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This is a continuation of the paper "CN-band which are semigroup almalgamation bases" . In that paper, 

we found necessary conditions for CN-bands to have the represenatation extension propery. In this paper, 

we prove that a finite CN-band S has the representation extension property if S satisfies all of those 

necessary conditions 

S 1. Introdnction and the main theorem 

T. E . Hall [ 4 1 originally studied the representation extension property (REP ) of 

semigroups in connection with semigroup amalgamations . Since then , several authors ( [ I I , 

[ 2 1 , [ 5 1 , [ 6 1 , [ 7 1 , [ 8 1 ) have studied the properties ( REP ) of specific semigroups 

(inverse semigroups, primitive regular semigroups, commutative semigroups and so on) 

Among them, S . Bulman-Fleming and K. McDowell [ 2 1 determined the structure of normal 

bands with ( REP ) . In the previous paper, we introduction CN-bands whose class is slightly 

larger than one of normal bands and investigated the property ( REP ) and its dual ( REP ) op 

of them. Consequently, we found the five necessary conditions ( C.1) through ( C.5) for CN-

bands to have (REP ) and proved that any finite CN-band S has ( REP ) if S satisfies the five 

conditions ( C. 1) through ( C .5) and an additional condition ( C.O) . The purpose of the present 

paper is to prove that 

THE MAIN THEOREM. Let S be a finite CN-band 

Then S has (REP ) if and only if S satisfies the following conditions ( C.1) through ( C.5) ! 

( C.1) If a>~, and Mul (S*, SB) is normal, then there exists re S such that 

ru=ur=a for all ueS* and aeSB with u>a. 

( C.2) If a>~(a, ~eA ). S* contains distinct u, v with ug~v. SB contains distinct a, b with 

a~~b and Mul ( S*, SB) is commutative, then there exists TeA such that a>T>~ and Mul ( S7' 

SB) is commutative. *) 

(C.3) For any distinct ul' u2, "', u^(n~:2), aeS such that uig:;uj (1~i,j~n), u~>a, 

there exists TeS such that rul=rui (1~i~n), but ru.~ra. 
( C. 4) For any pair of disjoint subsets A1' A2 from an ~:;-class of S such that IAll ~ 2 or IA21 ~ 

2, then there exists TeS such that lrAll=1rA21=1, but rA1~rA2. 

( C.5) For any distinct a, b, c e S with a~!;b~~c, there exists re S such that rb, rce Sa, but rb 

* ) This is a corrected form of the statement of [8, condition ( C.2) l 
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~ rc. 

Our proof of the main theorem is obtained by improving the proof of [8, Theorem 2] 

S 2. Defunitions and prelimjnary results 

Throughout this paper, Iet S denote a semigroup and S I the semigroup with adj oined 

identity I if S do not have identity. We will use the notations and conventions from Clifford & 

Preston's book [ 3 1 for semigroup theory. Let S-Ens (Ens-S, S-Ens-S ) denote the category 

of all left S-sets (right S-sets, S-bisets) . Let XeEns-S, Ye S-Ens. The tensor product over S 

of X and Y is denoted by X e s Y (simply, X ~ Y if there is no confusion) . Also , any element of 

XR Y is written in a form x~)y(xeX, ye Y). For brevity, X:) Y (X, Ye S-Ens (Ens-S, 

S-Ens-S)) means that Y is a left S- (right S-, S-bi) subset of X 

RESULT I ( [2, Lemma 1.2]) . LetAeEns-S, BeS-Ens. Then aeb=a' Rb' inA~)B if 

"" ~ ' 2, "', . , l' "" s^ and tl' "" tneSl such that a eA b and only if there exists al' b eB s 

a = alsl' slb = tlb2 
altl = a2s2, s2b2 = t2b3 

(1 . 1) 

a~_It^-1 = a.s., s*b. = t~b' 
a~t~ = a' 

Thert we call the system of equations (1.1) a scheme of length n over A and B joining (a, b ) to 

(a', b') . 

DEFINITION ( [ I I [ 4 1 [ 5 1 ) . We say that a semigroup S has the representation 

extension property (REP ) if for every emedding S -> T of semigroups and every right S-set 

X, the canonical map : X - X R Tl is injective. The left-right dual of (REP ) is denoted by 

(REP ) op 

RESULT 2 ( [7, Theorem 2.1]). A monoid (semigroup) S has (REP ) if and only iffor 

each Me S-Ens with M:) S(S1) and each XeEns-S, the map : X -> XRM (x -> x~) 1) is 

in jective . 

DEFINITION ([8]). Let S be a band and U {Sa : a e A } the semilattice 
decomposition of S. Then S is called a CN-band if for each a, ~ e A with oi> p, there are only 

the following two types of multiplication between Sa and Sb 

I . (Commutative type) ua=au for all ueSa and aeSp 

II . (Normal type) IuSpul=1 for all u e Sa 

Hereafter we will describe that Mul(Sa, SB) is commutative [ressp. norman if there happens 

multipication of type I [resp . II I . 
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S 3. The proof of the main theorem. 

Throughout this section, we let S be a finite CN-band and S = U { S1 ~ e A } the 

semilattice decomposition of S 

Before proceed to prove the main theorem, we whall give preliminary lemmas 

LEMMA I . Let S be a finite CN-band satisfying ( C.2) . Then S sati'sfies the following 

cond ition 

( C.2.1) If a> ~, Sa is not an ~e-class, SB is not an ~~-class, and Mul( Sa' SB) is commutative, 

then there exists TeA such that c~>T>~, ISrl = 1. Mul(Sa, Sr) is normal and Mul(Sr' SB) is 

commutative. 

PROOF. Since S is a finite CN-band, ( C.2.1) follows immediately from ( C.2) 

REMARK. The condition ( C.2.1) is a slightly generalization of [8, Condition ( C.2) '] 

The following lemma was proved in [ 8 l 

LEMMA 2. Let S be as above and a, ueS with ~u>~a' Let XeEns-S, Ye S-Ens, x, x' 

eX, y, y'eY. 

Then ( i ) xu=x'v (ve~u) implies xuau=x'vav 

( ii ) uy=vy' (ve~u) implies nauy=vavy' 

LEMMA 3. Let S be as above. Given xRy=x' Ry' in XR Y There exlsts a scheme over 

X and Y joining (x, y ) to (x', y') as follows : 

, ' yneY, sl' "" "" t~eS1 such that xl' "" xneX, y2 ", s and tl' 

x = xlsl' sly = t2y2 

xltl = x2s2, s2y2 = t2y3 

(2 . 1) 

xn-Itn-1 = xnsn' snyn = tny' 

x^t^ = x' 

and 

sl>fi tl>fi "' ~~fl i-s >~ tt - '+1-fl "' 

(or sl~fl tl~~ "' ->fl si~fi tt

In this case, we say that shceme (2.1) is V-formed. 

PROOF. As shown in the proof of [8, Lemma 8] , we can assume that any adjacent two 

elements of sequence sl' tl' "" s., tn are comparable w.r. t.~fi' We deal next with the 
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following cases 

Case I : Si

~ tj. Set 

t~ = tkSitk, Sk+1 = sk+1SiSk+1' 

t" = tktjtk., 'l Sk+1 = sk+1t/Sk+1 

t~ = tkSiSjtjtk, * k+1 Sk+1SiSjtjS ( i ~ k ~ j- 1) . Sk+1 = 

Then by Lemma 2 we have 

xitf==X' S' St+1yi+1 = ti+1yi+2 l+1 i+1' 

Xj_Itj-1 = xjSj, sj(yj = (S;Sjyj = sjSjtlSlyj) Sf*yJ 

XjSj~ = xj-Itf~ l, tj* Iyj = sj~ Iyj-1 

Xi+2st~+2 = xi+1tt*+1' ti*+1yi+2 = si*+1yi+1 

l* Xt+1St*+1 = xibi . 

Here we shall show 

(2 . 2) tt yi+1 = t;fyt+1 
Proof of (2.2) : 

Subcase 1.1 : Mul(~ti, ~ ) is nOrmal. Then ti (SiSjtj)ti=ti (tjSi)ti. In this case sit j 

tt yi+1 = titjSiti yi+1 = titjti yi+1 = tl('yi+1 ' 

SubcaSe I .2 : Mul(flti, ~sitj) is cOmmutative and ~sttj=~~sitr Then 

t~yi+1 = tiSiSjtjtiyi+1 = ( tiSiSjtj) ( tiSiti) yi+1 = ti (tjtiSi) ti yi+1 = titjtiyi+1 = tt('yi+1' 

Subcase I .3 : Mul( ~ti, ~s/j) iS commutative and ~sitj ~ ~~sitj' If J~ti = ~?i, then it fOllows from 

(2.1) that tkSiyi=tkyk+1, Sk+1Siyi =si+1yk+1 (i+ I ~;k~j- 1) . Hence siyi=tiyi+1=tiyi=titjyj+1 

SO We get 

t~yi+1 = (tlStSltjt ) yt+1 (ttStSjt ) (Styt) (ttStSjt ) (t tlSt) y (ttSl) (S ) y styt 

= tiyi+1 = (tttj) (ttyt+1) t'/yt+1 

SO We can assume that ~ti~~'ti. By (C.2.1) there existS ~ eA such that SAJ~tiCS1, S1 is an ~'-

class and Mul(S ~ ) is commutative. Let CeSA be fixed. Since S1=~'c' we have c=cu=cv )' slj 
for all u, VeJ~ti' So it fOllows from (2.1) that 
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CSiyi=ctiyi+1="'=ctjyj=ctjyj+1' say, Z. 

COnsequently, Z:= ctiZ= csjz= ctjZ. Let e= csiCtj e ~sftj. Then by the abOve, z= ez. Now we 

can ShoW that Z = dz for all de {si, t･ S' t･} For since de e flSitj and Mul(S/'~sit') iS 

COmmutative, by [8, Lemma I ( I ) I we get Cde de sO that Z ez cdez dez dz 

Eventually 

tt~yi+1=: (ttStSjtjtt)yt+1 ( (tttfttSt)C)tyt+1 (ttStSlt)Z Z 

an d 

ti/yi+1= (tlt!tt) (tlyl+1) (tttJtt) (ttSltt)yl+1 ( (tttjtt)C ) (tlyl+1) (tttjttSl)Z Z 

SO that tt~yi+1=tt(/yi+1' In all the caSeS ti*yi+1=ti/yi+1 

FurthcnnOre by Lemma 2 , we have 

Si+1yi+1 := ti/+1yt+2 Xiti/=x. S(f l! t+1 t+1' 

X, Itj(! I = xjSj, S!(/yj(=sfyJ) tjyj+1 ll 

Thus we obtain the required scheme 

Case 2 : ti

J; tj' Set 

Sk+1 Sk+1tiSk+1' t~+1 ::: tk+1tttk+1 

Sk+1 = sk+1tfSk+1' tk+1 ~ ' ' ! ~ bk+1bjbk+1 

*
 Sk*+1 = sk+1tiSjtjSk+1' k+1 k+1 (i~k~j- 1) - I*.I t

 
t
 ~ k+1ei*jejt 

Then by Lemma 2 we have 

Xiti = xi+1S~+1' S +1yi+1 := ti+1yi+2 

Xj-Itj-1 = xISJ, SJ(yj := (SjSjyj := Sj(SjtjSjyj) = sl~yj 

XjS!~:=Xj_Itl~ 1. tf~-1yj=sj*-1y l 

Xt+2St*+2 ~ " !* tt~+1yj+2 =: St~+1yi+1' ~ -i+1ti+1' 

Here We Shall shOW 

(2 . 3) Xl +1Si*+1 = xi+1Si+ l 
fl 

ProOf of (2.3) : 
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SubcaSe 1.1 : Mul(~si.1' ~sitj) IS normal Then si+1(tiSjtj)Si+1=si+1(tjti)Si+1 and sO 

Xi+1Si*+1 = xi+1Si+1 ( tiSjtj) Si+1 = xi+1 ( Si+1titjSi+1) =xi+1 (Si+1tjSi+1) =xi+1St('+1' 

Subcase 1.2 : Mul (~si.1'~sitj ) iS COlnmutatiVe. Then sjtjtiSj = tjti. Hence tiSjtj = 

( tiSjtj) (tiSjtj) = ti ( tjti) tj = titj' Thus 

Xi+1St~+1 = xi+1 (Si+1tiSjtjSi+1 ' ) =xt+1 ( Si+1tltjSt+1) Xl+1 (St+1tJSt+1) Xt+1St('+1 

In all the caseS, (2.3) holds 

By Lemma 2, We haVe 

Xitt(/ = xi+1St('+1' " Si+1yi+1 = tt('+1yt+2 

xj-Itj('-1 = xjs/(" sJ('yj (= sjyj) = tjyj+1' 

Thus we obtain the required scheme 
Case 3 : si

J~ sj. By reversive ordering the equations (2.1) , we reduce the case to Case 2. 

Case 4 : ti 

J~ sj. Again, this case is essentially the same as case 1. The proof of the lemma is complete 

We are now in a position to prove the main theorem 

The proof of the main thorem : Assume that S satisfies the following conditions ( C.1) , 

( C.2) , ( C.3) , ( C.4) , ( C.5) . We shall show that S has (REP.) . Let Wbe a left S-set containing 

S as a S-subset. Assume that x R I =x' R I in X R W. By lemma 3, there exists a V-formed 

scheme joining (x,1) to (x',1) ; that is, there exist xl' "" xneX, y2, "', y~e W, sl' "" sn and 

tl' "" tneS1 such that 

x = xlsl' sl = tly2 

xltl = x2s2, s2y2 = t2y3 

(2 . 4) 

xn-Itn-1 = x~s~, snyn = tn 

xntn = x 

Then we may assume that scheme (2.4) is a V-formed one of the shortest length. Moreover we 

may assume that 
(2.5) the number of the J~_classes which contain any one of si, ti appearing in (2.4) is the 

least. 

Now we proceed to prove that xix'. Suppose first that all si 's, ti 's belong to an ~-class, say, 

J. Then we can assume 
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(2.6) si ~!; ti (1~i~n-1), sn ~~ t.. 
For, it is clear that sl~!;tl' If si~~ti (1 ~ i~ k- 1) , but sk ~tk, then sksi~:;skti (1 ~ i~ k- 1) . sk~ 

tksk. By ( C.4) , there exists a e S such that asksl = asktl = asks2=askt2 = ' " = asksk-1 = asktk_1 = 

asksk ~ atksk. By (2.4) , we have asksl = atksk , which is a contradiction. This proves that si~j;ti (1 

~ i~n-1), sn~~tn' Then by virtue of (2.6) , we get from (2.4) 

xs=xls=x2s="'=xn-Is=xns for all seJ. 

Hence 

xt xs,+1 x t x si+1 (1~i~n-1). 

Let A= {sl' tl' "" sn' tn} and p an equivalence on A generated by { (ti, si+1) 1 1 ~ i~n- 1} . If 

slpt~, then it folloivs from the above that xsl=xtn, so that x=xsl=xt^=x't^=x'. So we can 

assume that (sl' t.) ~p. Let A1 be the p-class containing sl and A2=A-A1' If A1= {sl} ' A2= 

{tl} ' then ti=si+1 (1 ~i~n- 1), and by (2.4), sl=tly2=s2y2= "' = tn-1y.=snyn=tn, a 

contradiction. Hence we have IAll ~2 or IA21 ~ 2. By ( C.4) there exists te S such that I tAll ~ 

ItA21=1 but tA1~tA2. Note that ItAII=1tA21 = I implies that tti=tsi+1(1 ~i~n-1). So we 

obtain tsl = ttly2 = ts2y2 = " ' = ttn-1yn = tsnyn = ttn ' This is a contradiction 

Suppose next that all si 's, ti 's do not belong to a J~-class. Since (2.4) is V-formed, we can 

assume that sl ~tn' So there happens following two cases 

Case I : sl J~ tl J~ " ' J~ sp-1 J~: tp_1>Jt sp. By the same way as in the proof of (2.6) , we can 

prove that 

s ~!: t ~: ･･ ~!; sp_1 ~!; tp 1 

By multiplying the right side of (2.4) by sl from the left we get x x spsl' so that x 

xl (slspsl) ' Set 

s~=skspsk, t~=tksptk (1~k~p-1). 

By applying Lemma 3 to (2.4) , we obtain 

x = xlsl' si = tiy2 

xlti = x2s~, s~y2 = t~y3 

SL_lyp-1 =: tp/yp 

Then we can reduce 
By assumption (2.5) , 

Case 2 : sl J~ tl 

Set 

the 

we 
~
 

xp-Itp'-1 = xpsp. 

number of the 

are done. 

.. J~ sp_1 J~ tp 1 

J~ -classes flSf' ti ~. 

J~ sp>J; tp. 
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s sktpsk, tk=tktptk (1~k~p ). 

By applying Lemma 3 to the right side of (2 .4) , we obtain 

sl=sltly2, sls2y2=slt2y3, "', slspyp=sls~'pyp 

(2. 7) and 
sltp-1yp=sls'~p_lyp-1' "" sltly2=Sl' 

Now by (C.3) , there exists beS such that 

bslsl bslt bslsp (1

Then from (2.7) we get 

bsl ( = bslt2y3 = " ' = bslsp yp) = bslSp yp 

In particular, bslJ~ bS1 ' 

Here we divide argument into two parts 

Subcase I : Mul(~s*, J~bs*) is nounal. Then bsl=bslbsl=bsl (bsl)sl=bsl (Slbsl)sl=bs~1bS1 

= bS1 ' a contradiction . 

Subcase 2 : Mul (J~sl' J~bs,) is commutative. Then we get btp = btbu= b (utpu ) for all u e J~s,, 

since butp= (butp)2=b (utpbu )tp=b(tpb )tp = btp. Especially, we have bSj=b~j (1 ~j~p ) 

Whence it follows from (2.7) that bsl=bs~pyp = b;pyp+1=bs'~p_1yp-1= "' = btly2=bS1' which is a 

contradictton, again . The proof of the theorem is complete 

In a sequent paper, we will study the problem "Is a CN band wrth (REP ) and (REP ) op a 

semigroup amalgamation base?" 
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