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It is shown that the extremal length of an infinite network satisfies a triangle inequality. A new formula 

for the extremal distance between two nodes will be given with the aid of a reproducing kernel. We shall 

discuss extremum problems related to Green functions 

S 1. Introduction 

Let N= {X , Y , K , r } be an ir;finite network which is connected and locally finite and has 

no self-loop as in [5] . Here X is the countable set of nodes, Yis the countable set of arcs, K is 

the node-arc incidence matrk and r is a strictly positive real valued function on Y. Denote by 

L (X) (resp. L ( Y)) the set of all real valued functions on X (resp. Y) and by Lo (X) (resp 

Lo( Y)) the set of ueL(X) (resp. weL( Y)) with finite support 

The energy H(w) of w e L(Y) is defind by 

H(w ) : = ~y=Yr( y ) w ( y )2. 

Let L2 ( Y; r) be the set of all weL(Y) such that H(w ) 

inner product 

 is defined by 
 := ~v=Yr(y )wl (y )w2 (y ). 

For ue L (X ) , its discrete derivative du e L (X ) , its Dinchlet sum D (u ) and its Laplacian 

AueL(X) are defined by 

du (y ) : = - r( y ) ~1~.=xK(x , y ) u (x ) 

= r(y )~1 [u (x~ ( y )) -u (x+ (y ))] , 

D (u ) : =H(du ) = ~y=Yr(y ) [du (y )]2 

Alu (x ) : = ~y= YK(x , y ) [du (y )] , 
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where x~(y ) (the initial node of y ) and x+ (y) (the ternunal node of y ) are determmed 

uniquely by the relation 

K(x~ (y ) , y ) = - l, K(x+ (y ) , y ) = 1. 

Denote by D(N) the set of all ueL(X) with finite Dinchlet sum, i.e., 

D(N) : = {ueL (X) ;D(u ) 

For u, veD(N), the mutual Dirichlet sum D (u, v ) is defined by 

D(u, v ) : = 

 = ~y~Yr(y ) [du (y )] [dv (y )] . 
It is well-known that D ( N ) is a Hilbert space with respect to the inner product 

((u, v )) : =D(u, v ) +u (xo)v(xo) 

with a fixed node xo. Denote by Do (N) the closure of Lo (X) in D (N) with respect to the 

norm : 

I ull: = [ ((u, u ))]l/2= [D (u ) +u (xo)2] 1/2 

Note that Do (N) does not depend on the choice of xo. 

For a fixed node xo, Put 

D(N; xo) : = {u~D(N) ; u (xo) =0} . 

It is well-known that D ( N ; xo) is a Hilbert space with respect to the inner product D ( u , v ) (cf 

[5] ) . For simplicity, put X0=X- {xb} . For any a e Xo, u (a ) is a continuous linear functional 

on D (N;xb) . In fact, there exists a constant M by [5 ; Lemma l] which depends only on 

{xo, a } such that 

u(a )l~M[D(u )]l/2 for every ueD(N; xb). 

By Riesz representation theorem , there exists a unique reproducing kernel k. e D ( N ; xo) such 

that 

(K.D u(a) =D(u, k.) for every ueD(N; xo)' 

This k. is called the Kuramochi kernel in [4] . 

In case N is of hyperbolic type (of order 2) , there exists a unique function g e D 

(N) such that 

v(a)=D(v, g.) for every veDo(N) (G.1) 

This g. is called the Green function of N with pole at a in [6] . 

We shall show some roles of reproducing kernels k. and g. in the study of extremum 

problems on an infinite network 
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S 2. A triangle imequality for the extrernal distance 

Let a and b be two distinct nodes and denote by P.,b the set of all paths form a to b 

(cf. [5] ) . 

The extremal distance A (a, b ) of N between a and b is defined by 

A (a b )-1:=inf{H(W); WeEL(P.,b)}, 

where EL (P.,b) is the set of all non-negative WeE L ( Y) such that 

~y=c.(p)r(y) W(y) >1 for all Pep.b, 

where CY (P) is the ordered set of arcs in P (cf. [5] ) . 

By definition, ~ (a, b ) =~ (b, a ) 

We shall be concerned with the following triangle inequality for extremal distance 

(2.1) A (a, b ) ~~ (a, c ) +~ (c, b ) 

for every distinct three nodes a , b and c 

In case N is a finite network , Duffin [1] showed a triangle inequality for the joint 

resistance . 

Let us consider the following extremum problem 

(2.2) Minimize D (u ) 

subject to ueL(X), u(a)=0, u(b)=1. 

Denote by d ( a , b ) the value of Problem (2.2) . Sometimes we call the optimal solution of 

Problem (2.2) the optimal solution for d (a, b ) 

The following result was proved by Duffin [2] in case N is a finite network and by 

Yamasaki [5] in case N is an infinite network 

LEMMA 2.1. A(a,b)=d(a,b)-1. 

We prepare 

LEMMA 2.2. There exists a unique optimal solutlon ~ for d (a, b ). This i~ has the 

following properties 

(2 . 3) D(i~)

(2 . 4) O~~(x)~1 on X; 

(2.5) A~ (x ) =D (~) [e. (x ) -eb (x )] , 

where e. denotes the characteristic function of {a } , i.e., e. (x) =0 for x~a and e. (a ) = 1 

PROOF. The existence and uniqueness of the optimal solution and Properties (2 . 3) and 

(2.5) follow from [5 ; Theorem 2] . Let ~ be the optimal solution of Problem (2.2) . Then 
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I~l and min(~, 1) are also feasible solutions of Problem (2.2) . By the relations 

D(I~ ) ~D(~) and D(min (~, 1)) ~D(~) 

( [5 ; Lemma 2] ) and by the uniqueness of the optimal solution of Problem (2.2) , we obtain ~ 

= ~ =min(~, 1), so that O~i~(x) ~1 on X. 

The following result was shown in [4; Theorem 3.1]. 

LEMMA 2.3. The function k. has the following properties 

(2.6) k. (a ) = D (k.) ; 

(2 . 7) k.(b )=kb(a) for every a, beXo ; 

(2 . 8) Ak. (x ) = -e. (x ) +e., (x ) for xeX. 

LEMMA 2.4. k./k. (a ) is the optimal solution for d (xo, a ) and ~ (xo, a ) = k. (a ) . 

Furthermore, 

0

PROOF. Let us put ~ :.=k./k. (a). Then by Lemma 2.3 

~(xo) =0, ~(a)=1, D(~)~1/D(k.)=1/k.(a). 

For any ueD(N) such that u(xo) =0 and u(a)=1, we have 

D(u v) D(u,k.)/k (a)2=1/k.(a)=D(v) 

by (K.1) . Since ID(u. ~)1 ~ [D(u )]l/2 [D(~)]l/2, we obtain D(~) ~D(u ). Hence d (xo, a ) = 

D(~). By (2.4), O~~~1 on X, or O~k.(x)~k.(a) on X. 

We shall prove 

THEOREM 2.5. Let a, beXo be two distinct nodes and put u.b : =kb-k.. Then v.b 
: = [u.b-u.b (a )]/D (u.b) is the optimal solution fol' d (a, b ) and the following relation holds : 

~ (a, b) =D(u.b) =k.(a ) -2k.(b ) +k (b ) 

PROOF. Note that D(v.b) = 1/D(u.b) 

u.b (b ) -u.b (a ) = kb (b ) -2k. (b ) +k. (a ) =D (u.b) , 

we have v.b (b ) = I . Let ueD(N) satisfy u (a ) =0 and u(b ) I Then u = u-u (xo) eD(N; 

xb) and 

D (u, v.b) =D (u, u.b)/D (u.b) 

= [D (u', kb) -D (u',k.)]/D (u.b) 

[u (b ) -u'(a)]/D(u.b) 
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= 1/D (u.b) = D (v.b) 

by (K.1). Thus D (v.b) ~D(u) and v.b is the optimal solution for d(a, b ) 

By Lemma 2.4 and Theorem 2.5, we have 

THEOREM 2.6. For distinct three nodes xo, a and b 

~ (a, b ) =~ (xo, a ) +~ (xo, b ) -2k. (b ) . 

Smce k. (x ) ~0 by Lemma 2.4, we obtain 

THEOREM 2.7. Let a, b and c be three distinct nodes. Then the triangle inequality 

(2.1) holds. 

S 3. Extremum problems related to Green functions 

In this section, we always assume that N is ofhyperbolic type. Let a and b be two distinct 

nodes and consider the following extremum problem similar to Problem (2.2) : 

(3 . 1) Minimize D (u ) 

subject to ueDo(N) and u(b) -u(a ) =1. 

Denote by p (a, b ) the value of Problem (3.D. 

We have 

THEOREM 3.1. Let u"*b : =gb-9. and v"*b : =u"*b/D (u"*b) . Then v"*b is an optimal solution 

of Problem (3.D. 

PROoF. Clearly, v"*beDo (N) and D(v.*b) = 1/D(u"*b) . We have 

u"*b (b ) -u"*b (a ) =gb (b ) -_9g~ (b ) +g~ (a ) 

D (gb -9~) = D ( u"*b) 

by (G.D and the symmetry of ga (b) (cf. [6 ; Theorem 3.3]). Therefore v"*b is a feasible 

solution of Problem (3.1) . Let u be any feasible solution of Problem (3.1) . By (G.D , we have 

D(u, v"*b) = [D(u, gb) -D(u, g.)]/D(u"*b) 

= [u (b ) -u (a )]/D (u"*b) 

= 1/D (u"*b) = D (v"*b) ' 

By the relation : ID(u, v"*b)l~ [D (u )]l/2[D(v"*b)]l/2, we obtain D (v"*b)~D(u ). Thus 

p (a, b ) =D(v"*b) and v"*b is an optimal solution of Problem (3.1) 

Related to Problems (2.2) and (3.1) , we consider extremum problems on the sets of flows 

as in [5]. 
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Let a and b be distinct nodes. We say that weL ( Y) is a flow from a to b if it satisfies 

~y=YK(x,y)w(y ) =0 for xeX- {a, b }; (3 . 2) 

I (w ) : = - ~y=YK(a, y ) w ( y ) = ~y=YK(b, y ) w (y ) . (3.3) 

We call I(w) the strength of w 

Denote by F(a, b ) the set of all flows from a to b and by F2 (a, b ) the closure of 

F(a, b ) n Lo( Y) in the Hilbert space L2(Y; r) . 

Let us consider the following extremum problems 

Minimize H(w ) (3 .4) 

subject to weF2(a, b ) and I(w ) =1. 

(3.5) Minimize H(w ) 

subject to weF(a, b ) and I(w) =1. 

Denote by d~ (a, b ) and d*(a, b ) the values of Problems (3.4) and (3.5) respectively. 

We have by [5; Theorem 1l] 

LEMMA 3.2. d(a,b)d~(a,b)=1. 

We shall prove 

THEOREM 3.3. p (a, b )d* (a, b ) = I holds and i~ := -d (gb-g.) is an optimalsolution 

of P,'oblem (3.5) . 

PROOF. Let weF(a, b ) nL2( Y ; r) and ueDo(N) satisfy the conditions : I(w ) = 1 

and u(b )-u(a)=1. Then 

1 = u (b ) -u (a ) = ~.~xu (x ) ~y=YK(x, y ) w ( y ) 

= ~y=Yw ( y ) ~*=xK(x , y ) u (x ) 

~ [H(w )] 1/2 [D (u )] 1/2 

by the same reasoning as in the proof of [5; Theorem 5] . Therefore we have 

1 ~d* (a, b ) p(a, b ) . 

Since i~eF(a, b) and I(i~)=1, we have 

d* (a, b ) ~H(i~) =D(gb-9~) = p (a, b )-1. 

This completes the proof 

THEOREM 3.4. d(gb-9~)eF2(a, b) if and only if d*(a, b)=d~ (a, b) holds. 

PROOF. Note that d*(a, b ) ~d~ (a, b ) holds in general. The "only if" part is clear 

We prove the "if" part. There exists an optimal solution w~ of Problem (3 .4) . We see by [5 ; 
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Lemma 1 I] that there exists v*eD(N) such that wt = - d (gb -g~) and w~ -dv*. Let ~i := 

. = i~- w~ . Then we see easily that there exists h* eD (N ) such that w~= -dh*. Since I (i~) = 

I(w~) = 1, we have 

Ah (x) ~y~YK(x y)w~(y)=0, 

so that h*eHD(N):= {ueD(N); Au=0}. Since gb-9.eDo(N) we have by [6 Lemma 
1.3] 

 D(gb-g.,h*)=0, 

so that 

 = -H(w~) . Therefore 
d*(a,b) H(w) 
 

=H(wt) -H(w~) = d~ (a, b ) -H(w~) . 

If d* (a, b ) = d~ (a, b ) holds, then H(w~) =0, so that w~=0, or equivalently, iij= wt e F2 (a, 

b). 

S 4. Miscellaneous remarks 

Let us study some properties of the function defined by 

~p (x ) :=k.(x ) =~ (xo, x) for xeXo ; 

q) (xo) : = O. 

Let us introduce the following coefficients 

t(x a) ~y~Yr(y) IK(x y)K(a,y) for x~a, 

t(a, a ) =0, 

t(a ) : = ~y~Yr( y )~11K(a, y ) I . 

Then we have t(a) =~x=xt(x, a ), t(x, a ) =t(a, x) and 

Au (a ) = - t(a ) u (a ) + ~x~xt(x , a )u (x ) . (4 . 1) 

THEOREM 4.1. The following relations hold : 

(4.2) Al~p(a ) =~.=xt(x, a )~ (x, a ) -2 for a~xo 

(4.3) A ~p (xo) = ~*=xt(x , xo) ~ (xo, x ) . 

PROOF. (4.3) follows from (4.1) and ~p (xb) =0. To prove (4 2) Iet aeX: 

2.4 and Theorem 2.6, for x~a 

(4.4) ~o (x ) = ~ (a, x ) - ka (a ) +2ka (x ) . 

By Lemma 
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We have by (4.1) and (4.4) 

A~o (a ) = -2t(a )k (a ) +~.~xt(x, a )~ (a, x) 

+ ~x~xt(x , a ) 2ka (x ) 

= ~x=xt(x , a.) A (a, x ) +2Aka (a ) 

= ~x~xt(x, a )) (a, x ) -2. 

This completes the proof 

In the case where N is the 2-dimensional lattice domain with r= I , it is well-known as in [3] 

that ~ (x , a ) = 1/2 if x is a neighboring node of a. Since t (x , a ) = I if x is a neighboring node 

of a, we see that 

~.=xt(x, a )) (x, a ) =2. 

Flanders [3] called ep (x) the fundamental solution 

[1] 
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