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Abstract 

In this paper we shall define a Kleene logic whose Lindenbaum algebra is the Kleene 

algebra with implication (simply called i-Kleene algebra) and show that 

(1) Every i-Kleene algebra can be embedded to the simplest i-Kleene algebra 
3 = {O, 1/2, 1} ; 

(2) The Lindenbaum algebra of the Kleene logic is an i-Kleene algebra ; 

(3) The completeness theorem of the Kleene logic is established 

(4) The Kleene logic is decidable 

Key words : i-Kleene algebras, Lindenbaum algebra, Kleene logic, Completeness 

theorem, Decidability 

1 Introduction 

It is familiar that there is close relationships between logics and their Lindenbaum 

algebras. For example, the Lindenbaum algebra of the classical propositional logic 

is a Boolean algebra, that of the intuitionistic propositional logic is a Heyting 

algebra and so on. Now we have a natural question 

What is a logic whose Lindenbaum algebra is a Kleene algebra? 

While many logics have implications and hence do the corresponding algebras, 

the Kleene algebra does not have one. We have to consider the Kleene algebras 

with implication to correspond the logics 

In the following we define Kleene algebras with implication (or simply called 

i-Kleene algebra) and a Kleene logic KL, whose Lindenbaum algebra becomes the 

i-Kleene algebra. We show that 

(1) Every i-Kleene algebra can be embedded to the simplest i-Kleene algebra 
3 = {O, 1/2, 1}; 

(2) The Lindenbaum algebra of KL is the i-Kleene algebra ; 

(3) For every formula A, A is probable in KL if and only if T(A) = I for any 

valuation function T ; 

(4) The Kleene logic KL is decidable 
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2 i-Kleene algebras 

In this section we define an i-Kleene algebra. By an i-Kleene algebra, we mean 

the algebra K = (K, A , v , -, N, O, 1) of type (2, 2, 2, 1, O, O) such that 

(1) (K, A , v , O, 1) rs a bounded distributive lattice ; 

(2) N : K -> K rs a map satisfying the followmg conditions 

(Nl) NO = 1, N1 = O 
(N2) x ~ y implies Ny ~ Nx 
(N3) N2x = x, where N2x = N(Nx) 

(N4) x A Nx ~ y v Ny (Kleene's law) 

(3) the implication -> satisfies 

(11) x->x=1 
(12) Nxvy~x->y 
(13) x A (x -> y) ~ Nx v y 

(14) x A Nx A y A Ny A N(x -> y) = O 

(15) x A Ny ~ N(x - y) v y 

Example : As a model of the i-Kleene algebra we have 3 = {O, I /2, I } defined 

by 

x A y = min {x, y} 

x v y = max {x, y} 

Nx = I - x 

x -> y = min {1 - x + y, 1} for every x and y in 3 

By simple calculation it turns out that the structure 3 = (3, A , , v -~, N, O, 1) 

is the i-Kleene algebra. In the following we denote it simply by 3 

A non-empty subset F of K is called a filter when it satisfies the conditions 

(fl) x, yeF imply xAyeF; 
(f2) xeF and x ~ y imply yeF 
A filter F is called proper when it is a proper subset of K. We define three 

kinds of filters of K. By a maximal filter F, we mean the proper filter F such 

that F ~ G implies F = G for any proper filter G. A proper filter F is called prime 

if x v yeF implies x eF or y e F for every x, y eK. Lastly, we say a proper filter 

F an ultrafilter when x e F or Nx e F for every x in K 

LEMMA I Let K be any i-Kleene algebra and x e K. If x ~ O, then there is a 

maximal filter F of K such that x e F. 

PRooF. F = {HlxeH and H is a proper filter of K} is not an empty set, 

because the principal filter [x) generated by x is in F. It is clear that F is an 

inductive set. Thus, by Zorn's lemma, there is a maximal element F in F. The 

filter F is clearly a maxima filter contammg x 
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LEMMA 2 Let F be a maximal filter of K. If x ~ F, then there exists an 

element ueF such that u A x = O. Hence x~F implies NxeF. 

PReoF. Let A be a set {yeKlx A u ~ y, ueF}･ It is easy to show that A is 

a filter properly contining F and x. Since F is maximal, this implies that A = K 

and hence that O e A. We then have that x A u = O for some u m F. For that 

element u e F we have 

u=uA1 
= u A N(x A u) 

= u A (NX V Nu) 

= (u A Nx) v (u A Nu) ~ (u A Nx) v (x v Nx) 

= x v Nx by Kleene's law 

This yields that u ~ (x v Nx) A u = u A Nx ~ Nx. Hence we have Nx e F 

It is easy to show the following lemma. Hence we omit the proof 

LEMMA 3 If F is a maximal filter, then it is the prime filter 

THEOREM I The implication -~ cannot be defined by other operations A , v , 

and N. 

PRooF. It is evident from that we have 112-~ I /2 = I in 3 

Let M be an arbitrary maximal filter of K. We define the following subsets 

Mj ae3) of K: 

Mo = {xeK I xcM, NxeM} 

M1/2 = {xeK I xeM, NxeM} 

M1 = {xeK I xeM, Nx~M} 

Now we define an equrvalence relation - as follows : For x, y e K, 

x - y

LEMMA 4 x-y Iff xeM

LEMMA 5 The relatron - rs a congruent relatron on K 

PRooF. It sufficies to show that 

(1) x - a and y - b implies x A y - a A b ; 

(2) x - a and y - b implies x -~ y - a H' b ; 

(3) x - a implies Nx - Na 

It is clear by lemma 4 that the condition (3) holds so we consider the cases 
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of (1) and of (2). 

Case (1): Suppose that x - a and y - b It rs sufficuent to show that 

x A yeM iff a A beM and 

Nx A NyeM iff Na A NbeM. 

Suppose that x A y e M. Since x and y are in M, we have that both a and 

b are in M by lemma 4. Thus, we obtain that a A b is in M. The converse is 
similiar 

Next if we assume that N(x A y) e M, then we get that Nx v Ny e M and hence 

that NxeM or NyeM by lemma 3. This means that NaeM or NbeM and so 
that Na v Nb = N(a A b) e M. The converse also holds. 

Case (2) : We have to show that 

x ->yeM iff a->beM and 

N(x -~ y) eM iff N(a -> b)eM. 

We suppose that x ~~ yeM. We haye two cases yeM and ycM. If yeM 
(hence beM), then we have a H' beM by b ~ Na v b ~ a -> b. In the case of y~M 

(hence b ~ M), if x e M, since x and x -> y are in M, then we have Nx e M because 

of ycM and x A (x -> y) ~ Nx v y e M. Hence we obtain that NaeM. Well, 

umless a -> b is in M, this means that neither Na nor b are in M by 
Na v b 

 b e M. On the other hand, if x ~ M then acM and hence Na e M. Since Na ~ Na v b ~ a -> b, we get 

a ~> beM. 

In the sequel we have that if x -> yeM then a -> b e M in each case. The 

converse rs similar 

Next we assume that N(x -> y) e M. It is sufficient to prove N(a ~' b) e M. By 

N(x -> y) ~'x A Ny, we have x, NyeM and hence a, Nb e M 

If b e M (hence y e M), then we have Nx ~ M. For otherwise that x, Nx, y, Ny, 

N(x -> y) e M means x A Nx A y A Ny A N(x -~ y) = OeM. But this rs a contra-

diction. Thus we have.Na c M. In this case, since a A Nb ~ Na v N (a e b) e M and 

Na c M, we get that N(a -> b) eM. 

If bcM, then we obtain that N(a -> b)eM by a A Nb ~ N(a -> b) v beM 

In each case this means that N(x -> y) e M implies N(a -> b) e M. It rs clear 

that the converse holds. Hence N(x -~ y) e M iff N(a H' b) e M 

These indicate that the relation - is the congruence relation 

Let [x] = {yeK I x - y} be the equivalence cl~ss of x and K/ - = { [x] I x e K} 

be the set of all equivalence classes. The relation - in congruent means that we 

can consistently define operations A , v , N, and -> on K/- as follows 
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[x] A [y] = [x A y] 

[x] v [y] = [x v y] 

N [x] = [Nx] 

[x] -~ [y] = [x -> y] 

The general theory of universal algebras shows the next theorem 

THEOREM 2 Let K be an i-Kleene algebra and M be a maximal filter of 
K. Then an algebraic system K/- = (K/-, A , v , N, ->, [O] , [1]) is the i-Kleene 

algebra and the map ~ : K -> K/ - defined by ~ (x) = [x] is a homomorphism. 

Remarking the maximality of the filter M of K, we have a stronger result as 

to K'/-･ We define a map V: K/--~3 by V([x])=j if xeMJ, where 
je3 = {O, 1/2, 1}･ We have an important lemma 

LEMMA 6 The map V is injective and homomorphic. Moreover tf M1/2 is not 

empty then V is surjective and hence K/- is isomorphic to 3 

PRooF. It is evident that V is injective. We shall show that V is homomorphic, 

that is, 

(a) V([x] A [y])=min {V([x]), V([y])} 

(b) V(N[x])=1-V([x]) 
(c) V([x] -> [y])=min {1 - V([x]) + V([y]), 1} 

For the sake of simplicity, we only show two cases (a) and (c) 

Case (a) 

(1) V([x])= V([y])=0; It sufficies to show that V([x A y])=0, that is, 
x A y e Mo' By assumption we 'have x, y c M and Nx, Ny e M. Clearly we get that 

x A y c M. On the other hand, since M is maximal and x A y ~ M, we have 

N(x A y)eM. This means that x A yeMo 
(2) V([x]) = O, V([y]) = 1/2; It is suffifient to prove that x A yeMo, that 

is x A y~M and N(x A y)eM. By assumption we have x~M and Nx, y, Ny~M 
Since x cM, it is clear that x A ycM. It follows that N(x A y)eM by similar 

argument above. Thus we get that x A y e Mo' 

(3) V([x]) = O, V([y]) = I ; We can show that x A yeMo as above. 

(4) V([x])= V([y])= 1/2; It should be the case that x A yeM1/2, that is, 

x A y and N(x A y) are in M. By assumtion we get that x, Nx, y, Ny e M. It is 

obvious that x A y and N(x A y) = Nx,v Ny are' in M. 

(5) V([x])=V([y])=1; It sufficies to show that x A yeM1' that is, 
x A yeM and N(x A y)cM. It is that x, yeM and Nx, NycM by assmuption 
Now we have x A y e M. We also have that N(x A y) c M. Otherwise, since 
N(x A y) = Nx v NyeM, we get that NxeM or NyeM. But this is a contradiction 
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Hence x A y e M1 

All the other cases are proved similarly 

Case (c) : 

(6) V([x])= 1, V([y])=0; It is sufficient to show that x -~ yeMo that is, 

x -~ y~M and N(x -~ y)eM. By supposition, it holds that x e M, NxcM, y~M, 

and NyeM. That x -~ yeM implies Nx v y eM, because of x A (x -~ y) ~ Nx v y 

Since M is the maximal filter, we get that Nx e M or y e M but this is a 
contradiction. Thus we have x -~ y ~ M. In this case it is clear that N(x -~ y) e M 

These mean that x -~ y e Mo 

(7) V([x])= 1, V([y])= 1/2; We show x -> yeM1/2, that is, x H,y and 
N(x ~ y) are m M. By assumption we get that x e M, Nx cM, and y, Ny e M 
Smce y ~ Nx v y ~ x -~ y, rt follows x H, y e M by y e M. On the other hand, since 

x A (x -~ y) ~ Nx v y, we obtain that x A Ny = N(Nx v y) ~ N(x A (x -> y)) = Nx v 

N(x -~ y)eM. That x, Ny eM yields that Nx v N(x -> y)eM and hence that 

N(x~'y)eM by NxcM. So we have x-~yeM1/2' 
(8) V([x])=V([y])=1; In this case we shall show x -~ yeM1' By 

assumption it follows that x, y e M and Nx, Ny c M. Since y ~ Nx v y ~ x -~ y, we 

get x -> yeM. If N(x -~ y)eM, then we have Ny e M by N(x ~･ y) ~ Ny. This 
contradicts to the assumption. Thus it follows that N(x H> y) c M and hence that 

x -~ yeM1' 

(9) V([x])= 1/2, V([y])=0; It sufficies to show that x -> yeM1/2, that is, 

x H> y and N(x H, y) are in M. By assumption we have that x, Nx e M, y c M, and 

Ny e M. The inequality Nx ~ Nx v y ~ x ~' y gives the result x -~ y e M. Since 

x A Ny ~ N(x -~ y) v y, we have that N(x -~ y) v yeM. That y~M yields N(x -~ y)e 

M. Hence we get that x -~ yeM1/2 
We can prove the other cases similarly, so we omit their proofs 

It follows the next theorem without difficulty by this lemma 

THEOREM 3 Any i-Kleene algebra can be embedded to the simplest i-Kleene 
algebra 3. 

PRooF. The result is given by the composition map V ･ ~ of ~ : K -~ K/- and 

V: K/- -> 3. 

3 Kleene logic 

In this sectron we shall define a Kleene logic KL. First of all, we use a countable 

set of propositional variables pl' p2, ･ ･ ･ , p~,"' and logical symbolS A , v , ~ , and H, 

We denote the set of propositional variables by H, that is, H = {pl, p2,･･･, p~, . . .} 

The formulas of KL are defined as usual. Let A, B, C, . . . be arbitrary formulas of 

KL. In the following we list an axiom system of KL 
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Axioms；
（A1）

（A2）

（A3）

（A4）

（A5）

（A6）

（A7）

（A8）

（A9）

λ〈B→λ
λ→λVB
λ〈B→B〈λ
λVB→B　Vλ
λ→λ

λ→λ〈∠

λ→λVλ
（λ→B）→（λ〈C→B〈C）

（λ→B）→（λv　C→B　v　C）

　　　（A1O）　r　rλ→λ
　　　（A11）　（λ・→3）→（（B→C）→（∠→C））

　　　（A12）　λ→（B→λ）

　　　（A13）　（λ→（B→C））→（B→（λ→C））

　　　（A14）　λ〈（B　v　C）→（λ〈B）v（λ〈C）

　　　（A15）　λ〈rλ→B　v「B

　　　（A16）　rλv　B→（λ→B）

　　　（A17）　λ〈rλ〈B〈「B〈「（λ→B）→「（C→C）

　　　（A18）　λ〈r　B→r（∠→B）v　B

　　　（A19）　λ〈（∠→B）→rλv　B

　　Ru1e　of1n胎rence，B1s　d．educed　byλandλ→B（modus　ponens）

　　Let　KLbe　a　K1eene1og1c　andλbe　a　fomu1a　ofKL　By←肌λwe　mean
that　there1s　a　sequence　offomu1as4，λ2，，λ”ofKLsuch　that

　　（1）λ＝λ”

　　（2）　For　everyλ、，1t1s　an　axlom　or1t1s　deduced　by4and4σ，kく1）by

the　ru1e　of1nference

　　We　say　that∠1s　provab1e　m　KL　when←肌λ　If　no　co㎡us1on　ar1ses　we

smp1y　d．enote1t　by←λ

　　R肌岨K：We　abbriviateρo→ρo　byτand　rτby∫　In　this　case，itわ11ows

that←（λ→λ）→τand←τ→（λ→λ）for　every　formu1a∠　Now　the　ax1om（A17）

can　be　desc1bed　byλ〈rλ〈B〈rB〈r（λ〈B）→∫　We　emp1oy　tha“ormu1a
as　the　axiom　instead　of（A17）．

　　It1s　easy　to　show　the　next1emmas　so　we　om1t　the1r　proo£s

　　LEMMA7　ゲト∠→B伽∂←B→C，肋θ〃wθゐωθ←λ→C．

　　LEMMA8　F07θ〃αγ力7榊〃o∠ψKL　wθんωθ肋〃←∠→τ伽∂←∫→ノ．

　　A　funct1onτ17→31s　ca11ed　a　va1uat1on　fu二nct1on　The　d．omam　of　the

va1uat1on　funct1on　can　be　extended　umque1y　to　the　set　ofa1Hormu1as　as　fo11ows
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T(A A B) = min {T(A), T(B)} 

T(A v B) = max {T(A), T(B)} 

T(~ A) = I - T(A) 

T(A -~ B) = T(A) -~ T(B) 

Henceforth we use the same symbol T for the extended valuation function 

We can show that the Kleene logic KL is sound for i-Kleene algebras, that 

is, if HKL A then T(A) = I for any valuation function T 

THEOREM 4 Let A be an arbitrary formula of KL. If HKL A then T(A) 1 
for every valuation function T 

PRooF. By mduction on the construction of a proof. It sufficies to show that 

T(X) = I for every axiom X and that T(X) = T(X -~ Y) = I implies T(Y) = 1. We 

only show the latter. Suppose that T(X) = T(X H> Y) = 1. Since T(X -~ Y) = 
min {1 - T(X) + T(Y), 1} and T(X) = 1, we have T(Y) = 1 

As corollaries to the theorem we have the following 

COROLLARY I KL is consistent 

PROoF. Smce T(~ t) = O, the formula I t is not provable in KL. Thus the 
Kleene logic is consistent. 

COROLLARY 2 The Kleene logic is different from the classical propositional logic 

(CPL) and the intuitionistic propositional logic (IPL). 

PRooF. If we think of a valuation function T such that T(p) = I /2 for any 

propositional variable p, then we have that T(p v ~ p) = I /2 and hence that the 

formula p v ~ p is not provable in KL. Thus the Kleene logic is different from 

CPL. Next, the formula ~ ~ A -> A is not provable in IPL but it is provable in 

the Kleene logic. Thus IPL is not equal to the Kleene logic 

REMARK : Concerning CPL , we have a stronger result : If HKL A then HCPL A, 

where H CPL A means that A is provable in CPL 

4 Completeness Theorem 

In this section we shall establish the completeness theorem of the Kleene IQgic KL 

and it is the main theorem of this paper. The completeness theorem of KL means 

that a formula A rs probable in KL provided T(A) = I for any valuation function 

T. As a method to show the theorem, we define the Lindenbaum algebra of KL 
and investigate the property of that algebra 

Let c be the set of all formulas of KL. We introduce the relation E on c 



Comp1eteness　theorem　of　K1eene1og1c 85

as　fo11ows．　Forλ，B∈φ，

　　　　　　　　　　　　λ…B　i旺ト肌∠→B　and←肌B→λ．

　　PR0PosITI0N1　τ加κZo〃o〃　…　なo　oo〃9川θ〃7θ1o〃o〃o〃φ．

　　PR00F　We　on1y　show　that　the　re1at1on…sat1s丘es　the　cond1t1ons　Ifλ…X

and　B…Y；then

　　（a）∠〈B…X〈γ
　　（b）　1Vλ…！VB

　　（c）λ→B…X→γ
　　It1s　ev1dent　that　the　cond．1t1ons（a）and（b）ho1d．杜om　ax1oms（8），（9），and

（10）We　prove　the　cond1t1on（c）ho1ds　Suppose　that∠≡X　and　B…γ　For

the　cond1t1on　（c），smce　ト（B→γ）→（（λ→B）→（∠→γ）），we　have　ト（λ→B）→

（λ→γ）by　assumpt1onトB→γ　S1m11ar1y1t　fo11ows　that←（λ→γ）→（（X→λ）→

（X→γ））　By1emma7，we　obtam　that←（λ→B）→（X→γ）　λs1m11ar　argument

y1e1ds　the　converse　←（X→γ）→（∠→B）

　　Hence　the　re1at1on…1s　the　congruent　re1at1on

　　We　put　the　quot1ent　set　L＊ofΦby　the　congruent　re1at1on…　That1s，we

set　L＊＝｛［λ］■λ∈Φ｝，where［∠］＝｛X∈φ1λ…X｝　We　mtroduce　an　order

re1at1on⊆on　L＊as　fo11ows　For　any［λ］，［B］∈一L＊，

　　　　　　　　　　　　　　　　［∠］⊆［B］i肝←肌λ→B．

　　S1nce　the　re1at1on　…　1s　congruent，1t　1s　c1ear　that　the　dein1t1on　of　⊆　1s

we11－de丘ned　and　that　the　re1at1on⊆1s　a　part1a1order　Concemmg　to　th1s　ordr

we　have

　　LEMMA9　勿パ［λ］，［B］｝＝［∠〈B］，〃ρ｛［λ］，［B］｝＝［∠v　B］

　　PR00F　We　sha11show　the　irst　case　for　the　sake　of　s1mp11c1ty　The　second

case　can　be　proved　ana1ogous1y

　　Since　トλ〈B→λ　and　←λ〈B→B，we　obtain　［λ〈B］⊆［λ］，［B］．　For

any［C］such　that［C］⊆［λ］，［B］，smce←C→λand←C→B，1t　fo11ows　that

←C〈B→λ〈B　byト（C→λ）→（（C〈B）→（λ〈B））　Thus1t　means←B〈C→

∠〈B　On　the　other　hand。←（C→B）→（（C〈C）→（B〈C））and←C→B　y1e1d

←C〈C→B〈C　So　we　haveトC→B〈C　These　mean　that←C→λ〈B　and
hence　that［C］⊆［λ〈B］．　Thus　we　have　inf｛［λ］，［B］｝＝［λ〈B］．

　　By　the1emma　we　can　deine　the　operat1ons□and］respect1ve1y　by

　　　　　　　　　　　　［λ］□［B］：i㎡｛［λ］，［B］｝＝［λ〈B］

　　　　　　　　　　　　［λ］］［B］：sup｛［λ］，［B］｝：［λ一vB］・

　　It1s　easy　to　show　that　the　structure（L＊，□，］）1s　a1att1ce　Moreover，1f　we
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put [t] = 1, [f] = O, N[A] = [~ A] , and [A] => [B] = [A -> B] , then the axioms 

of KL assures that the structure (L* , n , u , N, ~, O, 1) is an i-Kleene algebra. The 

structure is called a Lindenbaum algebra of KL. Hence we have the theorem 

THEOREM 5 The Lindenbaum algebra L* of the Kleene logic KL is the i-Kleene 

algebra. 

As to that algebra L* , we have an important lemma 

LEMMA 10 For every formula A , HKL A Iff [A] = I in L* 

PRooF. Suppose that H A. Since A -~ (t -~ A) is provable in KL, we get that 

H t - A, that is, [A] = 1. Conversely if we assume that [A] = I then it follows 

H t -~ A by definition. Thus we have H A by H t 

Now we shall prove the completeness theorem of KL. In order to show that 

it sufficies to indicate the existence of a valuation function T such that T(A) ~ I if 

A rs not provable in KL. Suppose that a formula A is not provable in KL. In 

the Lindenbaum algebra L* of KL, we have [A] ~ I by the lemma above. It 
means that N [A] ~ O. By lemma 1, there is a maximal filter M* in L* such that 

N[A] e M*. Using the filter M* we define a valuation function T. For any 
propositlonal variable p, we put 

1 if [p]eM* and N[p]~M* 
T(p) = 1/2 if [p]eM* and N[p]eM* 

O if [p]cM* and N[p]eM*. 

As to that function T, we can show the next lemma without difficulty 

LEMMA 11 For any formula Bec, 

1 tf [B] eM* and N[B]cM* 
T(B) = 1/2 tf [B] eM* and N[B] e M* 

O if [B]~M* and N[B]eM*. 

PRooF. The same proof as that of lemma 6 gives the result 

Well, since N[A] e M*, it follows that T(A) ~ I by that lemma. Hence we 

have the completeness theorem of KL 

THEOREM 6 For any formula A, H A Iff T(A) = I for every valuation function T 

It turns out from the theorem that it is sufficient to calculate the value of 

T(A) whether the formula A is provable or not in KL. Since any formula has at 

most finite numbers of propositional variables, say n, the possible values of the 

n-tuple of the propositional variables in that formula are finite (at most 3"). Thus 

we can establish that 



[1] 

[2] 
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THEOREM 7 The Kleene logic is decidable 
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