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It is shown that the extremal length of an infinite network satisfies a triangle inequality. A new formula
for the extremal distance between two nodes will be given with the aid of a reproducing kernel. We shall
discuss extremum problems related to Green functions.

§ 1. Introduction

Let N={X, Y, K, r} be an infinite network which is connected and locally finite and has
no self-loop as in[5]. Here X is the countable set of nodes, Y is the countable set of arcs, K is
the node-arc incidence matrix and 7 is a strictly positive real valued function on Y. Denote by
L(X) (resp. L{Y)) the set of all real valued functions on X (resp. Y) and by L,(X) (resp.
Lo(Y)) the set of uEL(X) (resp. wE L(Y)) with finite support.

The energy H(w) of we L(Y)is defind by

Hw):=Yyerr(y)w(y)®.

Let L,(Y; ) be the set of all wE L (Y) such that H(w) <co. For w,, w,€L,(Y; 7 ), their
inner product <w,, w.> is defined by

<wi, we>:=Yyerr(y)w (y)w:(y).

For u€L(X), its discrete derivative du€ L (X)), its Dirichlet sum D (« ) and its Laplacian
Au€L(X) are defined by

du(y):=—r(y) " LoexK (x,y)u(z)
=r(y) " Hulx™(y)) —ulx* (y)],
D(u):=H(du)=Yyerr(y) [du(y)]?,
Au(x):=erK(x,y) [duy)],
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where x~(y) (the initial node of y) and x*(y) (the terminal node of y ) are determined

uniquely by the relation :

K(z (y),y)=—1,K@x*(y),y)=1.

Denote by D(N) the set of all #€L(X) with finite Dirichlet sum, i.e.,
D(N):={u€L(X);D(u)<co}.

For #, vED(N), the mutual Dirichlet sum D (%, v) is defined by

D(u,v):=<du,dv>=Y,cyr(y) [du(y)]dv(y)].
It is well-known that (N ) is a Hilbert space with respect to the inner product :

Cu, v):=D(u, v)+u(xe) v(xo)

with a fixed node x,. Denote by Do (N ) the closure of L, (X ) in D(N) with respect to the
norm :

lleell: = [ Cae, 2 D1V2= [D (0 )+ (o) 1.

Note that Do(N) does not depend on the choice of z,.
For a fixed node x,, put

D(N; xo):={ucD(N); u(x)=0}.

It is well-known that D (N; x,) is a Hilbert space with respect to the inner product D (%, v ) (cf.
[51). For simplicity, put Xo=X— {x}. For any aE€ X,, #(a) is a continuous linear functional
on D(N;x,). In fact, there exists a constant M by [5;Lemma 1] which depends only on
{xo, a} such that

lu(a)| <MD (u)]1"* for every uED(N; xo).

By Riesz representation theorem, there exists a unique reproducing kernel k€ D (N; x0) such
that

(K.1) u(a)=D(u,k,) for every u€D(N; xo).

This k, is called the Kuramochi kernel in [4].
In case N is of hyperbolic type (of order 2), there exists a unique function g,€ D,
(N) such that

(G.1) v(a)=D(v, g,) for every vED,(N).

This g, is called the Green function of N with pole at a in [6].
We shall show some roles of reproducing kernels %, and ¢, in the study of extremum
problems on an infinite network.
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§2. A triangle inequality for the extremal distance

Let a and b be two distinct nodes and denote by P, the set of all paths form a to &
(cf. [5D).
The extremal distance A(a, b) of N between a and b is defined by

Ala, b)) :=mi{H(W); WEEL(P.,)},
where EL(P,;) is the set of all non-negative WEL(Y) such that
Diecrer(y)W(y) =1 for all PEP,,,

where Cy(P)is the ordered set of arcs in P (cf. [5]).
By definition, A(a, b)=21(b,a).
We shall be concerned with the following triangle inequality for extremal distance :

2.1 Ala,b)<A(a,c)+2(c,b)

for every distinct three nodes a, b and c.

In case N is a finite network, Duffin [1] showed a triangle inequality for the joint
resistance.

Let us consider the following extremum problem :

(2.2) Minimize D (u)
subject to #€L(X), u(a)=0, u(b)=1.

Denote by d(a, b) the value of Problem (2.2). Sometimes we call the optimal solution of
Problem (2.2) the optimal solution for d(a, b).

The following result was proved by Duffin [2] in case N is a finite network and by
Yamasaki [5] in case N is an infinite network.

LEMMA 2.1. A(a,b)=d(a,b) .
We prepare

LEMMA 2.2. There exists a unique optimal solutlon i@ for d(a,b). This # has the
following properties :

2.3) D(#)<co, #(a)=0, #(b)=1;
2.4 0<#(x)<1 on X;
2.5) Ad(x)=D () [e.(x) —¢&(x)],

where ¢, denotes the characteristic function of {a}, i.e., ¢,(x)=0 for x#a and e,(a)=1.

PrROOF. The existence and uniqueness of the optimal solution and Properties (2.3) and
(2.5) follow from [5; Theorem 2]. Let # be the optimal solution of Problem (2.2). Then
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|# and min (4, 1) are also feasible solutions of Problem (2.2). By the relations :
D(|ii)) <D (i) and D (min (i, 1)) <D ()

([5 ; Lemma 2]) and by the uniqueness of the optimal solution of Problem (2.2), we obtain #
=|#|=min (#, 1), so that 0<#(x)<1 on X.

The following result was shown in [4; Theorem 3.1].

LEMMA 2.3. The function k, has the following properties :

(2.6) k.(a)=D(k,);
2.7 k. (b)=k,(a) for every a, bEX,;
(2.8) Aky () =—¢,(x) +eg (x) for xEX.

LEMMA 2.4, ko/ks.(a) is the optimal solution for d(xy,a)and 2 (x,,a)=k.(a).

Furthermore,
0=k, (x)<ks(a)on X.
PROOF. Let us put 9:=ks/ks(a). Then by Lemma 2.3
7(x0) =0, 9(a)=1, D) =1/D(k)=1/k.(a).
For any #€D(N) such that #(x,) =0 and #(a)=1, we have
D(u,5)=D(u,ka)/ks(a)*=1/ks(a)=D(d)

by (K.1). Since |D(u, #)|< [D(#)1**[D ()12, we obtain D (#) <D(u). Hence d (1o, @) =
D(®. By 2.4), 0<3<1 on X, or 0<k,(x)<ks,(a)on X.

We shall prove

THEOREM 2.5. Let a, bEX, be two distinct nodes and put 4z :=ky—ks. Then vs
1= [#as— 105 (@ )1/D (uss) is the optimal solution for d(a, b) and the following relation holds -

/l(a, b)zD(uab)=ka(a)_2ka(h)+kb(b)-
PROOF. Note that D(vg)=1/D(uts) <0, v4(a)=0. By the relation
oy (b) —tas (@) =k (b) =2k, (b) +kola) =D (uz),

we have v, (b)=1. Let u€ D(N ) satisfy #(a)=0and #(b)=1. Then #'=u—u(x,) ED(N;
Zo) and

D (u, v25) =D (4, t435) /D (th33)
=[D(u’, ks) —D (o' ,ks)1/D (ttas)
=[w (b)—u'(a)l/D(uz)
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=1/D (gs) = D (Vap)
by (K.1). Thus D(vs) <D(u) and v, is the optimal solution for d(a,b).
By Lemma 2.4 and Theorem 2.5, we have
THEOREM 2.6. For distinct three nodes xo,, a and b.
Aa,b)=A2(xo,a)+2A(xo, b) —2k,(b).
Since k,(x)=>0 by Lemma 2.4, we obtain

THEOREM 2.7. Let a, b and c¢ be three distinct nodes. Then the triangle inequality
(2.1) holds.

§ 3. Extremum problems related to Green functions

In this section, we always assume that N is of hyperbolic type. Let a and b be two distinct
nodes and consider the following extremum problem similar to Problem (2.2) :

3.1 Minimize D (u)
subject to #€D,(N) and #(b)—u(a)=1.

Denote by p(a, b) the value of Problem (3.1).
We have

THEOREM 3.1.  Let udy, :=g,—ga and v : =udy/D (u}). Then v} is an optimal solution
of Problem (3.1).

PROOF. Clearly, v €D, (N) and D(v})=1/D(uk). We have
ud (b)) —ud(a)=g,(b)—2¢,(b)+g.(a)
=D(g,—gs) =D (u})

by (G.1) and the symmetry of g,(b) (cf. [6; Theorem 3.3]). Therefore v¥ is a feasible
solution of Problem (3.1). Let # be any feasible solution of Problem (3.1). By (G.1), we have

D(u,v3)=[D(u, g») —D(u, g.)1/D (ud;)
=[u(b)—u(a)l/D(uk)
=1/D(ul) =D(v}).

By the relation : |D (u, vd)|<[D (% )1*2[D (v%)]"2, we obtain D (v%)<D(u). Thus
o(a, b)=D(v3) and vf is an optimal solution of Problem (3.1).

Related to Problems (2.2) and (3.1), we consider extremum problems on the sets of flows
as in [5].
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Let @ and b be distinct nodes. We say that wE L(Y) is a flow from a to b if it satisfies
3.2 DuerK(z,y)w(y)=0 for z€X—{a, b};
3.3) Iw):=—YyerK(a,y)w(y)=2uerK(b, y)w(y).

We call I(w) the strength of w.

Denote by F(a, b) the set of all flows from a to b and by F.(a, b) the closure of
F(a,b)NLy(Y) in the Hilbert space L,(Y ;7).

Let us consider the following extremum problems :

3.4 Minimize H(w)

subject to wEF,(a,b) and I(w)=1.
(3.5) Minimize H(w)

subject to wEF(a,b) and [(w)=1.

Denote by di(a, b) and d*(a, b) the values of Problems (3.4) and (3.5) respectively.
We have by [5; Theorem 11]

LEMMA 3.2. d(a,b)df(a,b)=1.
We shall prove

THEOREM 3.3. p(a,b)d*(a,b)=1 holds and W := —d(g,— g.) is an optimal solution
of Problem (3.5).

PROOF. Let wEF(a,b)NL,(Y ;7)and u<D,(N) satisfy the conditions : I(w)=1
and #(b)—u(a)=1. Then

1=u(0) —u(a) = Yoextt (x) LyerK(z, y)w(y)
=2uerw (y) YeexK (z,y)u(x)
<[H(w)]"?[D(u)]"*
by the same reasoning as in the proof of [5; Theorem 5]. Therefore we have
1<d*(a,b)p(a,b).
Since WEF(a,b) and I(#)=1, we have
d*(a,b)<H@@)=D(g—ga)=p(a,b)™".
This completes the proof.
THEOREM 3.4. d(g,—gs) €F:(a, b) if and only if d*(a,b)=d§ (a, b) holds.

PROOF. Note that d*(a, b)<d§ (a, b) holds in general. The “only if” part is clear.
We prove the “if” part. There exists an optimal solution wi* of Problem (3.4). We see byl5 ;
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Lemma 11] that there exists v*€ D (N) such that wif=—dv*. Let #:=—d(g,—g,) and w
:=w—w{*. Then we see easily that there exists #*€ D (N ) such that wy=—dh*. Since (%) =
I(w#) =1, we have

Ah*(x)z_ZerK(x,y)wék(y)zor

so that ”*€HD(N):={u€D(N); Au=0}. Since g,—g,ED,(N), we have by [6; Lemma
1.3]

<, wf>=D(gy—ga, h*) =0,
so that <wi, wy>=—H (w}). Therefore
d*(a, b)=H @) =<, wF>
=H(wi) —H(wF) =df (a, b) —H(w¥).

If d*(a, b)Y =d¢ (a, b) holds, then H(w5) =0, so that w5 =0, or equivalently, #=wi*< F,(a,
b).

§4. Miscellaneous remarks
Let us study some properties of the function defined by
¢ (x):=k(x)=2A(x, x) for xEX,;
@ (x0):=0.
Let us introduce the following coefficients :
t(x, a):=Yyerr(y) YK (z,y)K(a,y)| for x+a,
t(a,a)=0,
t(@):=2err(y) K (a,y)l.
Then we have t(a)=,ext(z,a), t(z,a)=t(a,z) and
4.1 Au(a)=—t(a)u(a)+ Dext(z, a)u(z).
THEOREM 4.1. The following relations hold :
4.2) Ap(a)=D ext(x,a)A(x,a)—2 for a#x
4.3) A (20) =Y pext(x, T0) A (20, ).

PROOF. (4.3) follows from (4.1) and ¢ (x,) =0. To prove (4.2), let € X,. By Lemma
2.4 and Theorem 2.6, for x#a

4.4) ox)=2(a,x)—k,(a)+2k,(x).



8 Atsushi MURAKAMI, Maretsugu YAMASAKI and Yoshinori YONE-E

We have by (4.1) and (4.4)
A9 (a)=—2ta)ks(a)+ Yrext(x,a)A(a, z)
+ Deext(x, @) 2k (x)
=Dsext(z,a)A(a, x)+24k, (a)
=Dext(x,a)A(a,z)—2.
This completes the proof.

In the case where N is the 2-dimensional lattice domain with =1, it is well-known as in[3]
that 2 (x, @) =1/2 if z is a neighboring node of a. Since {(x, a) =1 if x is a neighboring node
of a, we see that

>ext(z, a)A(x, a)=2.

Flanders [3] called ¢ (x) the fundamental solution.
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