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This is a continuation of the paper “CN-band which are semigroup almalgamation bases”. In that paper,
we found necessary conditions for CN-bands to have the represenatation extension propery. In this paper,
we prove that a finite CN-band S has the representation extension property if S satisfies all of those
necessary conditions.

§ 1. Introduction and the main theorem

T. E. Hall [4] originally studied the representation extension property (REP ) of
semigroups in connection with semigroup amalgamations. Since then, several authors ([ 1],
[21, [51, [61, [71, [8]) have studied the properties (REP) of specific semigroups
(inverse semigroups, primitive regular semigroups, commutative semigroups and so on).
Among them, S. Bulman-Fleming and K. McDowell [ 2] determined the structure of normal
bands with (REP). In the previous paper, we introduction CN-bands whose class is slightly
larger than one of normal bands and investigated the property (REP) and its dual (REP )°"
of them. Consequently, we found the five necessary conditions (C.1) through (C.5) for CN-
bands to have (REP ) and proved that any finite CN-band S has (REP) if S satisfies the five
conditions (C.1) through (C.5) and an additional condition (C.0). The purpose of the present
paper is to prove that

THE MAIN THEOREM. Let S be a finite CN-band.

Then S has (REP) if and only if S satisfies the following conditions (C.1) through (C.5) :
(C.I) If a>B, and Mul (Sa, Sg) is normal, then there exists €S such that

ru=ur=a for all uES, and a< Sz with u>a.

(C.2) Ifa>B(a,BEA), S, contains distinct u, v with uRv, Sg contains distinct a, b with
a®b and Mul (S, Ss) is commutative, then there exists Y€ A such that a>7>p and Mul (S,
Sg) is commutative. *

(C.3) For any distinct uy, s, ***, 4 (n=>2), a€S such that uRu; (1<i,j<n), u,>a,
there exists Y€ S such that ru,=ru; (1<i<n), but ru,*ra.

(C.4) For any pair of disjoint subsets Ay, A, from an R-class of S such that |A;| 22 or |A;| =
2, then there exists TES such that |vA)|=|rAz|=1, but vA:#7A,.

(C.5) For any distinct a, b, cE S with aRb¥c, there exists rE S such that vb, rcE Sa, but rb

%) This is a corrected form of the statement of [8, condition (C.2)].
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Frc.

Our proof of the main theorem is obtained by improving the proof of [8, Theorem 2].

§ 2. Definitions and preliminary results.

Throughout this paper, let S denote a semigroup and S* the semigroup with adjoined
identity 1 if S do not have identity. We will use the notations and conventions from Clifford &
Preston’s book [ 3 ] for semigroup theory. Let S-Ens (Ens-S, S-Ens-S) denote the category
of all left S-sets (right S-sets, S-bisets). Let X€ Ens-S, Y€ S-Ens. The tensor product over S
of X and Yis denoted by X®sY (simply, X ® Y if there is no confusion). Also, any element of
X®Y is written in a form x®y(xEX,yE€Y). For brevity, XOYV (X, YES-Ens(Ens-S,
S-Ens-S)) means that Y is a left S-(right S-, S-bi) subset of X.

ReEsULT1 ([2, Lemma 1.2]). Let A€ Ens-S, BES-Ens. Then a®b=a’'®b in A®B if
and only if there exists a, ***, a,€A, by, ***, b,EB, 81, ***, Sy and t, ***, t,€S' such that

a= as, $10=tb,
a1k = a3S2, S22 = t2bs
(1.1 : :
An-1bp—1= AnSn, Spbn = tab’
aitn=a’ :

Theri we call the system of equations (1.1) a scheme of length n over A and B joining (a, b) to
(a,0).

DEFINITION ([1] [4] [5]1). We say that a semigroup S has the representation
extension property (REP) if for every emedding S — T of semigroups and every right S-set
X, the canonical map : X — X ®T" isinjective. The left-right dual of (REP) is denoted by
(REP)°*,

RESULT 2 '( [7, Theorem 2.11). A monoid (semigroup) S has (REP) if and only if for
each ME S-Ens with M S (S") and each XE Ens-S, themap : X — X®OM (x — x®1) is
injective.

DEFINITION ([8]). Let S be a band and U{S, : a € A} the semilattice
decomposition of S. Then S is called a CN-band if for each a, BE A with o>, there are only
the following two types of multiplication between S, and S, :

I. (Commutative type) ua=au for all €S, and a<S;.
[[. (Normal type) |#Ssu|=1 for all #<S,.

Hereafter we will describe that Mul(Se, Sg) is commutative [ressp. normall if there happens
multipication of type I [resp. 1.
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§ 3. The proof of the main theorem.

Throughout this section, we let S be a finite CN-band and S=U {S;| 1€ A} the
semilattice decomposition of S.
Before proceed to prove the main theorem, we whall give preliminary lemmas.

LEMMA 1. Let S be a finite CN-band satisfying (C.2). Then S satisfies the following
condition :

(C.2.1) Ifa>p, Sqis not an $-class, S is not an R-class, and Mul (S, Sg) is commutative,
then there exists YEA such that a>1>p, |S|=1, Mul(S,, S,) is normal and Mul(S,, Ss) is
commutative.

PROOF. Since S is a finite CN-band, (C.2.1) follows immediately from (C.2).
REMARK. The condition (C.2.1) is a slightly generalization of [8, Condition (C.2)].
The following lemma was proved in [8].

LEMMA 2. Let S be as above and a, u€ S with $,> $,. Let XE Ens-S, YES-Eus, x, x’
€X, y, y'EY.

Then (1) zu=z'v (vE$,) implies Tuau=x"vav.
(ii) wy=vy’ (vE€4,) implies uauy=vavy’.

LEMMA 3. Let S be as above. Given x®y=x' ®y’ in X ®sY. There exists a scheme over
X and Y joining (z,y) to (x',y’) as follows :

T, =, T €EX, Yo, v, Y, 51, o, Sy and b, >, L, E S such that
=I5, S19 =ty
L1ty = X282, S2Yf2 = toYfs
2.1
Zn-atn1 = LnSpr Sntfn = twy’
Xutn=x'
and

S12g h2g o 25 525 <8<y n<yg <5 8, <45 Iy
(07" 312}5 t12; A 2}5 S,‘S}S t,S; Si+l$} ti_HS; b S} Snsg tn)
In this case, we say that shceme (2.1) is V-formed.

PROOF. As shown in the proof of [8, Lemma 8], we can assume that any adjacent two
elements of sequence sy, £, ***, Su, f, are comparable w.r. t. <. We deal next with the
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following cases :

Case 1 : 5;<y t; § = F tio Fs5>4 1

Set
tr = tiSite, Sk+1= Sk+1SiSk+1/
t]’(,= tktjtk', Sl,c,+1 = Sk+ltjsk+l
tF= teSisitity, S;ck+l = Sp418iSitiSk+1 (< k<j— 1.

Then by Lemma 2 we have

Zit] = Ziy1Si41, Silier = tisrlive
/ — — o— —
Zj—1tj1 = 58], sy = (sisiys = sisitisiyi) =57y
* — * * —
Ti8; = Zj-alic, Hay; = sy
- % —
Ziy2Sive = Ziv1lit1, Halive = SHlin

xi+13t’ﬁ-1 = xitf.
Here we shall show
2.2) Y= Yin.

Proof of (2.2):
Subcase 1.1 : Mul(F,, #s.) is normal. Then #; (sisit)t;=1;(t;s)t. In this case

ti*yi+1=titisitiyi+l=tititiyi+1=tz{,yi+1-
Subcase 1.2 : Mul($,, $s,,) is commutative and fs,=Rsy,. Then
Hyim=tisisitit i = (Lisisity) (Lsit) Y =1 (4itisi) Ly = tititiYin =Y.

Subcase 1.3 : Mul($,,, $s.) is commutative and Fs,# Rsy,. If S, = &, then it follows from
(2.1) that teSiti=tilfir1, SkarSithi=Simesr (G+1 <k<j—1). Hence siyi="tiyir1= tiyfi=tilifj+1.
So we get

Y= (Lisisitit) i = (t:sisity) (i) = (tisisity) (Litisdyi= (t:s) (s)yi=siyi
=t = (tity) (tiyis)) =1Yin2

so we can assume that £, #£t, By (C.2.1) there exists 1€ A such that S$:8,C Sz, Spis an ¥-
class and Mul(S;, $5.,) is commutative. Let ¢E€ S; be fixed. Since S;=%., we have c=cu=cv
for all #, vEJ,,. So it follows from (2.1) that
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C8iYfi= CtilYfis1 =" = Cliy;=ctYjn1, saYy, 2.

Consequently, z=ctiz=cs;z=cl;z. Let e=csict;€ ¥5,,. Then by the above, z=ez. Now we
can show that z=dz for all d€ {s;, t,s;,t;}. For, since de€ $,,, and Mul (S;, £s,,) is
commutative, by [8, Lemma 1 (i)], we get cde=de, so that z=ez=cdez=dez=dz.
Eventually

Y= (Lisisitit) yinn = ((Giditiss) € ) by = (Bisisit) 2=2
and
Y= (titjti) (tiyi+l) = (tititi) (tisit) i = ((ttitdc) (tiyi+l) = (Littis)z=z

so that {fy;.1=tyir1. In all the cases (Y1 =1Yir1.
Furthermore by Lemma 2, we have

Y/ — ” ” pu—
Zit] = Ziy1Sit1, Sirlin1 = bir1live

Tj-1lf = 2557, s7Y; (=siy3) = Ly
Thus we obtain the required scheme.

Case 2 : t,'<uw Si+1 J o d tj—] K Sj>j tj.

Set
St+1= Sk+1liSk+1, b1 = teatitien
Ska1 = Sk+18iSk41, terr = benatiten
S,’fﬂ = Sk+1LiSiliSk+1, t;ck+1 = tatiSititen (iS ij— 1)

Then by Lemma 2 we have

Liti = Zis1Si+1, Sivlier = tinlive
— — p— — ok
Zj1tj-1 = X35, sy = (sjs;y; = sisitisiyy) = Si'y;
— — ok
Zis =zt iy = iy
— _— ok
ZivaSEe = Zinitia, ol = SHalin.
Here we shall show
2.3) Zin1ST=Zir18i

Proof of (2.3):



24 Kunitaka SHOJI

Subcase 1.1 : Mul($s,.,, £ss) is normal. Then Sic (¢:8;8) Siv1=Si41 (£t 5:41 and so
Zir18E1=Lis18i0 (45587 Si01= i (SiaatitiSiv) = Tia1 (SinrdiSian) =Tis1Si4a.

Subcase 1.2 : Mul ($s,.,, #s4,) is commutative. Then s;t;f;s; = i;ti. Hence st =
(tiSjtj) (t,'S,‘tj) =ti (t,'ti) tj=t|'tj. Thus

k — — —
Zi+18i+1= Ti+1 (3i+1tisjtjsi+l) =Ziv1 (SirrtitiSivr) =Zin (si+1tjsi+1) =Zi4157+1-

In all the cases, (2.3) holds.
By Lemma 2, we have

T/ g— " " Y/
Zit{ = Lir1Si41, Sivilie1 = Er1live

T8 = ;8] s{y; (=si95) = L.

Thus we obtain the required scheme.

Case 3:5;<yt; 9 <+ 9 1j_,> s;. By reversive ordering the equations (2.1), we reduce the
case to Case 2.

Case 4: <y Siy1 J =+ F t;-1> 5 s;. Again, this case is essentially the same as case 1. The
proof of the lemma is complete.

We are now in a position to prove the main theorem.

The proof of the main thorem : Assume that S satisfies the following conditions (C.1),
(C.2),(C.3), (C.4), (C.5). We shall show that Shas (REP.). Let Wbe aleft S-set containing
S as a S-subset. Assume that x®1=x'®1 in X®W. By lemma 3, there exists a V-formed
scheme joining (z,1) to (x’,1) ; that is, there exist 1, ***, LT €X, 92, ***, I EW, 51, ***, 5, and
ty, ***, t,€S? such that

X = 81, $1 =ty
Ity = X3Sz, S2Yfe = b3
2.4
Zn-1tn-1= TuSn, o
Zuln =2’

Then we may assume that scheme (2.4) is a V-formed one of the shortest length. Moreover we
may assume that

(2.5) the number of the $-classes which contain any one of s;, #; appearing in (2.4) is the
least.

Now we proceed to prove that t=x'. Suppose first that all s; ’s, #; ’s belong to an J-class, say,
J. Then we can assume
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(26) Si % t,‘ (lézén—l), Sn 92 tn.

For, it is clear that s;R%. If s;Rt; (1<i<k—1), but s; &t then ses:Rsit; 1 <i<k—1). 5, %
tesk. By (C.4), there exists @€ S such that as,s;=as;ti=as;Se=asytz=+*"=as;Sx-1=asitr1=
asisy# atysi. By (2.4), we have asis1=atsy, which is a contradiction. This proves that s;R¢; (1
<i<n—1), s,Rt. Then by virtue of (2.6), we get from (2.4)

IS=XS=XoS=r"=x,_1S=x,s for all s€].
Hence
=28 =2’ ti=2'sim (1<i<n—1).

Let A={s), t, ***, ss, ts} and p an equivalence on A generated by {(t;, siv1) | 1<i<n—1}. If
$10ty, then it follows from the above that xs;=xt,, so that =xs,=zf,=x’t,=z’. So we can
assume that (si, ) . Let A; be the p-class containing s; and A,=A—A;. If Ai= {s1}, A,=
{#.}, then t;=5,1(1<i<n—1), and by 2.4), si=typ=Sp="" byl =Sun=1s, a
contradiction. Hence we have |4,/ =2 or |4;| =2. By (C.4) there exists € S such that |t4;|=
|t4z]=1 but tA,# tA,. Note that |tA||=|tA:|=1 implies that #;=tsis (1<i<n—1). So we
obtain is;=thye=1Ilssyf2="**=tts—1yn=1ISnty»=1t,. This is a contradiction.

Suppose next that all s; ’s, ¢; ’s do not belong to a $-class. Since (2.4) is V-formed, we can
assume that s,%t,. So there happens following two cases :

Casel:s1 It J -+ F sp_1 F tp_1>5 s;. By the same way as in the proof of (2.6), we can

prove that

S1 % t1 g) o % Sp—1 % tﬂ_l.

By multiplying the right side of (2.4) by s; from the left, we get =x;,5,51, so that x=
x1(518581). Set

S],¢=Sk8psk, t;ztkSptk (].skgp_].).
By applying Lemma 3 to (2.4), we obtain
X = I:51, si=1ty»

Ii = LS5, S3Y2 = t3ys

Sh-1Yp-1= LpYp
x,,_lt,’,_l = XpSp.
Then we can reduce the number of the S-classes S5, #,.
By assumption (2.5), we are done.

Case 2 : s S h S Sp—1 S tp-1 S Sp>j tp.
Set
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Sp==SlpSk, 2k=tktptk (1 Skﬁp ).

By applying Lemma 3 to the right side of (2.4), we obtain

2.7

si=sihiYe, S1Sa2=SilalYs, ***, S1$pYp=S15pY»
and

Sitp1p =S$18p-1Yp-1, ***, Sif1Y2=31.

Now by (C.3), there exists bES such that

b51$j=b31tj=b313p (]. S]Sﬁ), but bs; ¥ bs;.

Then from (2.7) we get

b31 (= b31t2y3= cee= bslspyp) = b81§pyp.

In particular, bs.#bs:.
Here we divide argument into two parts :

Subcase 1 : Mul(Js,, $5s,) is normal. Then bs;=bs1bs1=bsy (bsy) s1=Dbs1 (31bs,) $1= b$105

=b5;, a contradiction.

Subcase 2 : Mul(5s,, $5s,) is commutative. Then we get bt,=bt,u="b(utyu ) for all u€ Js,,

since but,= (buty)?="0b (ut,bu )t,=0b(t,b)1,=bt,. Especially, we have b3;= bt (1<j<p).
Whence it follows from (2.7) that bs,= by, = bt ,,yp+1=b§p_1yp_1="'=bi‘1y2=b§1, which is a
contradiction, again. The proof of the theorem is complete.

In a sequent paper, we will study the problem “Is a CN-band with (REP ) and (REP)" a
semigroup amalgamation base?”.
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