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Based 

By a method called the probability contents boundary analysis, Nakamura [199l] 

derived a criterion for the existence of a maximum likelihood estimate when observations 

are interval-censored. We show that this criterion is good if the Hessian matrix of the 

log-likelihood is negative definite on a convex subset of the parameter space. A detaild 

discussion on the log-likelihood is also given. 

1. Introdwctiou 

Let F(x) be a twice continuously differentiable distribution function (d.f.) on the 

real line ~~: with positive and continuously differentiable density function f(x) and 

let ~~~+ = (O, oo), ~~ = [-oo, oo] and ~o = ~~+ X ~~ x [-oo, oo). D,efine a trans-

formation t(x. O)(x e ~:~ ; O = (ac, p, ~) e 6,0) by 

-oo, = -oo and ~= -oo, x 

t(x, 6) = ocx - p, xe~~ and ~ = -oo, 

oo, x=0cu and ~=-oo; 

xe[-oo, ~] and ~e~~, - oo, 

t(x, O) = o(log(x - ~) - p, xe(~, po) and ~ =~:,_ 

x=00 and ~e~~; oo, 

Here we adopt the rule : F(-oo) = O and F(ocv) = 1. Consider a family ~c~(6)) = 

{F(t(x, e));Oe6lf}, where ~ is a nonempty subset of (90' Suppose that n 
independent observations X1, ･ ･ ･ , X~ have the distribution in ~~c~(~)) and that each 

Xi is known only to lie in a proper subinterval Ci Of ~~ with nonempty interior. The 

collection ~~ = {C1,･･･,C~} is called an interval-censored (i.c.) data. Arrange all 
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finite terminal points of C;s in order of magnitude and denote them by 
xl,"',x~. Throughout this paper it is assumed that m ~ 3. For the sake of 

convenience, put xo = ~ oo and x~+1 = ~ ao. Denote by nij, O ~ i ~j ~ m + 1, 

the number of Ck, I ~ k ~ n, such that the small (resp. Iarge) one of extreme points 

of Ck is xi(resp. xj). Then the log-likelihood l(O) of the i.c, data ~~ is expressed as 

~+1 j-l 
l(6) const + ~ ~ nijlog(F(t(xj, O)) - F(t(xi, O))). 

j=1 i=0 

In computmg this function, the following rules are used : IogO = - oo, O ' IogO = 

O, (-co) + (-oo) = - oo and t ' (-oo) = - oo. A maximum likeklihood estimate 

(MLE) O for the family ~c~(~) is 

6 = Argm0~aoX f(e) 

Nakamura [199l] derived a criterion for the existence of an MLE for 
~~~(~~+ X ~~ x ~~) ; that is, to see whether an MLE for F(~:~+ X ~~: x ~)~) exists or 

not, it suffices to verify the following conditions 

(1.1) ~ n.j+ ~ ni. ~0, h O,･･･,m-2. ~ 

j= I j=h+ 2 

(1.2) ~ n.j + ~ nij ~ O, h O, .･･ ,m - 3. ~ 

j=1 h+2~i
~-1 

(1.3) ~ n.j = O or 
j= 1 

~ j~1 x~f(~xj - P) - x~f(~xi - P) 

(*) ~ ~ nij j=2 i= I F(~xj - P) - F(~xi - P) 

x~f(~xi - p) x~ f(~xj - p) 
^-~ i~+1 1 - F(~xi - P) F(~xi - fi) 

Here n.j = ~~=g nij, I ~j~m+ I and ni. = ~ J~=+,~Inij, O ~ i ~ m. When n is 

sufficiently large, the inequality (*) plays an important role to check whether the 

criterion (conditions (1.1)-(1.3)) is satisfied or not. We say that the criterion is 

good if there exist a real number ~o e ( - oo, xl) and path T(~) = (cc(~), p(~), ~), ~ e 

(- oo, ~o) such that : 

(i) {T(~); ~e(-oo, ~o)} c~~:+ X ~:~ x ~~. 

(ii) f(T(~)) = max{/(O); ee~~+ X ~~S x {~}}, ~e(-oo. Ao) 

(iii) oc(~) and p(~) are continuously differentiable on (-oo, ~o) 
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(rv) The mequalrty (*) rs satrfied if and only if d/(T(h)) 

d ~ 

sufficiently near - oo 

The aim of this paper is to show that the criterion is good under the following 

(H) condition (H) : For every (m + 2)-tuples (yo' yl, " ' y~, y~+1) with yo = ~ oo 

yl 

~+1 j-1 
~ ~ nijlog(F(ocyj - p) - F(ocyi - p)) 

j=1 i=0 

is negative define on ~:S+ X ~~ 

The proof of the goodness of the cnerion is grven in Section 2. A sufiicient 

condition for 'which condition (H) is satisfied is discussed in Section 3 

2. Goodness of the criteriom 

Nakamura (1991).derived the inequality (*) by using an artificial path. For 

this reason the criterion seems to be very restricted one. _ As is shown later, the 

criterion turns out to be good. Before proving the goodness of the criterion, we 

prepare some definitions and notation. Put F(6) = (F(t(xl, O)), ･ ･ ･ . F(t(x~, 6))) and 

Z = {(zl, "'z~); O ~ zl ~ "' ~ z~ ~ 1}･ Define L(z)(z = (zl,"',z~)eZ) by 

~+1 j-l 
L(z) = ~ ~ nijlog(F(t(xj, O)) - F(t(xi, 6))), 

j=0 i=0 

where zo = O and zl = 1. For notational simplicity, put 6,1 = ~~~+ X '~~ x ~~, (92 = 

~:~+ X ~~: x {-oo} and ~k = F(6k), where Ok is an MLE for ~~~(~k), k = 1, 2. We 

say that the i,c. data ~~ is lr-censored data if all observations are left-censored or 

right-censored (see Peto (1973)). Hence the i.c. data ~~ is an lr-censored data if 

and only if ~ ･ ･ ･ -1 ~'_

The following proposition is due to Nakamura (1984) 

PROPOSITION 2.1. Let ~ e [ - oo, xl) and the i.c.data ~~ be not an lr-censored 

data. Then an MLE for ~c~(~)e+ X ~fZ x {~}) exists tf and only tf 

(2.1) ~ n.j + ~ ni. ~ O, h = O, I m 1 m 

j=1 i=h+2 
LEMMA 2.1. Let condition (H) be satlfied, the i.c. data ~~ be not an lr-censored 

data and ~o e (-oo, xl). If condition (2.1) is satisfied, then there exists the unique 

path T(~) = (a(~), b(~), ~), ~ e ( - oo, ~o) such that : 

(i) {T(~);~e(-oo, ~o)} c e'l. 
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(ii) L(F(T(~))) = max{L(z); zeF(~S+ X ~~: x {~})}. 

(iii) oc(~)' and p(~) are continuousl.v dlffe/'entiable bn ( - oo, ~o)' 

PROOF. Choose an arbitrary A e(-oo, ~o)' By Prposition 2.1, an MLE for 
~~~-(~~~~ x ~~ x {~}), exists. , This implies that thete exists a point of ~~:+ X ~~S x {~} 

which maximizes the log-likelihood l(O) over ~~+- x ~P~ x {~} . On the other hand, 

l(6) is strictly , concave : ,on, ~?~ x ~~~ x {~}, since condition (H) is satisfied (cf 

[1; Theorem Il]). Hence such a maximizing points is unique, and is denoted by 

T(~) = (oc(~), p(~), ~). Fr'om its definition, (i) and (ii) follow: We show (iii). Define 

d(O) = (al(O)lao(, al(O)lap), O = (cc, P, ~) e ~)1, and consider the equation d(6) = O. 

By Theorem I of [12], this equation has the solution. Hence 1;(~) is the unique 

stationary point of f(O). Put H(e) = (aij(O)), where all(O) = a2j(6)laoc2, al2(e) = 

a21(g) = a21(O)la~ap a:nd a22(6) = a2/(a)lap2. 'Condition (H) yields that det(H(O)) 

~ O at O =' T(~). ' hy the implioit functibn theorem, there exist unique continuously 

differentiable functions a(t) and b(t) in a neighborhood U of ~ such that 
d(a(t), b(t), t) = O for all t e U and (a(~), b(~)) = (ce(~), p(~)). The uniqueness of the 

stationary point yields that a(t) = oc(t) and b(t) = p(t) on U which proves (iii) 

REMARI~ 2.1. , Let us nrake the following, condition (H*) : 

(H*) 'For eve:ry (m + 1)'tuple (yo" yl;' ,y~, y~+1) with y =' - ' "' ' 
"' o co ' "

,~+1 j-~ ~1 nijlog(F(Q(yj - p) - F(ocyi - p)) 

j=1. i=0 .: 

is negative definite at every stationary point (oc, p) e ~~ + X ~~: of this function. With 

the aid ~of Theoretn 2.1 of Makelamen et. al. (1'981), or Theorem I of Barndoff-

Nielsen and Blasild (1980),' o'r Propositiori 1' of Gabrielsen (1982), we cah prove 

Lemma 2.1 under a slightly weaker bondition (H*) 

LEMMA 2.2. Assume that condition (H) is satisfied and the i.c. data , ~~ is not 

an lr-censored data. Let T(~) = (c((~), p(~), ~) be as in the previous lemma. Assume 

that conditions (1.1), (1.2)' and (2.1) are '~btisfied. Then 

A~m* t(~i; T(~)) = t(x;, (~, ~, _.- oo)); I ~ i ~ m, 

vvhere ~ and p are uniquely determined by F((~, p, - oo)) z 

PROOF. We show that 

'(2.2) . , = oo 

Define a path p(s) = (oc(s), p(s), ~(s)) from (O, mini ~i~in 1/Ixil) into ~~:+ X ~F~ x ~~ by 
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oc(s) = ~/s, p(s) = p - oc(s) Iogs, ~(s) = - 1ls. 

It is easy to see that 

t(xi, P(-~-1)) = ~xi - P + o(- ~~1), I ~ i ~ In. 

Hence A~m* t(xi, P(-A~1)) = ~xi - fi^, I ~ i ~ m. This derives that A~m* 

L(F(p(-~-1))) = L(22)' While, L(F(p(-~-1))) ~ L(F(T(~))) for all ~e(-oo, xl). 

We show that 

(2.3) there exists no sequence {~~} in (-co, xl) with lim~~~ = - oo such that 
lim~ F (T (~~)) e F ((9 1 ). 

Suppose the contray, and put lim*F(T(~~)) = (zl""'z~). Consider the case 
O 
F ~ I (zi) and lim~ t(xj, T(~~)) = F ~ I (zj). By L'Hospital rule, 

lim t(x T(~ )) F (z ) + x - xi (F~1(zj) - F~1(zi)) 

xj -' xi 

for all x e ~~~. This is a contradiction, since F(~1)nF(6,2) = ~i. The rest possible 

cases are zl' = " ' ~ z~ = O and.z~_1 = O -co 

{~2~} be sequences in (-oo, xl) with lim~ ~1~ = Iim~ ~2~ = - oo such that 
lim~ F(T(A1~)) = z' and lim F(1:(~2~)) z" From (2 3) rt follows that z z" e F(~ ) 

F(6)1). This, together with Proposition 2 and Theorem I of [9], (1.1) and (1.2), 

yields that z', z" e F(~2)' Since ~2 is the unique maximizing point L(z) over F(~2)' 

we see that z z" z Thus A~m* F(T(A)) = ~2' which is equivalent to 

Al_nn* t(x*, T(~)) ~xi - p = t(xi, (~, p, - oo)), I ~ i ~ m. 

Hereafter we assume that condition (H) and qonditions (1.1), (1.2) and (2.1) are 

satisfied. Then by Lemmas 2.1 and 2･.2, there exists a unique path T(~) = (oc(~), p(~), 

~), ~ e ( - co, xl), such that (i)-(iii) in Lemma 2.1 are satisfied and ;L~m* t(xi, T(~)) = 

~xi - P, I ~ i ~ m. ' Here, ~ and ~ satisfy F((.~, ~, - oo)) = ~2 ' For notational 

simplicity, put Fi(~) = F(t(xi, T(~))), fi(~) =f(t(xi, T(~))), I ~ i ~ m, and 

fj(~)x5 i = O; I ~j ~ m; O ~ k ~ 2, 
Fj(~) ' 

af~)(~) = fj(~)x~ -fi(~)x, I 
j
 

Fj(~) - Fi(~) ' 

- fi(~) x~ 

1 - Fi(~)' I 
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fj(~) Iog(xj ~ ~) 

Fj(~) 

fj(~) Iog(xj ~ ~) - fi(~) Iog(xi - ~) 

i = O; I ~j ~ m, 

Fj(~) - Fi(~) 

- fi(~) lOg(Xi - ~) 

1 ~ i ~ j ~ m, 

1 - Fi(~) 

fj(~) 

1 + xjs 

Fj(~) 

fj(A) 

s
k
 

fi (A) 

1 + xjs I + xiS s
k
 Fj(~) - Fi(~) 

fi (~) 

1 

i = O; I ~j ~ m; O ~ k ~ 1, 

Cf~) (~) = 1 ~ i ~ j ~ m; O ~ k ~ 1, 

1+xis k 1~i~m;j=m+1.01 - Fi(~)s , 

where s = - 1/~. 

We prove 

THEOREM 2.1. The first few terms of Taylor's expansion of L(F((T(~)))/dA is 

9iven by 

(2.4) _ dL(F(T(~)) oc ~~l J~1 n"a(2)(~)A-2 + O(A-3) 

- -- 'J ij d~ 2 j=1 i=0 
PRooF. Put L.(6) = aL(F(O))lace and Lp(e) = eL(F(6))lap. Then L.(T(~)) 

Lp(1(~)) = O for all ~e(- oo ~o)' L.(T(~)) = ~J~=+11 ~J-1 n 'b"(~) and Lp(?(~)) = -

~j-1 ~, -g n,Ja{~)(~) It is easy to see that ~_+1 J.= .. .. . 

dL(F(T(~))) ~ + I j-= L.(T(~))oc'(~) + Lp(T(~))p'(A) - cc(~) ~ ~ nijc{J;)(~) 

~+1 j-1 
(2.5) = - oc(~) ~ ~ nijc{J~)(~) 

j=1 i=0 

~+1 j-= - oc(~)s ~ ~ nijc{~)(~). 

j=1 i=0 

We show 
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(2.6) oc(A)s = ~ + o(s). 

1 + x's 
Note that t(xj. T(A)) - t(xi, T(~)) = oc(~) Iog J = (xj - xi)cc(~)s(1 + O(s)). On 

1 + xiS 

the other hand, A~m* (t(xj, T(~)) - t(xi, r(h))) = (xj - xi)a by Lemma 2.2. Com-

bining these facts we obtain (2.6). It can be easily seen that 

m+1 j- ~+1 j-~ ~ nijc{~)(h) = ~ ~ nij(oc{~)(~) - a{;)(h) + a{~)(~) + O(s )) 

j=1 i=0 j=1 i=0 
~+1 j-1 ~+1 m+1 (2.7) - s ~ ~ nija{J1)(~) + s2 ~ ~ nijaf~)(~) + O(s3) = - Lp(T(~)) 

j=1 i=0 ' j=1 i=0 
~+1.j-1 ~+1 j-l - s ~ ~ nija;;)(~) + s2 ~ ~' nija{~)(A) + O(s3). 

j=1 i=0 j=1 i=0 
From the expression 

22 xiS = Iogs + Iog(xi - ~) + xi s + O(s ), I ~ i ~ m, 
2
 

it follows that 

~+1 j- 2 ~+1 j-l s ~ ~1 n"a(1)(~) = L (T(A)) - Lp(TA))logs+ 2 ~ ~ nija{~)(~) + o(s3) 

= .= 'J 'j a .= .= " (2.8) 2 ~+ I j- 1 
= S ~ ~ nija{~)(~) + O(s3). 

2 j=1 i=0 

Conbming (2.5)-(2.8), we obtain (2.4). This completes the proof 

It can be easily seen that inequality (*) is equivalent to 

~+1 j-lim ~ ~1 nija;~)(A) 

h~~* j=1 i=0 

The expression (2.4) implies that the sign of the left-hand side of the above inequality 

determines the behavior of L(F(T(~))) when A is near - oo. Because of the 
optimality of T(~) (see Lemma 2.1), the crrterion is good, though it is derived by 

using a special path (see the proof of Theorem 3 in Nakamura (1991)) 

3. Su~icient condition for condition (H) 

In this section we shall give, by using the log-concavity of the density function 

f(x), a sufficient condition for which condition (H) is satisfied. Put g(x) = f'(x)If(x) 



196 Tadashi NAKAMURA and Yasuhisa HIRAI 

The density function f(x) is said to be strictly log-concave if logf(x) is strictly 

concave. The concavity of the log-likelihood was discussed briefiy in Burridge 

(1981). 

The following Lemmas 3.1-3.3 are fundamental to our purpose 

LEMMA 3.1. Let f(x) be strictly log-concave on ~~. Then 

(3.1) f(x) ~ f(y)exp(g(y)(x - y)) 
for every (x, y) e ~~2. Moreover, the equality in the above inequality holds if and 

only tf x = y. 

log( f (x) I f ( y)) 

PRooF. Let x ~ y and put A(x, y) = . It is well-known that 

x-y 
A(z, y) is _ st~ictly decreasing in z on (y, oo)(see [13;p.2]). Hence A(x, y) 

lim A(z, y) = g(y). From this 
'~y 

f(x) 

for all (x, y) e ~S2 with y 

m z on (-co, y)(see [13; p.2]). Therefore A(x, y) > Iim A(z, y) = g(y) and hence 
'+y 

f(x) 

for all (x, y) e ~~:2 with x 

The following result is due to. Berstein and Toupin (1962). 

PROPOSITION 3.1. Let S be a convex domain in ~f~P and w : ~~ -> ~:eq be a stl'ictly 

convex function and twice continuously dlfferentiable on S. Then the Hessian matrix 

of w is positive definite except on a nowhere dense subset of S 

REMARK 3.1. Let V be a topological space and W be a subset of V The set 

W is called a border set if V- W is dense in 'V The set W is said to be nowhere 

dense W is a border set. 

L~MMA 3.2. Let f(x) be strictly log-conedve on ~e. Then : 

( i ) g(x)(F(y) - F(x)) +f(x) > O for all (x, y) with - oo '

(ii) g(y)(F(y) - F(x)) ~f(y) 

(iii) g(x)g(y)(F(y) - F(x)) 

y 

PROoF. Proof of (i) : If f'(x) > o then the mequality (1) rs Assume that 

f'(x) 
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y y f(x)(exp(g(x)(y - x)) - 1) F(y) - F(x) = f(t)dt 

From this, g(x)(F(y) - F(x)) +f(x) > f(x)exp(g(x)(y - x)) ~ O. Hence (i) is esta-

blished. 

Proof of (ii) : If f'(y) ~ O, then (ii) is obvious. Assume that f'(y) > O. Lemma 3.1 

gives 

y y f(x)(1 - exp(g(y)(y - x))) F(y) - F(x) = f(t)dt 

From this, g(y)(F(y) - F(x)) -f(x) 

Proof of (iii) : Choose an arbitrary x e ~~ and fix it. Put A(y) = g(x)f(y) - g(y)f(x) 

- g(x)g(y)(F(y) - F(x)), y e [x, co). It is obvious that A(x) = O. We show that 

A (y) > O on (x, co). Since f(x) is strictly log-concave, g(y) is strictly decreasing (see 

[13;p.5]), and hence g'(y) ~ O. This and (i) in Lemma 3.2 derive that 
A'(y) = - g'(y)(f(x) + g(x)(F(y) - F(x))) ~ O. Hence A(y) is nondecreasing on 

(x, co). Assume that there exists y' e (x, oo) such that A(y')=0. Since A(y) is 

nondecreasing (x, co) and A(x) =' O, A(y) = O on ' [~, y'] and hence A'(y) = O on 

[x, y;]. From this and (i) in Lemma 3.2, g'(y) = O bn [x, y']. Noting that 
g'(y) = d210gf(y)/dy2, we see that this contradicts the assertion df Ptoposition 

3.1. Now the positiveness of A(y) on (x, oo) is proved. This completes' the proof. 

REMARK 3.2. Feller (1957, Lemma 2 in Chap. 12) proved' the inequality (iii) m 

the case where F(x) is the standard normal distribution function (see also Haberman 

(1974, p.308-309)). 

LEMMA 3.3. Let f(x) be strictly log-concave on ~~:. Then : 

( i ) The second derivative of logF(x) is negative on ~~. 

(ii) The second derivative of log (1 - F(x)) is negative on ~:~. 

(iii) The Hessian matrix of log (F(y) - F(x)) is negative define on the set {(x, y) e ~?2 : 

x 

PROOF. Proof of (i) : From d210g F(x)/dx2 =f(x)F(x)~2(g(x)F(x) -f(x)) and 

(ii) in Lemma 3.2, our assertion follows 

Proof of (ii) : From d210g(1 - F(x))/dx2 = -f(x)(1 - F(x))~2(g(x)(1 - F(x)) +f(x)) 

and (i) in Lemma 3.2, our assertion follows. 

Proof of (iii) : It can be easily calculated that 

A = e210g(F(y) - F(x))lax2 = -f(x)(F(y) - F(x))~2(g(x)(F(y) - F(x)) +f(x)), 

B = a210g(F(y) - F(x))laxay = -f(x)f(y)(F(y) - F(x))~2 

C = a210g(F(y) - F(x))lay2 = f(x)(F(y) - F(x))~2(g(y)(F(y) - F(x)) - f(y)). 
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By (i) and (ii) in Lemma 3.2, A 

(F(y) - F(x))~3(g(x)f(y) - g(y)f(x) - g(x)g(y)(F(y) - F(x))) and (iii) in Lemma 3.2 

yield that AC - B2 > O. Hence that assertion (iii) is established 

o = ~oo Let y 

wrth O ~ i ~j~m+1 and for every 6 (oc p)e~~ x ~~~, define Fij(e) by 
Fij(O) = F(ocyj - p) - F(ocyi - p). 

We prove 

THEOREM 3.1. Let f(x) be strictly log-concave. Then : 

( I ) The Hessian matrix of log Foj(6), I ~ j ~ m, is not negative definite but negative 

sem i-d efine. 

(ii) The Hessian matrix of logFi~+1(6), I ~ i ~ m, is not negative definite but 

negative semi-define. 

(iu) The Hessian matrix of log Fij(O), I ~ i ~ j ~ m, is negative definite 

PROOF. Proof of (i): By (i) in Lemma 3.3, Iog F(x) is strictly concave. Hence 

log Foj(e) = Iog F(ocyj - p) is concave on ~~+ X ~?, and thus the Hessian matrix of 

log Foj(O) is negative semi-definite. Let s be an arbitrary real number and put 

D = {(oc, P)e~fS+ X ~F~;ocyj - p = s}. Choose distinct points el = (ocl' pl), e2 = 

(oc2' p2)eD and put zi = ociyj - pi, i = 1, 2. It is easy to see that for every ~e(O, 1), 

logFoj(A61 + (1 - ~)02) = IogF(~zl + (1 - ~)z2) = AlogF(zl) + (1 - ~)logF(.-2) = 

A,10g Foj(61) + (1 - ~)logFoj(62)' This implies that log Foj(e) is not strictly concave. 

Hence (i) is established. 

Proof of (n): By the same argument as above, we can prove (ii) 

Proof of (iii) : Let I ~ i ~ j ~ m. Put A(x, y) = Iog(F(y) - F(x)) and B(O) = 

logFij(O). Denote by (apq(x, y))(resp. bpq(e))) the Hessian matrix of A(x, y)(resp 

B(6)). It suffices to show that 

(3.2) b22(6) 
 bl2(6)2 
for all e e ~e+ X ~~~, Note that B(6) = A(ocyj - p, ocyj - P). It is easily calculated 

that 

eBlacc = yiaA/ax + yjaAlay, 

aB/ep = - aA/ax - aAlay, 

a(aAlax)laoc = all(ocyi - p, ocyj L p)yi + al2(ocyj - p, ocyj - p)yj, 

a(aAlay)laoc = al2(ocyi - p, ocyj - p)yi + a22_(ocyi - p, ocyj - P)yj, 

e(aAlax)/ap = - all(ocyi - p, ocyj - p) - al2(ocyi - p, c(yj - p), 

a(aAlay)/ap = - al2(Qcyi - P, ccyj - P) - a22(ccyi - p, ccyj - P). 
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From this 

bll (6) = dl l(O)y~ + 2di2(O)yiyj + d22(6)y~, 

b21(6) = - dll(e)yi - di2(O)(yi + yj) - d22(O)yj, 

b22(e) = dll(e) + 2dl2(e) + d22(6), 

where dpq(O) = apq(ccyi - P, ccyj - P). By Lemma 3.3, (dpq(a)) is negative define 

Hence dll(6)d22(6) > dl2(6)2, ~ll(a) 

2(dll(e))dl2(a))1/2 > 2ldl2(O)1, we see that b22(6) 

 bl2(6)2 follows from the negative definiteness of (~pq(e)) and the relation 
bli(e)b22(e) - bl2(e)2 = (dll(a)d22(e) - dl2(e)2)(yi - yj)2. This completes the proof. 

REMARK 3.3. Theorem 3.2 shows that condition (H) is violated when the i.c 

~ nij = O data ~~ is an lr-censored data, i.e., 

1~i~j~~ 

We now prove the main result in this section 

THEOREM 3.3. Let f(x) be strictly log-concave on ~:~. Then condition (H) is 

satisfied tf the i.c. data ~~ is not an lr-censored data 

PRooF. Let yo = ~ oo 

Hessian matrix of logFij(e), o ~ i 

Hoj(a)' I ~ j ~ m and Hi~+1(6), I ~ i ~ m, are nonnegative definite. Since the i.c 

data ~~ is not an lr-censored data, and since the Hessian matrix of ~J~=2 ~~=i 

n,Jlog F,J(O) rs ~~ 2 ~~ i n,JH,J(O) we conclude that condrtron (H) is satisfied. 

Now we shall give examples of d.f.'s havmg the strictly log-density functions 

(cf. Burridge (1981), Pratt (1981)) 

EXAMPLE 3.1. The standard normal density 

1 x2 f(x) = 2 ' ~/~~ exp -oo 

EXAMPLE 3.2. The logistic density 

exp (x) 
f(x) = , -co(1 + exp(x))2 

EXAMPLE 3.3. The external value type of density 

f(x) = F(y)exp(Vx)exp(- exp(x)), - oo 

in which y > O is known. Note that this may be regarded as the density 

of the logarithm of a gamma random variable. When y = 1, f(x) is the 

f unction 

extreme 
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value of denSity 
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