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We show that any homogeneous left loop is characterized by the homogeneous system
associated with it. By applying this result to the theory of normal subsystems of analytic
homogeneous systems developed in [5], we show the fundamental theorems concerning normal
left Lie subloops of homogeneous left Lie loops, an exact generalization of the theory of Lie
groups and Lie algebras.

§1. Homogeneous left Lie loops and analytic homogeneous systems

In the following, we consider homogeneous left Lie loops on a connected
analytic manifold G (cf., e.g. [12]), where the underlying topology of G is assumed
to be second countable.

DerINITION 1.1. A homogeneous left Lie loop (G, u) is an analytic binary
operation : G x G — G on G with the two-sided identit}y element e e G satisfying ;
(1.1.1) Each left translation

L.:G—G; Ly:=pu(x,y), yegq,
is an analytic diffeomorphism of G.
(1.1.2) The inversion J: G— G;J(x)=x"! is an analytic difftomorphism of G,

where x !

:=L;'e for xeG.
(1.1.3) The left inverse property is provided for y, i.e.,
Lit=L,.
holds for each xeG.
(1.1.4) Each left inner mapping L, ,:= LA, L+ L, is an automorphism of (G, p).

ux,y

By the same way as Lemma 1.8 in [2], we can show the following;

ProrosiTiON 1.2.  The left inner mappings of a homogeneous left Lie loop satisfy
the following equalities:
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(1.2.1) Lo, =L, p-1,x-1
(12.2) L =Lyi

We know that a ternary operation #: G x G x G = G;
(1.3) n(x, y, 2):= Lu(L3 'y, L' 2)

is associated with each u (cf. [4]). In the following, we show that homogeneous
left Lie loops are characterized by the associated ternary operations. In fact, this
is a purely algebraic result:

THEOREM 1.3. Let (G, p) be an abstract homogeneous left loop on a set G with
the identity element e. Then the associated ternary operation n on G given by (1.3)
satisfies the relations

(1.4.1) nx, x, y)=y

(1.4.2) nx, y, x)=y

(1.4.3) nx, y, n(y, x, z)) = z

(1.4.4) n(x, y, n(u, v, ) = n(x, y, u), n(x, y, v), 7(x, y, w)).

In this case, the multiplication u is expressed by n as follows;

(1.5) p(x, ) = nle, x, y).

Conversely, assume that a given ternary operation n on a set G satisfies the
relations (1.4.1)«(1.4.4). Then, for any choice of the element e€ G, the multiplication
u defined by (1.5) gives a homogeneous left loop on G with the identity element e,
and the associated ternary operation given by (1.3) coincides with .

PrROOF. Assume that (G, p) is a homogeneous left loop, that is, the
multiplication u on a set G satisfies the relations (1.1.1)1.1.4) in which the word
‘analytic diffeomorphism’ is replaced by ‘bijection’. Then, by the definition (1.3)
of #, it is evident that the relations (1.4.1) and (1.4.2) are satisfied. By using
Proposition 1.2, we get
(1.6) n(x,y,2) =L, Ly -1, L'z

=L, L L'z

y-1,x " dix

and

n(x, y,n(y, x,z) =L, Ly-1 .- L., -Ly'z

]
w

B

which shows the relation (1.4.3). From (1.6) we obtain
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Li*n(x, y,v)=1L,-L,-1 - L0
and analogous one for w instead of v. These equalities imply
N, n(x, y, v), n(x, y, w)) = Ly - Ly-+ (L5 o, LM w)
=n(x, y, nx, v, w)).

By using the last equality repeatedly, we can show the relation (1.4.4). In fact, we
get

nx, y, n(u, v, w)) = n(x, y, n(x, u, n(u, x, n(u, v, w))))
=1y, n(x, y, w), n(x, y, nx, n(u, x, v), n(u, x, w))))
=1y, n(x, y, W), n(, n(x, y, n(, x, v)), n(x, y, n(w, x, w))))
=n(n(x, y, w), n(y, n(x, y, w), n(x, y, n(w, x, v))), n(y, n(x, y, w), n(x, y, nu, x, w))))
= n(n(x, y, w), n(x, y, n(x, u, nu, x, v))), n0x, y, nx, u, Ny, x, w))))
=n(n(x, y, u), n(x, y, v), n(x, y, w)).

Conversely, let # be a ternary operation on G satisfying the relations (1.4.1)}+(1.4.4).
For any fixed element e of G, define the multiplication u by (1.5). Then, it is easy
to show that u satisfies (1.1.1), (1.1.2) and (1.1.3) with the identity element e, where

1.7 x" 1 =19(x, e, e).

For any fixed u, v in G, denote by n(u, v) the mapping from G onto itself given
as follows:

(1.8) n(u, v)w:= n(u, v, w) for any weG.

Then, any left inner mapping L., can be expressed by these maps as follows;

(19) Lx,y = ﬂ(#(X, y)a e) : ’7(x5 :u'(x5 y)) ' n(ea x)

The relation (1.4.4) assures that any map #(x, y) is an automorphism of the ternary
system (G, n). Therefore, the left inner mapping L,, given by (1.9) is an
automorphism of (G, #) leaving the element e fixed, that is, L, , is an automorphism
of the multiplicative system (G, x). Thus we see that (G, p) forms a homogeneous
left loop. By (1.4.3) we see that

(1.10) nx, y)~ = n(y, x).
Hence we have
L.u(LT1y, Lt 2) = nle, x)nle, n(x, e, ), n(x, e, z))
=n(x, y, z),
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that is, the ternary operation associated with this homogeneous left loop (G, p) is
coincident with the given #. g.e.d.

DerFmviTION 1.4, A ternary operation 1 on a set G satisfying the relations
(1.4.1)«1.4.4) is called a homogeneous system on G. If (G, u) is a homogeneous left
loop, the homogeneous system 5 given by (1.3) is said to be associated with
(G, ). For a homogeneous system (G, y), the mapping #n(u, v): G- G given by
(1.8) is called the displacement of G from u to v. Indeed, the relations (1.4.2) and
(1.4.3) show that the displacement #(u, v) is a bijection of G onto itself sending u
to v, whose inverse map is #(v, u).

Again we assume that G is a connected analytic manifold. It is easy to show
that the multiplication p and the inversion J of a homogeneous left loop (G, u)
are analytic if and only if the associated homogeneous system » is analytic.
Therefore, Theorem 1.3 implies the following;

COROLLARY 1.5. Any homogeneous left Lie loop (G, u) on the manifold G is
characterized by the homogeneous system (G, n). associated with it. More precisely,
any analytic homogeneous system (G, n) on G with an arbitrarily fixed point eeG is
associated with one and only one homogeneous left Lie loop (G, u) whose identity
element is e. ' ’

COROLLARY 1.6. Let (G, p) be a homogeneous left Lie loop on G and n the
associated homogeneous system. Then, for any fixed ueG, there corresponds a
homogeneous left Lie loop (G, p,) with its identity element u, where p, is given by
(1.11) (X, y) = n(u, x, p).

Any two homogeneous left Lie loops p, and p, on G are isomorphic under the
displacement n(u, v) from u to v.

§2. Tangent Lie triple algebras of homogeneous left Lie loops

DeriNTION 2.1, (Cf. [2], [10], [11], [12]) For an analytic homogeneous
system (G, ), the canonical connection V is defined to be a linear connection on
G given by;

2.1) (Y)yi= X Y—n(x, X, Y)

for any C*-class vector fields X and Y on G. Here, X .Y denotes the tangent
vector at x given by
0Y!

X V=X
o’

0

i
. Ou

for X=Xii., Y = Yii.
x ou' out
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in any chart (u!, u?,...,u") around x, and

. ‘ o*n' 0
k
"(x, an YV)ZX:{CYV j@ X A
OV OW* | x,x) OU' |
for
n(u, v, w) = (i, u?,. 0t vt o2, 0 wh o w?wh), i=1n.

The canonical connection of a homogneous left Lie loop (G, ) is, by definition,
the canonical connection of the associated homogeneous system 7 of (G, p)
(cf. [5-17, [10]). The homogeneous left Lie loop (G, u) is said to be geodesic if the
multiplication g is coincident with the geodesic loop (cf. [1], Sabinin [15]) of V
in some neighborhood of the identity element e. Since each displacement of (G, 1)
is an affine transformation of V7, the geodesic loop at any point x in G is coincident
with the multiplication u, in some neighborhood of x. In fact, (G, u,) is a
homogeneous left Lie loop isomorphic to (G, u) under the displacement nle, x) = L,,
and the differential of a displacement #(x, y) induces the parallel displacement of
tangent vectors along the geodesic arc from x to y (if it exists). An analytic
homogeneous system (G, 1) is said to be geodesic if the induced homogeneous left
Lie loop u = u,, given by (1.5) (or (1.11)) for some element e of G (and hence for
each element), is geodesic.

Let (G, u) be a geodesic homogeneous left Lie loop with the canonical
connection V. The torsion tensor field S and the curvature tensor field R of V
give rise to a concept of algebraic structure on the tangent space to G at the
identity element e, called the tangent Lie triple algebra g = (gs, gg), Which is defined
as follows:

(2.2.1) gs; XY=S5,(X,7Y),
(22‘2) gR? [X’ K Z] = Re(Xa Y)Z9
for X, Y, Zeg = T,(G).

In terms of homogeneous system, we know the following (cf. [5-1], [5-V]): Let
D(n) denote the group of displacements of an analytic homogeneous system (G, #),
A, the isotropy subgroup of D(y) at the point e. They are subgroups of the affine
transformation group Aff () of the canonical connection V. By using (1.9), we
can show that the group A, is coincident with the left inner mapping group of
(G, n). Let K= A, be the closure of 4, in Aff(¥). Then K is a closed Lie

subgroup of Aff(F) and the semi-direct product 4 =G x K forms a Lie group
called the enveloping group of (G, ) by K (cf. [2], [9]). Then, G can be regarded
as the reductive homogeneous space A/K with the canonical connection V of 2nd
kind (cf. [14]), and we may call g = (gs, gz) above the tangent Lie triple algebra
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of (G, n) at e€G.
In fact, the following theorem is well-known (cf., e.g. [2], [11], [12]):

THEOREM 2.2.  The tangent Lie triple algebra g = (g5, gz) = {g; X Y, [X, ¥, Z]}
of any analytic homogeneous system (G, n) at any point e satisfies the following
axiom of Lie triple algebra ([2]) (general Lie triple system of K. Yamaguti [16]):

2.3.1) XY=—YX
(23.2) [X,Y,Z]=—[Y X, Z]

(23.3) Sxyz{[X, L Z1+(XY)Z} =0

(2.3.4) Gy z{[XY, Z, W]} =0

(2.3.5) [X, Y, UV]=[X, Y, U]V+ U[X, Y, V]

(2.3.6) [X, YU,V WIl=[[X, L, UL V,Wl+[UI[X, Y, V] W]

+ U, V[X, ¥, W]]

or any X, Y, Z, U, V, Weq, where & denotes the cyclic sum with respect to
) g X,Y,Z ] 4
X, Y Z '

TueOREM 2.3. Let (G, p) and (G, [i) be geodesic homogeneous left Lie loops
with the tangent ‘Lie triple algebras g and §, respectively. Let ¢: G — G be an
analytic homomorphism of (G, y) into (G, fi). Then the differential map d¢ of ¢
at the identity element e of G induces a homomorphism of the tangent Lie triple
algebra g into the tangent Lie triple algebra §. If G is simply connected, then every
homomorphism of g into § is the differential map of one and only one analytic
homomorphism of (G, p) into ((~}, ).

Proor. Let # and 7 be the associated homogeneous systems of (G, u) and
(G, fi), respectively. Then the first half of the theorem follows from Theorem 2
in [5-IIT]. The remainning part is shown as follows: Let ®:g—§ be a
homomorphism of the tangent Lie triple algebras. Since the torsions and curvatures
of both of the canonical connections are parallel tensor fields, there exists an analytic
local affine transformation ¢: U — U of the canonical connections ¥ and ¥ such
that d¢ = @ (cf. e.g. Theorem 7.4, Ch. VI in [13]), where U (resp. U) is a
neighborhood of the identity element e (resp. é). Since the homogeneous left Lie
loops G and G are assumed to be geodesic, ¢ induces a local homomorphism of
the geodesic loops at the respective identity elements e and ¢, i.e.;

(24) ou(x, y) = [i(dx, ¢y).

The domain of the local affine transformation ¢ can be uniquely extended on G,
for G is simply connected (cf. Theorem 6.1 Ch. VI in [13]). As the maps ¢: G — G,
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u and [ are analytic and G x G is connected, (2.4) holds on whole of G x G. Thus
the proof is completed. g.e.d.

DEFINITION 2.4. An analytic homogeneous system (G, #) is said to be regular if
it is geodesic and the Lie group K = A, is coincident with the holonomy group

¥, of the canonical connection V at the origin e. A homogeneous left Lie loop
(G, u) is regular if the associated homogeneous system is regular (cf. [5-11).

In the following we consider regular (hence geodesic) homogeneous left Lie
loops.

RemMARK 2.5. Let G = (G, p) be a connected Lie group. Then the canonical
connection is reduced to the (—)-connection of E. Cartan, which is geodesic and
regular. In this case, the tangent Lie triple algebra g is reduced to the Lie algebra
a=1{g; XY=[X, Y],[X, Y, Z]=0} of G.

§3. Normal left Lie subloops and quotient homogeneous left Lie loops

In this section, terminology and notations are refered to the series of papers
[4] and [5-I]-[5-V]. In these articles, we have investigated various remarkable
properties of analytic homogeneous systems, especially of their normal subsystems.
By applying Theorem 1.3 to the results obtained there, we can present some basic
results concerning normal left Lie subloops of homogeneous left Lie loops, which
are exact generalization of the fundamental theory of Lie subgroups and
corresponding Lie subalgebras. Related results have been obtained in [3] for
homogeneous Lie loops.

Let G be a connected second countable analytic manifold and » an analytic
homogeneous system on G.

DeriniTION 3.1, A subsystem H = (H, ng) of (G, n) is a submanifold H of G
which is an algebraic bubsystem of (G, #), where 1y denotes the restriction of # to
H. For any element x of G, denote by xH the subset n(H, x, H) = {5(u, x, v);
u,veH}. A subsystem H is said to be invariant if;

(3.1) n(x, y)xH = yH
for any x, yin G. A subsystem H is said to be normal if it satisfies the following;
(3.2) n(xH, yH, zH) = n(x, y, 2)H

for any x,y,z in G. Assume that (G, p) is a homogeneous left Lie loop and 7
the associated homogeneous system. By Theorem 1.3, any subsystem H = (H, 1)
containing the identity element e induces a homogeneous left Lie loop (H, uy) on
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H, where py is just equal to the restriction of u to the submanifold H. We call
(H, ugy) a left Lie subloop of (G, p). In particular, if H is a normal (resp. invariant)
subsystem, then the induced left Lie subloop (H, uy) is called a normal (resp.
invariant) left Lie subloop of (G, p).

REMARK 3.2. By the equality (1.9) and (2.1), we can show that any left Lie
subloop H of a homogeneous left Lie loop G is invariant if and only if the
underlying submanifold H is invariant by the left inner mapping group 4, of G. In
particular, any Lie subgroup of a Lie group is an invariant left Lie subloop since
A, = {id} for Lie groups.

DerFiNITION 3.3. Let g= {g; XY, [X, Y, Z]} be a Lie triple algebra over a
field of characteristic zero. A Lie triple subalgebra § of g is a vector subspace of
g closed under the bilinear product and the trilinear product of g, i.e., hh = b and
[b, b, ] =bh. A Lie triple subalgebra b is said to be invariant if it satisfies;

(3.3) [g, 8. b] = b,
and b is called an ideal of g if;
(34) gh<bh and [g, b, glc=h

If h is a normal Lie triple subalgebra of g, the quotient Lie triple algebra g/l is
well defined in a natural way. Cf. [2], [3], [5], [6], [7], [8] and Yamaguti

[16], [17].

THEOREM 3.4. Let G = (G, p) be a regular homogeneous left Lie loop with the
tangent Lie triple algebra g. If H is an invariant left Lie subloop of G, then the
tangent Lie triple algebra Yy of H is an invariant Lie triple subalgebra of g. Every
invariant Lie triple subalgebra of g is the tangent Lie triple algebra of one and only
one invariant left Lie subloop of (G, p).

Proor. Let (G, u) be the associated analytic homogeneous system of (G, ). If
H is an invariant left Lie subloop of G, then the associated homogeneous system
ng is an invariant subsystem of #. By applying Theorem 5 in [5-I], we get the
conclusion of the theorem. g.e.d.

THEOREM 3.5. Let (G, u) be a geodesic homogeneous left Lie loop, (H, uy) a
closed normal left Lie subloop and n the associated homogeneous system. Let G be
the collection of all xH = y(H, x, H), xeG, and define ji: G x G—G by

(3.5) fi(xH, yH):= p(x, y) H.

Then (G, ji) forms a homogeneous left Lie loop and the natural projection n: G — G
sending xe G to xH induces an analytic homomorphism of (G, u) onto (G, fi) with
the kernel (H, ug).
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ProOF. By Theorem 1 in [5-IIT] applied for the associated homogeneous
system 5, we see that G has an analytic structure and that (G, 7)) forms an analytic
homogeneous system, where 7] is given by:

(3.6) _ fi(xH, yH, zH):=n(x, y, z) H for x,y,zeG.

Moreover, the projection 7 is an analytic homomorphism of homogeneous systems
n and ij with H = n~'(eH). Since i defined by (3.5) is the homogeneous left Lie
loop induced from 7, (G, /i) is a homogeneous left Lie loop on the analytic manifold
G with the identity element eH, and the theorem is proved. g.e.d.

DeriNITION 3.6. The homogeneous left Lie loop (G, i) above is called the
quotient homogeneous left Lie loop of (G, ) modulo (H, puy) and denoted by
G = G/H.

Theorem 3 in [5-III] asserts the following;

THEOREM 3.7. Let (G, n) be a geodesic homogeneous left Lie loop, H a closed
normal left Lie subloop. Then the tangent Lie triple algebra Yy of H is an ideal of
the tangent Lie triple algebra g of (G, ), and the tangent Lie triple algebra § of
the quotient homogeneous left Lie loop G = G/H is isomorphic to the quotient Lie

triple algebra g/b under the differential map dn of the natural projection m, at the
identity element e.
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