Mem. Fac. Sci. Shimane Univ.,
26, pp. 189-200 Dec. 25, 1992

On the Goodness of a Criterion for the Existence of MLE’s Based
on Interval-censored Data from Some Three-parameter
Distribution with a Shifted Origin

Tadashi NaAkaAMURA and Yasuhisa HIRAI

Department of Information Science, Faculty of Science, Shimane University
Matsue, 690 JAPAN

and

Faculty of Education, Okayama University
Okayama, 700 JAPAN
(Received September 10, 1992)

By a method called the probability contents boundary analysis, Nakamura [1991]
derived a criterion for the existence of a maximum likelihood estimate when observations
are interval-censored. We show that this criterion is good if the Hessian matrix of the
log-likelihood is negative definite on a convex subset of the parameter space. A detaild
discussion on the log-likelihood is also given.

1. Introduction

Let F(x) be a twice continuously differentiable distribution function (d.f) on the
real line M with positive and continuously differentiable density function f(x) and
let M, =(0, o), R=[—00, 0] and Oy =R, x R x [~ 0, c0). Define a trans-
formation t(x, O)(xeR; 0 = (a, f, )€ O,) by

— 00, x=—o and /1=foo,
tx, )= { ax—f, xeR and A= —o0,
o0, x=0w and A= —w;
— 0, xe[—o0, 4] and AeW,
t(x,0) = { alog(x —A) —p, xe(4, o) and A=%R,
00, x=00 and AeM;

Here we adopt the rule: F(—o0) =0 and F(c0) = 1. Consider a family & (©) =
(F(t(x, 0); 0 ®}, where @ is a nonempty subset of @,. Suppose that n
independent observations X ,---,X, have the distribution in F (@) and that each
X, is known only to lie in a proper subinterval C; of % with nonempty interior. The
collection € = {C,,---,C,} is called an interval-censored (ic.) data. Arrange all
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finite terminal points of Cjs in order of magnitude and denote them by
Xy, +,X,. Throughout this paper it is assumed that m >3. For the sake of
convenience, put X, = —o0 and X,.; = —co. Denote by n;, 0 <i<j<m+ 1,
the number of Cy, 1 < k < n, such that the small (resp. large) one of extreme points
of Cy is x;(resp. x;). Then the log-likelihood I(6) of the i.c. data % is expressed as

m+1 j—1
£(0) = const. + Y Y n;;log(F(t(x;, 8)) — F(t(x;, 6))).
j=1 i=0
In computing this function, the following rules are used:log0 = —co, 0-log0 =
0,(—00)+(—w0)= -0 and t-(—0)= —c0. A maximum likeklihood estimate

(MLE) 6 for the family & (@) is
9=Argrge%x £(0).
Nakamura [1991] derived a criterion for the existence of an MLE for

F R, xR x R); that is, to see whether an MLE for F(R, x M x RN) exists or
not, it suffices to verify the following conditions:

h m

(L.1) Yo+ Y om #£0, h=0,-,m—2.
j=1 j=h+2
h m

(12) Z n-j+ z n,-jsﬁo, h=0,"',m—3.
j=1 h+2<i<j<m
m—1

(1.3) Y n;=0or
Jj=1

$ 5 0, 210 =h =5~ f)

* j=2i=1 F(&xj_ﬁ)“F(&xi—ﬁ)

n Ff@x—f) B x2fax,— f)
<A Fag— ) 5" Fam— )

Here n;=)JZgm; 1<j<m+1 and n. =Y"%1 n; 0<i<m When n is
sufficiently large, the inequality () plays an important role to check whether the
criterion (conditions (1.1)<(1.3)) is satisfied or not. We say that the criterion is
good if there exist a real number 1ye(— o0, x;) and path t(1) = (a(d), B(A), A), Ae

(— o0, 1) such that:
(i) {t(d); de(—o00, dp)} =M, x R x N.
(ii) Z(z(4) = max{/(0); e R, x M x {A}}, Ae(— 00, 4).

(i) «(4) and (1) are continuously differentiable on (— o, 4,).
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ﬁsl(_’l)_) <0 whenever 4 is

(iv) The inequality (x) is satified if and only if

sufficiently near —oo.

The aim of this paper is to show that the criterion is good under the following
(H) condition (H): For every (m + 2)-tuples (Yo, 1, Vms Vm+1) With yo = —00 <
Yy <+ < Ym < Yms+1 = 0, the Hessian matrix of the function

m+1j—-1

Z Z n;jlog(F(ay; — B) — F(axy; — )

j=1i=0
is negative define on M, x R.

The proof of the goodness of the crierion is given in Section 2. A sufficient
condition for which condition (H) is satisfied is discussed in Section 3.

2. Goodness of the criterion

Nakamura (1991) derived the inequality () by using an artificial path. For
this reason the criterion seems to be very restricted one. .As is shown later, the
criterion turns out to be good. Before proving the goodness of the criterion, we
prepare some definitions and notation. Put F(0) = (F(t(xy, 0), -, F(t(x,, 0)) and
Z={(z1, " 2m); 0< 2, < <2, <1}. Define L(z)(z = (z4,+*»2Zm)EZ) by

m+1 j—1

L@= Y T mlogF(x; 0) = F(xi O))
i=0 i=
where z, = 0 and z, = 1. For notational simplicity, put @, = R, xRxR, 0, =
R, xR x{—oo} and %, = F(0,), where , is an MLE for #(0,), k=1,2. We
say that the ic. data & is Ir-censored data if all observations are left-censored or
right-censored (see Peto (1973)). Hence the ic. data & is an Ir-censored data if
and only if i icj<mmy=0.

The following proposition is due to Nakamura (1984).

PROPOSITION 2.1. Let Ae[—o0, x,) and the ic.data € be not an lr-censored
data. Then an MLE for F (R, x R x {A}) exists if and only if

Ko m
(2.1 Yo+ Yy m#0, k=01 m—1
j=1 i=h+2
LeMMA 2.1. Let condition (H) be satified, the i.c. data € be not an lr-censored
data and Aye(— 0, x,). If condition (2.1) is satisfied, then there exists the unique
path 1(2) = (a(), b(A), 4), Le(—0, 4o) such that:
(i) {t(D); de(—o0, 4)} = 6.
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(ii) L(F(r(4)) = max{L(z); ze F(R, x R x {I})). ‘
(iii) o(4) and B(1) are continuously differentiable on (— oo, 2o)-

Proor. Choose an arbitrary Ae(—oo, 4,). By Prposition 2.1, an MLE for
F (Wi x M x {4}) exists. - This implies that there exists a point of |, x R x {4}
which maximizes the log-likelihood #(6) over R, x R x {i}. On the other hand,
£(6) is strictly concave on R, x M x {1}, since condition (H) is satisfied (cf.
[1; Theorem II]). Hence such a maximizing points is unique, and is denoted by
7(4) = («(4), B(4), 4). From its definition, (i) and (i) follow. We show (ii)). Define
d(6) = (0£(0)/0a, 0£(0)/3B), 0 = (2, B, )€ O@,, and consider the equation d(f) =
By Theorem 1 of [12], this equation has the solution. Hence 7(4) is the unique
stationary point of Z(6). Put H() = (a;;(0)), where a,,(d) = 0?£(0)/00%, ay,(0) =
a5,(0) = 0*£(0)/00dp and a,,(6) = 6*¢(0)/p>. Condition (H) yields that det(H(6))
#0 at @ =t(). By the implicit function theorem, there exist unique continuously
differentiable functions a(f) and b(t) in a neighborhood U of A such that
d(a(t), b(t), ) = 0 for all teU and (a(d), b(A) = (2(4), B(1)). The uniqueness of the
stationary point yields that a(t) = a(f) and b(t) = B(t) on U wh1ch proves (iii).

REMARK 2.1. Let us make the followmg condition (H*):

(H*) ‘For every (m + 1)'tuple (,VOa-yI:- s Yms ym+1) with Vo= —00 <y; < - <vym
< ymﬂ = oo, the Hess.1an matrix of ‘

m+1 j-1

Zl Z nyj IOg(F(“yJ B — F(a.Vi - B)

is negative definite at every stationary point («, f)e R, x R of this function. With
the aid of Theorem 2.1 of Mikeliinen et. al. (1981), or Theorem 1 of Barndoff-
Nielsen and Blasild (1980), or Proposition 1 of Gabrielsen (1982), we can prove
Lemma 2.1 under a slightly weaker condition (H*)

LEMMA 2.2. Assume that condltzon (H) is satisfied and the i.c. data € is not
an Ir-censored data. Let t(2) = (a(A), B(A), ) be as in the previous lemma. Assume
that conditions (1.1), (1.2) and (2.1) are satisfied. Then

lim t(x, () = t(x;, @& f, —0), 1<i<m,

where 4 and f are uniquely determined by F((4, B, —0) = i,.

Proor. We show that
(2.2) . , —w< L)< ]}m _inf L(F(z(A))).

Define a path p(s) = (a(s), B(s), A(s)) from (0, min, _;;, 1/|x;]) into M, x R x N by
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o(s) = a/s, B(s) = f — a(s)logs, A(s) = —1/s.

It is easy to see that

tix;, p(—A ) =dx;—f+0(—A7"), 1<is<m

Hence Alirzl to, p(— A" Y))=dx;— B, 1<i<m This derives that lim

L(F(p(— A7) = L(2,). While, L(F(p(— A7) < L(F(x(4) for all Ae(—o0, xq).
We show that :

2.3 there exists no sequence {A,} in (—oo, x,) with lim,4, = —co such that
lim, F(z(4,) e F(O,).

Suppose the contray, and put lim JF((,) = (z3,...,2,). Consider the case
0 <z;<z;<1 for some palr (i,j) with 1<i<j<m. Then lim,t(x; t(4,)) =
1(z) and lim, ¢(x;, ©(4,)) = F~'(z;). By L'Hospital rule,

lim, £(x, T(4) = F () + > (F(z)) = F (@)

X

for all xeR. This is a contradiction, since F(@,)nF(©@,)=@. The rest possible

cases are z, = -+ =z, =0 and z,,_; =0 <z, < 1. By (2.1), lim, L(F(z(4,)) = —©
< L(2,) for both cases, which contradicts (2.2). Hence (2.3) holds. Let {A1,} and
{A} be sequences in (—oo,x;) with lim, A,, = lim, 4,, = —co such that

lim,F(t(4,,)) = Z and lim,F(z(4,,) = 2. From (2.3) it follows that z', z" e F(@, FO,) —

F(©,). This, together with Proposition 2 and Theorem 1 of [9], (1.1) and (1.2),
yields that z, '€ F(0,). Since Z, is the unique maximizing point L(z) over F(0,),
we see that z =2z"=12,. Thus Alll’_I_l F(z(4) = Z,, which is equivalent to

lim o, 1(4) = 8% — f = tlxi, @, f, —co)), 1<i<m

Hereafter we assume that condition (H) and conditions (1.1), (1.2) and (2.1) are
satisfied. Then by Lemmas 2.1 and 2.2, there exists a unique path t(A) = («(4), B(4),
A), Ae(— o0, x;), such that (i)-(iii) in Lemma 2.1 are satisfied and Alirzl t(x;, () =
ax;— B, 1 <i<m. Here, ¢ and f satisfy F((4, f, —w)) =1, For notational
simplicity, put F;(4) = F(t(x;, t(A)), fi(d) = f(t(xi (D), 1 <i<m, and

k
[ix; i=0;1<j<m0<k<2,
Fi(4)
k_ f k
a®(3) = M, 1<i<j<m;0<k<2,
Fi(7) — Fi(3)
—f k
- Fi(d)
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fiW)log(x; — 4)

, l=0;ISjSm,
Fi(4)
, —f =2
Jj - L
_fi('l)IOg(xi_l)’ lslsm;j=m+ 1;
1 —Fi(4) '
pes
LHxs o i=0;1<j<m0<k<]l,
F,0)
L0 5o
ctf)(j‘)= 1+ij 1+x,-SSk, lsiS]Sm,OSkSIa
Fi(4) — Fy(4)
fi(%)
1+x,~SSk, ISlSm,]=m+1;0skS1,
1 —Fi(4)

where s = — 1/
We prove

THEOREM 2.1. The first few terms of Taylor's expansion of L(F((z(A)))/dA is
given by

dL(F(r(A)) o« milil

24 0 Z Z n;aP()A~2 + 0(A73).
PROOF. Put L,(6) = OL(F(0))/00 and L,(6) = aL(F(B))/aﬂ. Then L,(c(4)) =
Lﬂ(f(ﬂ))“o for all Ae(— o0, Xg), Ly(t() = Y12 Yizd njby(4) and Ly(e(A) = —
T Yz na@(A). It is easy to see that
d m+1 j—1
Y = L+ LB ) —a) S, 3, net
(2.5) = —a(d) mf JZI netP(A)
j=1 i=0
m+1 j—1

]

— a(d)s Z Z n; ().

We show
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(2.6) a(l)s = 4 + O(s).

Note that t(x;, ©(4)) — t(x;, T(4) = oc()»)log1 XS (x; — x)a(A)s(1 + O(s)). | On

1+ x;s
the other hand, llir{l (t(xj, () — t(x;, t(A) = (x; — x;)& by Lemma 2.2. Com-

bining these facts we obtain (2.6). It can be easily seen that

m+1 j—1
Z Z n;cld(A) = Y Z (o (4) — aP () + a?(A) + 0(s%))
j=1 i= j=1 i=
m+1 j—-1 m+1 m+1
2.7 = — L) —s Y, Z nalP(A) + 5% ) Z n;a?(A) + 0(s%)
j=1 i= . j=1 i=
m+1 j—1 m+1 j—1
=—5 Z nad(A) + s> ), Z n;aP(A) + 0(s*).
j=1i= j=1 i=
From the expression

2 2
i

x;5 = logs + log(x; — 1) + + 0(s®), 1<i<m,

it follows that -

m+1 j—1 2 m+1 j—1

sy Z n;alP(A) = Ly(t(4) — Ly(tA)logs +s— Y Z n;ad(A) + 0(s°)
j=1 i= ji=1 i=

(2.8)

% i 'i AP @) + 0().

Conbining (2.5)-(2.8), we obtain (2.4). This completes the proof.
It can be easily seen that inequality (x) is equivalent to
m+1 j—

lim Y, Z n;aP(A) < 0.

Am=w i 4=

The expression (2.4) implies that the sign of the left-hand side of the above inequality
determines the behavior of L(F(r(1))) when A is near —oo. Because of the
optimality of (1) (see Lemma 2.1), the criterion is good, though it is derived by
using a special path (see the proof of Theorem 3 in Nakamura (1991)).

3. Sufficient condition for condition (H)

In this section we shall give, by using the log-concavity of the density function
f(x), a sufficient condition for which condition (H) is satisfied. Put g(x) = f"(x)/f (x).
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The density function f(x) is said to be strictly log-concave if logf(x) is strictly
concave. The concavity of the log-likelihood was discussed briefly in Burridge
(1981).

The followmg Lemmas 3.1-3.3 are fundamental to our purpose.

LemmA 3.1. Let f(x) be str lctly log-concave on M. Then

(3.1) Sx) <fexp@()(x — )

Jor every (x, y)eM>.  Moreover, the equality in the above inequality holds zf and
only if x =y.

It is well-known that

Proor. Let x #y and put Ax, y) = I—Ow.
-y

A(z, y) is strictly decreasing in z on (y, oo)(see [13; p.2]). Hence A(x,y) <
lim A(z, y) = g(y). From this,
zoy

F(x) <fexpg()(x — y)

for all (x, y)eR? with y < x. It is also well known that A(z, y) is strictly decreasing
in z on (—oo, y)(see [13; p.2]). Therefore A(x, y) > lim A(z, y) = g(y) and hence
z—y )

J(x) <f(explg(y)(x - y)

for all (x, y)eM? with x <y. This completes the proof.
The following result is due to. Berstein and Toupin (1962).

PROPOSITION 3.1.  Let § be a convex domain in WP and w: R — R be a strictly
convex function and twice continuously differentiable on S. Then the Hessian mdtrix
of w is positive definite except on a nowhere dense subset of S.

ReEMARK 3.1. Let V' be a topological space and W be a subset of V. The set
W is called a border set if V— W is dense in V. The set W is said to be nowhere
dense W is a border set.

LemMA 3.2. Let f(x) be strictly log-concave on M. Then:

(i) gxX)F@) — F(x)) + f(x) >0 for all (x,y) with —0'<x<y< o0,

(i) gF @) — F(x)=f() <0 for all (x, y) with —c0 <x<y < 0.

(i) g(x)gFQ) — Fx) < gx)f) —gWf(x) for all (x,y) with —oo <x<
y < 0.

ProoF. Proof of (i):If f'(x)>0, then the "inequality (i) is Assume that
f’ (x) < 0. Lemma 3.1 gives
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fx)(explg(x)(y — x)) — 1)_
g(x)

F() - F(x) = j " 0dt <f () j " explg()(t — x))dt =

From this, g(x)(F(y) — F(x)) +f(x) > f(x)exp(g(x)(y — x)) = 0. Hence (i) is esta-
blished.

Proof of (ii): If f'(y) <0, then (ii) is obvious. Assume that f'(y) >0. Lemma 3.1
gives

&)1 —explgG)y — )
gy

F() — F(v) = j "f0di <f©) j " explgOy)(t — y)dt =

From this, g)(F(y) — F(x)) —f(x) < — exp(g(y)(x — y)) < 0. Hence (ii) is proved.
Proof of (iii): Choose an arbitrary xe® and fix it. Put A@) = gX)f ) — g f(x)
= g(x)g()(F(y) — F(x)), ye[x, o). It is obvious that A(x)=0. We show that
A(y) > 0 on (x, ). Since f(x) is strictly log-concave, g(y) is strictly decreasing (see
[13;p.5]), and hence ¢'(y)<0. This and (i) in Lemma 32 derive that
AW = —gdW(fx) +gx)(F() — F(x))) =0. Hence A(y) is nondecreasing on
(x, 00). Assume that there exists y'€(x, o) such that A(y)=0. Since A(y) is
nondecreasing (x, c0) and A(x) =0, A(y)=0 on [x, )] and hence A'(y) =0 on
[x,y]. From this and (i) in Lemma 3.2, g =0 on [x,)y]. Noting that
g'(y) = d*log f(y)/dy*, we see that this contradicts the assertion of Proposition
3.1. Now the positiveness of A(y) on (x, o) is proved. This completes the proof.

 REMARK 3.2. Feller (1957, Lemma 2 in Chap. 12) proved the inequality (iii) in
the case where F(x) is the standard normal distribution function (see also Haberman
(1974, p.308-309)).

LeMMA 3.3. Let f(x) be strictly log-concave on R.. Then:

(i) The second derivative of log F(x) is negative on R.

(ii) The second derivative of log(l — F(x)) is negative on R.

(i) The Hessian matrix of log(F(y) — F(x)) is negative define on the set {(x, y)eR*:
x <y}

PROOF. Proof of (i): From d?log F(x)/dx* = f(x)F(x)”*(¢9(x)F(x) — f(x)) and
(ii) in Lemma 3.2, our assertion follows.
Proof of (ii): From d2log(l — F(x))/dx* = — f(x)(1 — F(x))"*(¢(x)(1 — F(x)) +f(x))
and (i) in Lemma 3.2, our assertion follows.
Proof of (iii): It can be easily calculated that

A = 8*log(F(y) — F(x))/0x* = = f(x)(F(y) = F(x)"*(@()(F () — F(x)) + (),
B = 8*log(F(y) — F(x)/dxdy = —f () f(W(F () — F(x) ™%,
C = 0*log(F(y) — F(x))/0y* = f()(F ) — F() 2 (gWF W) — F(x) = f (-
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By (i) and (ii) in Lemma 3.2, A <0 and C <0. The relation AC — B% = f(x)f(y)
(FO) = FX) @) f () — g) f (x) — 9(x)g()(F(y) — F(x))) and (iii) in Lemma 3.2
yield that AC — B> > 0. Hence that assertion (iii) is established.

Let yjo= -0 <y, < <y, < ymﬂ = 0. For every pair (i,j) of integers
with 0<i<j<m+1 and for every 0= (a f)eR, x M, define F;;(0) by
Fij(g) = F(“Yj — B) = F(ay; — p).

We prove

THEOREM 3.1. Let f(x) be strictly log-concave. Then:

(1) The Hessian matrix of log Fy;(0), 1 <j <m, is not negative definite but negative
semi-define.

(ii) The Hessian matrix of 10gF,,,,(0), 1 <i<m, is not negative definite but
negative semi-define.

(iii) The Hessian matrix of logF;(6), 1 <i <j <m, is negative definite.

PrOOF. Proof of (i): By (i) in Lemma 3.3, log F(x) is strictly concave. Hence
log Fy;(0) = log F(ay; — f) is concave on R, x R, and thus the Hessian matrix of
log Fy;(0) is negative semi-definite. Let s be an arbitrary real number and put
D={(o p)eR, x R; ay;— p=s5}. Choose distinct points @8, =(a,,f,), 0, =
(22, B,)€D and put z; = o;y; — f;, i =1, 2. It is easy to see that for every A€(0, 1),
log Fo;(40, + (1 — A)0;) = log F(Az; + (1 — A)z,) = Alog F(z,) + (1 — A)log F(z,) =
MogF;(0;) + (1 — Wlog Fy;(6,). This implies that log Fy;(6) is not strictly concave.
Hence (i) is established.

Proof of (ii): By the same argument as above, we can prove (ii).

Proof of (iii): Let 1<i<j<m. Put A(x,y)=log(F(y)— F(x)) and B =
log F;;(6). Denote by (a,,(x, y)(resp. b,,(0)) the Hessian matrix of A(x, y)(resp.
B(6)). It suffices to show that

(3.2) by2(0) <0 and by;(0)b,,(6) > b,,(6)

for all 0eM, x M. Note that B(A) = A(ay; — f, ay; — f). It is easily calculated
that ,

0B/0x = y,04/0x + y;04/0y,

0BJ3p = — 0A/dx — 0A/dy, |
0(0A/0x)/0n = ay, (@y; — B, ay; — Byi + ar2(ey; — By ay; — )y,
0(0A4/0y)/ 0o = ay,(ay; — P, ay; — B)yi + az,(@y; — B, ay; — B)y;s
0(0A/0x)/0f = — ayy (o, — By av; — B) — ays(ay; — B, ay; — B
2(04/0y)/0f = — ay; (v, — B, ay; — B) — azalay; — B, ay; — B,
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From this
by, (6) = d,,(0)y? + 28,,(0)y,y; + 422(0)y7,
by1(0) = — 4,11(0)y; — 412 (0)y: + y)) — 42,(0)y;,
b,,(0) = d1,(0) + 24,,(6) + d,,(0),

where 4,,(0) = a,,(ay; — B, ay; — B). By Lemma 3.3, (4,,(0) is negative define.
Hence 4,,(0)d,,(0) > d,,(6)*, 4,,(0) <0 and a,,(6) <0. Since — 4:1(0) — 4,,(0) =
2(d1,(0)d,,(0)"* > 2|a,,(6)|, we see that by,(f) < 0. The inequality by, (0)b,,(6) >
b,,(0)> follows from the negative definiteness of (8,4(0) and the relation
by1(0)b25(0) — b15(60)* = (411(0)4,2(6) — a,,0)*)(y; — J’j)2~ This completes the proof.

REMARK 3.3. Theorem 3.2 shows that condition (H) is violated when the i.c.
data ¥ is an lr-censored data, ie., Z n; = 0.
1<igjsm

We now prove the main result in this section.

THEOREM 3.3. Let f(x) be strictly log-concave on M. Then condition (H) is
satisfied if the i.c. data € is not an Ir-censored data.

PROOF. Let yo= — 00 < y; < *** < Yy < Y+ = 0 and denote by H;;(6) the
Hessian matrix of logF;;(0), 0 <i<j<m+ 1;(,j)# 0, m+ 1). By Theorem 3.2,
Hyj0), 1 <j<m and H;,..(0), 1 <i<m, are nonnegative definite. Since the i.c.
data @ is not an Ir-censored data, and since the Hessian matrix of Y7o, Y /2]
nlog Fy;(0) is Yy Y421 n;;H;(6), we conclude that condition (H) is satisfied.

Now we shall give examples of d.f’s having the strictly log-density functions
(cf. Burridge (1981), Pratt (1981)).

ExampLE 3.1. The standard normal density:

flx)= ! exp(—icj), — o0 < X < 0.

N

ExaMpLE 3.2. The logistic density:

exp(x)

f= (1 + exp(x))?

— 0 <X < 0.

ExaMPLE 3.3. The external value type of density:

f(x) = I'(y)exp(yx)exp(— exp(x)), ~ —0 <x < 0.

in which y > 0 is known. Note that this may be regarded as the density function
of the logarithm of a gamma random variable. When y =1, f(x) is the extreme
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value of density.
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