b. For any eeP, 

a*ea = a*(aa*eaa*)a = (aa*eaa*)T. = (bb*ebb*)Tb 

= b*(bb*ebb*)b = b*eb. 

On the othe hand, since c is a *-homomorphism, T*. = (T.)* = (Tb)* = Tb" By the 

similar calculation, we have aea* = beb* for any e e P, and hence (a, b) e p. Thus 

we have the lemma 

A regular *-subsemigroup T of a regular *-semigroup S is said to be ~~-full 

if P(T) = P(S). 

THEOREM 3.5. A generalized inverse *-semigroup S is fundamental if and only 

if it is *-isomorphic to a ~-full generalized inverse *-subsemigroup of Tx(~)(~f) on 

a strong 7t-groupoid X(7c ; I ; {q)i,j}) such that P(Tx(*)(~f)) is partially isomorphic to 

P(S) . 

PRooF. If S is fundamental, it follows from Theorem 3.4 that ker ip = /1 = Is' 

and hence ip embeds S in Tp(.)(~f) on the strong 7c-groupoid P(7c ; I ; {(pi,j}), 

constructed above. By Lemma 2.1, P is partially isomorphic to P(T'p(*)(~f)), and 

hence Sc ( ~; S) is a ~~-full generalized inverse *-subsemigroup of Tp(*)(~f) 

Conversely, if S is a *-isomorphic to a ~~_full generalized inverse *-semigroup S' 

of Tx(.)(~;'rf), then IA(.) e S' for all 7c-singleton subsets A(e), where A(e) = {a.q).,f: fe 

le}. Let oc : A(e) H' B(f) and p : C(g) -~ D(h) be elements of S' such that 

(oc, p)e//' Then (oe, p)e~~, and so oe ' c'* = p . p* and cc* . oc = p* . p. Since 

A(e) = d(Qc) = d(ce ' oc*) = d(p . p*) = C(g), we have A(e) = C(g), whence e = g and 

a. = cg. Similarly, we have that B(f) = D(h), f = h and bf = dh 

Let x be any element of d(oc) and set xePi. Then x = a.(p.,i = cgepg,ieA(e) 
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Since (oc, p) e l/, 

Oe* . Ix(i) ' QC = P* . Ix(i) ' p. 

SinCe these tWO mappingS must haVe the Same range, X(i~) = X(ip), Whence i~ = ip 

and 

XOc = (aeepe,i)Oc = bf(pf,ii - dheph,iF = (cg(Pg,i)p = xP-

Thus cc = P, and hence S' , and SO S, iS fundamental 

{ ･ ･} ), the gene,ahzed COROLLARY 3.6 For any strong 7c-groupoid X(7c ; I ; ept,J 

inverse *-semigroup Tx(1r;1;{epi,j}) is fundamental. 
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