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Abstract

In this paper we shall define a Kleene logic whose Lindenbaum algebra is the Kleene
algebra with implication (simply called i-Kleene algebra) and show that
(1) Every i-Kleene algebra can be embedded to the simplest i-Kleene algebra
={0,1/2, 1};
(2) The Lindenbaum algebra of the Kleene logic is an i-Kleene algebra;
(3) The completeness theorem of the Kleene logic is established;
(4) The Kleene logic is decidable.
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1 Introduction

It is familiar that there is close relationships between logics and their Lindenbaum
algebras. For example, the Lindenbaum algebra of the classical propositional logic
is a Boolean algebra, that of the intuitionistic propositional logic is a Heyting
algebra and so on. Now we have a natural question.

What is a logic whose Lindenbaum algebra is a Kleene algebra?

While many logics have implications and hence do the corresponding algebras,
the Kleene algebra does not have one. We have to consider the Kleene algebras
with implication to correspond the logics.

In the following we define Kleene algebras with implication (or simply called
i-Kleene algebra) and a Kleene logic KL, whose Lindenbaum algebra becomes the
i-Kleene algebra. We show that

(1) Every i-Kleene algebra can be embedded to the simplest i-Kleene algebra
3=1{0,1/2,1};

(2) The Lindenbaum algebra of KL is the i-Kleene algebra;

(3) For every formula A4, A4 is probable in KL if and only if t(4) = 1 for any
valuation function t;

(4) The Kleene logic KL is decidable.
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2 i-Kleene algebras

In this section we define an i-Kleene algebra. By an i-Kleene algebra, we mean
the algebra K = (K, A, v, =, N, 0, 1) of type (2,2, 2, 1,0, 0) such that
(1) (K, A, v,0,1) is a bounded distributive lattice;
(2) N:K—K is a map satisfying the following conditions
(N1) NO=1, N1=0
(N2) x <y implies Ny < Nx
(N3) NZ2x = x, where N%>x = N(Nx)
(N4) x A Nx <yv Ny (Kleene’s law)
(3) the implication — satisfies
I1) x-x=1
(I2) Nxvy<x-y
(I3) xA(x—>y)<Nxvy
I14) xANxAyANyANx->y)=0
(I5) xANy<Nx-y vy
Example: As a model of the i-Kleene algebra we have 3 = {0, 1/2, 1} defined
by

X Ay =min {x, y}

x vy =max {x, y}

Nx=1-—x

x—y=min {1l —x +y, 1} for every x and y in 3.

By simple calculation it turns out that the structure 3=3, A, v, -, N, 0, 1)
is the i-Kleene algebra. In the following we denote it simply by 3.

A non-empty subset F of K is called a filter when it satisfies the conditions:

(f1) x, yeF imply x A yeF;

(f2) xeF and x <y imply yeF.

A filter F is called proper when it is a proper subset of K. We define three
kinds of filters of K. By a maximal filter F, we mean the proper filter F such
that F = G implies F = G for any proper filter G. A proper filter F is called prime
if x v yeF implies xeF or yeF for every x, ye K. Lastly, we say a proper filter
F an ultrafilter when xeF or NxeF for every x in K.

LEMMA 1 Let K be any i-Kleene algebra and xe K. If x # 0, then there is a
maximal filter F of K such that x€F.

Proor. I'={H|xeH and H is a proper filter of K} is not an empty set,
because the principal filter [x) generated by x is in I. It is clear that I" is an
inductive set. Thus, by Zorn’s lemma, there is a maximal element F in I. The
filter F is clearly a maxima filter containing x.
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LEMMA 2 Let F be a maximal filter of K. If x¢F, then there exists an
element ueF such that unx=0. Hence x¢F implies NxeF.

Proor. Let 4 be a set {yeK|xAu<y, ueF}. Itis easy to show that 4 is
a filter properly contining F and x. Since F is maximal, this implies that 4 = K
and hence that 0e 4. We then have that x Au =0 for some u in F. For that
element ue F we have

u=u~nl
=uANXAU)
=uA(Nxv Nu)
=WuANx)V(@uANu<(@uANX)V(xVv NXx)
= x v Nx by Kleene’s law.

This yields that u <(xv Nx)Au=uA Nx < Nx. Hence we have NxeF.
It is easy to show the following lemma. Hence we omit the proof.

LemMa 3 If F is a maximal filter, then it is the prime filter.

THEOREM 1 The implication — cannot be defined by other operations A, v,
and N.

Proor. It is evident from that we have 1/2—>1/2=1 in 3.
Let M be an arbitrary maximal filter of K. We define the following subsets
M; (je3) of K:

My, ={xeK|x¢M, Nxe M}
M, ={xeK|xeM, Nx¢ M}
Now we define an equivalence relation ~ as follows: For x, yeKk,
x ~ y<>there exists M; such that x, ye M;.

LEMMA 4 x~y iff xe M<yeM and Nxe M<NyeM
LEMMA 5 The relation ~ is a congruent relation on K.

Proor. It sufficies to show that

(1) x~aand y~b implies x Ay ~anab;
(2) x~aand y~b implies x >y ~a—b;
(3) x ~ a implies Nx ~ Na.

It is clear by lemma 4 that the condition (3) holds so we consider the cases
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of (1) and of (2).
Case (1): Suppose that x ~a and y ~ b. It is sufficient to show that

xAnyeM iff anbeM and
Nx A NyeM iff Nan NbeM.

Suppose that x A ye M. Since x and y are in M, we have that both a and
b are in M by lemma 4. Thus, we obtain that aAb is in M. The converse is
similiar.

Next if we assume that N(x A y)e M, then we get that Nx v Nye M and hence
that NxeM or NyeM by lemma 3. This means that NaeM or Nbe M and so
that Nav Nb = N(a A b)e M. The converse also holds.

Case (2): We have to show that

x—>yeM iff a-beM and
N(x—y)eM iff N(a—b)eM.

We suppose that x - yeM. We have two cases ye M and y¢M. If yeM
(hence be M), then we have a>beM by b<Navb<a—b. In the case of y¢ M
(hence b¢ M), if xe M, since x and x — y are in M, then we have Nxe M because
of y¢ M and xA(x—y) < NxvyeM. Hence we obtain that NaeM. Well,
umless a—b is in M, this means that neither Na nor b are in M by
Navb<a—b. This is a contradiction. Thus we have a >beM. On the other
hand, if x¢ M then a¢ M and hence NaeM. Since Na< Navb<a—b, we get
a—->beM.

In the sequel we have that if x > yeM then a—»>beM in each case. The
converse is similar.

Next we assume that N(x — y)e M. It is sufficient to prove N(a » b)e M. By
N(x—y) <x ANy, we have x, Nye M and hence a, Nbe M.

If be M (hence ye M), then we have Nx¢ M. For otherwise that x, Nx, y, Ny,
N(x—>y)eM means x ANxAyANyAN(x—>y)=0eM. But this is a contra-
diction. Thus we have- Na¢ M. In this case, since a A Nb < Nav N(aeb)e M and
Na¢ M, we get that N(a > b)e M.

If b¢ M, then we obtain that N(a—b)eM by an Nb < N(a—b)v beM.

In each case this means that N(x — y)e M implies N(a - b)e M. It is clear
that the converse holds. Hence N(x — y)e M iff N(a— b)e M.

These indicate that the relation ~ is the congruence relation.

Let [x] = {yeK|x ~ y} be the equivalence class of x and K/~ = {[x]|xe K}
be the set of all equivalence classes. The relation ~ in congruent means that we
can consistently define operations A, v, N, and — on K/~ as follows.
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XIAaDlyl=[xAy]
Ivil=[xvy]
N[x] = [Nx]

[x]->Dy]=[x-y]

The general theory of universal algebras shows the next theorem.

THEOREM 2 Let K be an i-Kleene algebra and M be a maximal filter of
K. Then an algebraic system K/~ =(K/~, A, v, N, -, [0], [1]) is the i-Kleene
algebra and the map &¢: K — K/~ defined by &(x) = [x] is a homomorphism.

Remarking the maximality of the filter M of K, we have a stronger result as
to K/~. We define a map V:K/~—-3 by V([x])=j if xeM; where
je3={0,1/2,1}. We have an important lemma.

LEMMA 6 The map V is injective and homomorphic. Moreover if M,,, is not
empty then V is surjective and hence K/~ is isomorphic to 3.

Proor. It is evident that V is injective. We shall show that V is homomorphic,
that is,

(@) V([x] A [y]) = min {V([x]), V([y])}
(b) V(N[xD=1-V([xD
(¢) V([Ix1- [¥]) = min {1 — V([x]) + V([y]), 1}

For the sake of simplicity, we only. show two cases (a) and (c).

Case (a):

(1) V([x])=V([y])=0; It sufficies to show that V([x A y])=0, that is,
x AyeM,. By assumption we have x, y¢ M and Nx, Nye M. Clearly we get that
xAy¢M. On the other hand, since M is maximal and x A y¢M, we have
N(x A y)e M. This means that x A ye M,.

@ V(Ix])=0, V([y])=1/2; It is suffifient to prove that x A ye M,, that
is x Ay¢M and N(x A y)e M. By assumption we have x¢ M and Nx, y, Ny¢ M.
Since x¢ M, it is clear that x A y¢ M. It follows that N(x A y)e M by similar
argument above. Thus we get that x A ye M.

3) V([x) =0, V([y])=1; We can show that x A ye M, as above.

4 V([x])=V([y]l) = 1/2; 1t should be the case that x A ye M, ,, that is,
x Ay and N(x A y) are in M. By assumtion we get that x, Nx, y, NyeM. It is
obvious that x A y and N(x A y) = Nx.v Ny are in M.

6) V(IxX)=V(y])=1; It sufficies to show that xAyeM,, that is,
xAnyeM and N(x Ay)¢M. It is that x, ye M and Nx, Ny¢M by assmuption.
Now we have xAyeM. We also have that N(x A y)¢ M. Otherwise, since
N(x A y)=Nx v NyeM, we get that NxeM or NyeM. But this is a contradiction.
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Hence x A yeM,.

All the other cases are proved similarly.

Case (c):

6 V([x])=1, V([y]) =0; It is sufficient to show that x — ye M, that is,
x—>y¢M and N(x—y)eM. By supposition, it holds that xe M, Nx¢ M, y¢ M,
and NyeM. That x - yeM implies Nx v ye M, because of x A (x > y) < Nx v .
Since M is the maximal filter, we get that NxeM or yeM but this is a
contradiction. Thus we have x - y¢ M. In this case it is clear that N(x = y)e M.
These mean that x — ye M,,.

(M V(IxD =1, V([y)=1/2; We show x—>yeM,,,, that is, x>y and
N(x—y) are in M. By assumption we get that xe M, Nx¢ M, and y, Nye M.
Since y < Nx vy < x—y, it follows x > ye M by ye M. On the other hand, since
XA(x—y) < Nxvy, we obtain that x ANy =N(Nxvy) < NxA(x—-y)=Nxv
N(x—-y)eM. That x, NyeM yields that Nxv N(x—y)eM and hence that
N(x—y)eM by Nx¢M. So we have x—>yeM,,,.

® V(xX)D=V([y])=1; In this case we shall show x—yeM,. By
assumption it follows that x, ye M and Nx, Ny¢ M. Since y < Nx vy <x—y, we
get x—>yeM. If N(x—y)eM, then we have NyeM by N(x —y) < Ny. This
contradicts to the assumption. Thus it follows that N(x —» y)¢ M and hence that
x—->yeM,.

9 V(IxD=1/2, V([y])=0; It sufficies to show that x > ye M, ,, that is,
x—yand N(x —y) are in M. By assumption we have that x, Nxe M, y¢ M, and
NyeM. The inequality Nx < Nxvy<x—y gives the result x - yeM. Since
xANy<N(x-y)vy, we have that N(x - y) v yeM. That y¢M yields N(x — y)e
M. Hence we get that x —»yeM,,,.

We can prove the other cases similarly, so we omit their proofs.

It follows the next theorem without difficulty by this lemma.

THEOREM 3 Any i-Kleene algebra can be embedded to the simplest i-Kleene
algebra 3.

PrOOF. The result is given by the composition map Vo ¢ of ¢: K —» K/~ and
V:K/~ —>3.

3 Kleene logic

In this section we shall define a Kleene logic KL. First of all, we use a countable
set of propositional variables p,, p,,...,p,,--- and logical symbols A, v, —, and —.
We denote the set of propositional variables by 17, that is, 1T = {p;, p,,..., Pp»...}.
The formulas of KL are defined as usual. Let A4, B, C,... be arbitrary formulas of
KL. In the following we list an axiom system of KL.
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Axioms;
(A1) AAB-—A
(A2) A->AvVB
(A3) AAB->BAA
(Ad) AvB-o>BvVvA
(A5) A-4
(A6) A—-ANnA
(A7) A—-AVvA
(A8) (A—-B)-»(AAC—->BAC)
(A9Y9 (A4-B)—>(AvC->BvC()
(A10) 114> A4
(A1l) (A-B) »(B->C)-»(A—-0)
(A12) A—(B— A)
(A13) (A->B-C)>(B-(A4-0)
(A14) AABvVC)>(AAB)Vv(AACQ)
(A15) AA—A-Bv—B
(A16) -1 Av B—(4- B)
(A17) AAVAABATIBAT1(A->B)-»—1(C->C)
(A18) AA B> (A—>B)vB
(A19) AA(A->B)-»—1AvB

Rule of inference; B is deduced by A and 4 — B (modus ponens).

Let KL be a Kleene logic and A be a formula of KL. By kg, A we mean
that there is a sequence of formulas A4,, 4,,...,4, of KL such that

(1) A4=4,

(2) For every 4;, it is an axiom or it is deduced by A; and 4, (j, k <i) by
the rule of inference.

We say that A is provable in KL when Fy; A. If no confusion arises, we
simply denote it by — A.

REMARK: We abbriviate p, = p, by ¢t and 71t by f. In this case, it follows
that (4 —» A) >t and 1t — (4 > A) for every formula 4. Now the axiom (A17)
can be descibed by AA"VAABATTBA—1(AAB)—>f. We employ that formula
as the axiom instead of (A17).

It is easy to show the next lemmas, so we omit their proofs.

LemMa 7 If WA — B and B — C, then we have A — C.
LEMMA 8 For ervery formula A of KL, we have that - A —t and - f— A.

A function 7:IT—3 is called a valuation function. The domain of the
valuation function can be extended uniquely to the set of all formulas as follows:
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7(A A B) = min {t(A), t(B)}
7(A v B) = max {z(4), 7(B)}
(1 4)=1—1(4)

7(A = B) = 1(A4) = ©(B)

Henceforth we use the same symbol 7 for the extended valuation function.
We can show that the Kleene logic KL is sound for i-Kleene algebras, that
is, if Fx; A then t(4) =1 for any valuation function .

THEOREM 4 Let A be an arbitrary formula of KL. If Vg A then 1(A) =1
for every valuation function t.

ProoF. By induction on the construction of a proof. It sufficies to show that
7(X) = 1 for every axiom X and that 7(X)=t(X - Y) =1 implies 7(Y)=1. We
only show the latter. Suppose that 7(X)=1(X->Y)=1. Since 7(X > Y)=
min {1 — 7(X) + t(Y), 1} and ©(X) =1, we have 7(Y) = 1.

As corollaries to the theorem we have the following.

COROLLARY 1 KL is consistent.

ProoF. Since 7(—1t) =0, the formula —1¢ is not provable in KL. Thus the
Kleene logic is consistent.

COROLLARY 2 The Kleene logic is different from the classical propositional logic
(CPL) and the intuitionistic propositional logic (IPL).

Proor. If we think of a valuation function 7 such that t(p) = 1/2 for any
propositional variable p, then we have that t(p v —1p) = 1/2 and hence that the
formula p v —1p is not provable in KL. Thus the Kleene logic is different from
CPL. Next, the formula 714 —» A4 is not provable in IPL but it is provable in
the Kleene logic. Thus IPL is not equal to the Kleene logic.

REMARK: Concerning CPL, we have a stronger result: If -, A then cp, A,
where cp; A means that A4 is provable in CPL.

4 Completeness Theorem

In this section we shall establish the completeness theorem of the Kleene logic KL,
and it is the main theorem of this paper. The completeness theorem of KL means
that a formula A4 is probable in KL provided 7(4) = 1 for any valuation function
7. As a method to show the theorem, we define the Lindenbaum algebra of KL
and investigate the property of that algebra.

Let @ be the set of all formulas of KL. We introduce the relation = on @
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as follows. For A, Be®,
A=B iff Fy, A> B and g, B— A.
PROPOSITION 1 The relation = is a congruent relation on ®.

Proor. We only show that the relation = satisfies the conditions: If A =X
and B =Y, then

(a) AAB=XAY

() NA=NB

(c) AB=X->Y

It is evident that the conditions (a) and (b) hold from axioms (8), (9), and
(10). We prove the condition (c) holds. Suppose that A=X and B=Y. For
the condition (c), since F(B—»>Y)—>((4—>B)—»(4A—Y)), we have (4 - B)—>
(4> Y) by assumption +B — Y. Similarly it follows that H(4—>Y) - ((X - 4) -
(X > Y)). By lemma 7, we obtain that (4 - B) > (X —» Y). A similar argument
yields the converse (X —» Y)— (4 — B).

Hence the relation = is the congruent relation.

We put the quotient set L* of & by the congruent relation =. That is, we
set L*={[A]|Ae®}, where [A]={Xe®|A=X}. We introduce an order
relation C on L* as follows: For any [A4], [BleL*,

[A]C [B] iff 4, A — B.

Since the relation = is congruent, it is clear that the definition of C is
well-defined and that the relation C is a partial order. Concerning to this ordr
we have

LemMma 9 inf{[A], [B]} = [4 A B], sup {[A], [B]} =[A v B]

Proor. We shall show the first case for the sake of simplicity. The second
case can be proved analogously.

Since FAAB—-A4 and HFAAB— B, we obtain [A A B]C [A4], [B]. For
any [C] such that [C]C [A4], [B], since mC— A and FC — B, it follows that
FCAB—-AAB by H(C— A)—((CAB)-(A AB)). Thus it means HBA C—
AAB. On the other hand, H(C—->B)—»((CAC)—=(BAC)) and —C— B yield
FCAC—>BAC. So we have HC—> B A C. These mean that HC > A A B and
hence that [C]C [4A A B]. Thus we have inf {[A], [B]} = [4 A B].

By the lemma we can define the operations M and LI respectively by

[A]1 M [B] = inf {[A], [B]} = [4 A B]
[A]1U [B] = sup {[4], [B]} =[4V B].

It is easy to show that the structure (L*, M, U) is a lattice. Moreover, if we
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put [t]=1,[f]1=0, N[A4] = [ 4], and [A]=[B] =[4 — B], then the axioms
of KL assures that the structure (L*, M, LI, N, =, 0, 1) is an i-Kleene algebra. The
structure is called a Lindenbaum algebra of KL. Hence we have the theorem.

THEOREM 5 The Lindenbaum algebra L* of the Kleene logic KL is the i-Kleene
algebra.

As to that algebra L*, we have an important lemma.
LeEMMA 10 For every formula A, Fg; A iff [Al1=1 in L*.

ProOF. Suppose that - A. Since A — (t —» A) is provable in KL, we get that
t— A, that is, [A] = 1. Conversely if we assume that [4] =1 then it follows
t— A by definition. Thus we have -+ A4 by Ft.

Now we shall prove the completeness theorem of KL. In order to show that,
it sufficies to indicate the existence of a valuation function t such that t(4) # 1 if
A is not provable in KL. Suppose that a formula A4 is not provable in KL. In
the Lindenbaum algebra L* of KL, we have [A] # 1 by the lemma above. It
means that N[4] # 0. By lemma 1, there is a maximal filter M* in L* such that
N[A]leM*. Using the filter M* we define a valuation function 7. For any
propositional variable p, we put

1 if [pJeM* and N[p]¢ M*
t(p)=<¢ 1/2 if [pJeM* and N[p]leM*
0 if [pl¢ M* and N[p]le M*.

As to that function 7, we can show the next lemma without difficulty.

LEMMA 11 For any formula Be ®,

1 if [BleM* and N[B]¢ M*
B)=<{ 1/2 if [BlJeM* and N[B]le M*
0 if [B1¢M* and N[B]le M*.

Proor. The same proof as that of lemma 6 gives the result.
Well, since N[A]e M*, it follows that t(4) # 1 by that lemma. Hence we
have the completeness theorem of KL.

THEOREM 6 For any formula A, - A iff 1(A) = 1 for every valuation function 1.

It turns out from the theorem that it is sufficient to calculate the value of
7(A4) whether the formula 4 is provable or not in KL. Since any formula has at
most finite numbers of propositional variables, say n, the possible values of the
n-tuple of the propositional variables in that formula are finite (at most 3"). Thus
we can establish that
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THEOREM 7 The Kleene logic is decidable.
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