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We will present a principle of linearized stability of stationary solutions to nonlinear 

evolution eqautions having possibly multi-valued subdifferential operators in Hilbert spaces, 

with the help of 'nonsmooth analysis.' 

Introduction 

Let H be a Hilbert space and (p : H -> ( - oo, + oo J be a proper lower semicon-

tinuous convex function. In this paper, we give a principle of linearized stability 

of stationary solutions of nonlinear evolution equations of the form 

d u 

dt (t) + e(p(u(t))30 

where aep is the subdifferential of (p. 

Subdifferentials are typical and important examples of maximal monotone 

operators in Hilbert spaces. Since a maximal monotone operator generates a non-

expansive semrgroup, it is evident that all the stationary solutions of the above 

equation are stable. But the~asymptotic stability cannot always be obtained. Our 

purpose rs to mvestigate the asymptotic stability of stationary solutions by the 

method of 'lineanzation'. Of course, the subdifferential a(p is not Fr~chet 

differentiable in general, and so we need to introduce a different notion of 

differentiability in order to consider the 'linearization' of the operator. We adopt 

the idea of tangent cones from 'nonsmooth analysis' and use the proto-differentiation 

introduced by Rockafellar [7]. In [6], we have considered the similar equations 

havmg single-valued quasi-m-accretive operators in Banach spaces. There, the 

single-valuedness of the operators is essentially used. One of the purposes of this 

paper is to treat multi-valued operators. We remark that the subdifferential 

operators bring to the parabolic regularity to the solution and this feature plays 

an important role in_ our argument. 

We prepare some notations and prelimmary lemmas in S1. Our main result is 

stated in S2. In S3, we analyze the regularized equation and its linearization. The 

proof of our main theorem is contained in S4 
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1. Prelunlnanes 

In order to formulate our results, we have to explain the notion of derivatives 

which we will adopt from 'nonsmooth analysis'. Let U be a metric space and X be 

a Banach space. For F : U -> 2x, define 

lim inf F(u) := n U n (F(u) + 8B), 
~~~*(i~ U) .> o n> o ~=B(~*, n) 

lim sup F(u) := n n U (F(u) + 8B), 
~*~*(i~ U) '> o n> o ~=B(~., n) 

where B(uo' n) denotes the n-ball centered at uo in U and 8B denotes the 8-ball 

centered at O in X. If lim inf F(u) = Iim sup~-~* F(u), then we denote it by 
" +"" 

lim F (u). " * "o 

Now, Iet X and Y be Banach spaces and let F : X -> 2Y be a multi-valued 

operator, which domain, range, and graph are defined as follows 

D(F):= {xeXIF(x) ~ ~f}, R(F):= U F(x), 
*=D(F) 

G(F) := {(x, y)eX x YlxeD(F), yeF(x)}. 

For (x, y) e G(F), we define multi-valued operators aiF(x, y) and a*F(x, y) : X -> 2Y by 

G(aiF(x, y)) = Iim inf t- I [G(F) - (x, y)], 

t~o 

G(a.F(x, y)) = Iim slrp t~ I [G(F) - (x, y)], 

t~o 

in other words, 

(u, v)eG(aiF(x, y)) 

 (u v) m X x Y 
(x + t u~, y + t~v~)e G(F), 

(u, v) e G(a*F(x, y)) 

 (u, v) in X x Y 
(x + t u~, y + t*v~)e G(F). 

The operators aiF(x, y) and a*F(x, y) are called the intermediate derivative and the 

contingent derivative of F at (x, y), respectively in 'nonsmooth analysis'. For further 

details, see e.g. [1, 4]. If aiF(x, y) = a*F(x, y), then we denote it simply by 

aF(x, y). If this is the case, F is said to be proto-differentiable at x relative to y 

and aF(x, y) is called the proto-derivative. See [7]. When F is single-valued, we 
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write aF(x) : = aF(x, F(x)). 

Let F be a single-valued mapping from X to Ywith D(F) = X. We say that 

F is Gateaux differentiable at x e X if there exists a dF(x) e L(X, Y) ( ; the space of 

all continuous linear mappings from X into Y) such that 

(Y-) Iim t~1[F (x + th) - F(x)] = dF(x)h Vh e.X. 
t~0 

dF(x) is called the Gateaux derivative of F at x 

The following lemma is shown in [6, Lemma 1.1] 

LEMMA 1.1. Let X and Y be Banach spaces. Let F : X -> Y be a single-valued 

Lipschitz continuous mapping with D(F) = X. If aiF(x) e L(X, Y), then F is Gdteaux 

dlfferentiable at x and aiF(x) = dF(x). 

Let H be a Hilbert space. Denote by 

 the inner product. A possibly multi-valued operator Q : H -> 2H is said to be monotone if 

 ~ O V(x, x'), (y, y')eG(Q). 

A monotone operator Q is called maximal monotone if there is no monotone 
extention of Q. For a maximal monotone operator Q, we define the resolvent and 

the Yosida approximation by J~ := (1 + ~Q)-1 and QA := (1/~)(1 - J~) for ~ > O, 

respectively. It is well known that Q is maximal monotone iff J~ is a nonexpansive 

mapping defined on all of H for all h > O. QA is a Lipschitz mapping with constant 

2/~ (in fact, 1/~) and is also a maximal monotone operator. See [3] 

The following lemma is a special case of [6, Lemma 1.2] and so the proof is 

omitted 

LEMMA 1.2 Let Q be a maximal monotone operator in H. Assume that aiQ(x, y) 

is also maximal monotone. Then (eiQ(x, y))A = aiQA(X + ~y, y) for (x, y) e G(Q). The 

same fact is also true for a* . 

Finally we, give the definition of subdifferential operator. For a proper lower 

senucontinuous (1.s.c.) convex function ep : H -> ( - oo , + oo], define 

e(p(x):= {yeHl(p(z) - q)(x) ~~ 

, VzeH}. 
The possibly multi-valued operator aep is called the subdifferential of ep and this is 

the important example of maximal monotone operators. See [3] 

2. Maim result 

Let H be a Hilbert space and denote by ll ' Il its norm Let A be a possibly 
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multi-valued maximal monotone operator in H. It is well known that A generates 

a nonlinear nonexpansive semigroup {S(t)}t2~o on D(A). If we put u(t) = S(t)uo' uo e 

D(A), then u e C([O, oo); D(A)) gives a unique 'generalized or weak' solution of the 

Cauchy problem 

d u(t) + Au(t)30, O ~ t 

u(O) = uo' 

See [2, 3]. 

In what follows, we assume the ,following ' hypotheses : 

CE11) The operator A has the multi-valued' Iinear maximal monotone proto-
derivative at x e D(A) relative to y e Ax, that is, for each (x, y) e G(A), there 

exists a multi-valued linear maximal , monotone operator eA (x, y) : H -> 2H 

such that 

G(aA(x y)) = Iim t~1 [G(A) - (x, y)]. 
t~0 

(H2) The correspondence (x, y) H> aA (x, y) is lower semlcontmuous m the followmg 

sense (cf. [1]) 

lim inf G(aA(x y)) :D G(aA(z w)) 
(*,y) +(.,~) i~ G(A) 

(H3) For any (u, O) e G(A), there exist a neighborhood ~~/ . of (u, O) and a 
nondecreasing function L : [O, oo) -> [O, ao) such that 

ll JaA(*,y)v - JaA(~,o)v 11 ~ A(ll x - u 11 + 11 y II)L(ll v lD 

for all (x, y)e G(A)n d~/, veH, and ~ > O. 

(H4) A is the subdifferential of some proper l.s.c. convex function (p : H -> ( - oo, 

+ oo]. 

REMARK 2.1. In separable Hilbert space, we can show that any maximal 
monotone operator has deriative aA(x, y) in the sense of (H1) for dense (x, y) m 

G(A). See [5], 

Now, we state our main theorem : 

THEOREM 2.1. Let (H1)-(H4) be satisfied. Let a e D(A) be a stationary solution 

of (E), i.e., Aa30, or equivalently, S(t)a = ul. If there exists an co > O such that 

eA(a, O) - col is maximal monotone, then a is asymptotically stable in the sense that 

there exist constants n > O, C > O, y > O such that 
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ll S(t)uo ~ all ~ Ce~vt 11 uo ~ all, 

whenever uo eD(A) and 11 uo ~ a 11 

Vt ~ o, 

5
 

3. Linearized equation 

In this section we assume the hypotheses (H1) and (H2) only. At first, we 

note that AJL is Gateaux differentiable at each u e H by the hypothesis (H 1) and 

Lemmas 1.1 and 1.2. Thus, dAA(u) = aAA(u) = (~A(J~u, A;Lu))A 

Let {SA (t)} be a nonlinear semigroup on H generated by - AA. Then 
uA(t) = SA(t)x, x e H, gives a unique classical solution uh e C1([O, oo); H) of the 

regularized equation of (E), i.e. , uA satisfies 

d uA(t) + AAuh(t) =0, o ~ t ~ T, 

uA(O) = x 

for all T> O. Furthermore, recall that limA$0S~(')uo = S(')uo in C([O. T] ; H) for 

uo e D(A),, where {S(t)} is a semigroup generated by - A. (See [2, 3].) 

Let O ~ s 

d
 vA(t) + dAA(SA(t)x)vA(t) = O, _ s

vh(s) = w e H 

To show that (LA; s, w) has a solution, we need the following two lemmas 

LEMMA 3.1. Iim inf~~.G(dAA(u)) :) G(dAA(v)). 

PROOF Take (oc p) e G(dA (v)) G((aA(J~v, AAv))~) Then (cc ~p, p) belongs 

to G(aA(J~v, AAv)). Let u - v Then (JAu~, AAu~) - (J~v, A v) m G(A) Hence 

by (H2) there rs a sequence (~~, n~)eG(aA(J~u~, AAu~)) such that (~~, ~~)-

(cc - ~p, p). Note that (~~ + A~~, n~)eG((aA(J~u., AAu~))A) = G(dA;L(u.)). Since 

(~~ + ~n*, n~)-(oc, P), this shows that (oc, p) belongs to lim inf.~_.G(dAh(u~)). I] 

LEMMA 3.2. For any x e H and A > O, u H> dAA(u)x is a continuous mapping from 

H to H. 

PROoF. Since dAA(u) = (aA(J~u, AAu))A, we notice that dAA(u) e L(H, H ) and 

rt rs ma~rmal monotone by (H1). Especially, we have 11 dAA(u)xll ~ (2/~) Ilxll. Let 

u* -> v. Then by Lemma 3.1, 

lim inf G(dAA(u~)) :D G(dA (v)) 3 (x dA (v)x) 
"" . " 
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Thus there exists a sequence (~~, dAA(u~)~~) e G(dAA(u~)) converging to (x, dAA(v)x) 

Therefore, we have 

ll dAA(u~)x - dAA(V)X Il ~ il dAA(u~)x - dAA(u~)~~ Il + Il dAA(u~)~~ - dAA(u~)x ll 

 O 

asn.~*co. [] 

At this stage we can show the existence of solutidns 'to (LA; s,' w) : 

PROPOSmON 3.1. - T-here exists a unique strong solution v.A e Wl'l(s, T; H ) of 

(LA; s, w), for which the equation is satisfied a.e. t e (s, T), and 11 vA(t) l[ 

PROoF. Set aA~(t) := aA(J~SA(t)x. AASA(t)x). Note that 

1
 dAA(SA(t)x) = (aA~(t))A = ~(1 - JahA~(t)) 

and eA~(t) is maximal monone by (H1). Thus v 1~ JaAA~(t)v is nonexpansive. Also, 

by Lemma 3.2, for any veH ~nd ~ > O, tH>JaAA~(t)v is continuous. Thus we can 

use [3, Corollary 1.1, .p.1l] and conclude that (LA ; s, w) has a unique strong solution 

VA e W1'1(s, T; H). Since dAA(SA(t)x) is a linear maximal monotone operator, 

ld o ~ 

 = - -

IlvA(t) I12, a.e. t, 

2 dt , 
from which one can easily deduce that 11 v (t) Il 

REMARK 3.1. As a matter of fact, VA e C I ([s, T] ; H) and it is a classical solution 

smce VA satisfies the relation 

, t-* t *-t vA(t) = e~ A w + e A JaA~(')vA(T)dT, 

as showh in [3, Corollary 1.1, p.1l] and t H> Ja~A~(t)vA(t) is continuous 

Let u.s define ~PA: H -> W1'1 := Wl'l(O, T; H) by 

(~PAx)(t) := SA(t)x for te[O,T], 

where T> O is given arbitrarily. The next proposition cha:racterizes the solution of 

(LA ; O, vo) by the proto-derivative of the solution of (EA). The basic idea is due 

to [4]. 

PROPOSITION 3.2. a~p;L(x)(vo) = vA, the umque solutron of (Lh, O, vo)' where a Is 

taken in H x W1'1 
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_ PROQF. Firstly, , we will take v e e*~PA(x)(,vo) and show that v = vA. Next, Iet 

v ~ vA. We will show that v e ei~PA(x)(vo)' ' 

(i) Take v e a*~pA(x)(vo)' Then there exist t~ ~ O and (w~, z~)~*(vo'v) in 

H x Wl I such that (x + t w., ~P x + t~z~)eG(~P~). Therefore, 

t~ I [~PA(~ + t~w~) - ~P,x] = z~ -> v in W1'1(c C([O, T] ; H)). 

Then we can extract a subsequence {k} c {n} such that 

t, I [SA(t)(x + t~w~) - Sh(t)x] = z.(t) -> v(t), Vt e [O, T], 

tk- I [S~(t)(x + tkwk) - S~(t)x] z (t) -> v (t) a e t e (O T) 

The latter reads 

t~ I [AASA(t)(x + tkwk) - AASA(t)x] = - z~(t) ~' - v'(t), a.e. t e (O, T). 

Notmg that AASA(t)(x + tkwk) = AASA(t)x - tkz~(t) and SA(t)(x + tkwk) = SA(t)x + 

tk.-k(t), we have 

(SA(t)x + tkzk(t), AASA(t)x - tkz~(t)) e G(AA). 

Hence (v(t), - v'(t)) e G(a.AA(SA(t)x)) = G(dAA(SA(t)x)) and so v(t) satisfies 

v'(t) + dAA(SA(t)x)v(t) = O, a.e. t e (O, T). 

Moreover, smce z*(O) = w* -> vo in H, the imtral condition v(O) = vo is fulfilled. By 

the umqueness of the solution, we conclude that v = VA as claimed 

(ii) Next, Iet v = VA e W1'1(O. T; H) be the strong solution of (LA; O, vo)' 

Let t~ ~ O and put P.(t) := t, I tAA(SA(t)x + t~v(t)) - AASA(t)x]. Then p~(t) -> 

dAA(SA(t)x)v(t) = - v'(t) a.e. te(O, T). Since ll p~(t) 11 ~ (~/~) Il v(t) II, we have P~ ~, 

- v' in L1 (O, T; H) by the Lebesgue domi.nated convergence theorem. Then, putting 

lc~(t) := - S; P~(T)dT + vo' we have 

T
 

sup ll IT~(t) - v(t) Il ~ 11 p (1') + v (T) Il dT -> O as n -> oo 

o~t~T o Therefore, 7c~ -> v in' Wl'l(O, T;' H). Now, put x~(i)':= SA(t)(x + t~vo)' Then x. e 

C I ([O, T] ; H) and x* satisfies 

x~(t) + AAx~(t) = O, t e [O. T], 

x~(O) = x + t~vo' 

On the other hand, if we set y.(t) :=.SA(t)x + t~1T~(t), then y~ e Wl'l(O, T; H) and y~ 

satisfies 

y~(t) + AAy~(t) = AAy~(t) - AA(SA(t)x + t~v(t)), a.e. t e (O, T), 

y~(O) = x + t~vo' 
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because y~(t) = S~(t)x - t,~pn(t) = ~ (A~SA(t)x + t~p~(t)) = - AA(SA(t)x + t~v~(t)). 

the well-known estimate for solutions of inhomogeneous evolution equations 
[2, 3]), 

By 
(see 

II x~(t) - y~(t) 11 ~ Il 4Ay~(T) - AA(SA(T)x + t~v(T)) 11 dT 

o
 

~ ' 2t, ' Il7c~(T) - v(T) IldT. ' (3.1) 
l ~ .o. 

Notmg that lly (t) + AAy~(t) Il 11 AA(SA(t)x + t.v(t)) + AA(SA(t)x + t~7t~(t))ll ~ 

(21~)t~ Il v(t) - Ic~(t) Il, we have 

Il x~(t) - y~(t) 11 ~ 11 - AAx~(t) + AAy~(t) Il + 11 - AAy~(t) - y~(t) ;i 

2t ~ 2-,-A Il ~~(t) - y~(t) 11 + A" Il 7c~(~)_-.v(t) [I 

~ ~2 ' 0' Il 7c~(T) - v(T) Il dT .+ ~" 11 Ic~(t) - v(t) ll. (3.2) 

Next we set v (t) (x (t) SA(t)x)It~. Then by (3:1), 

ll v (t) v(t) 11 = ' 11 ~p(t) - SA(t)~ - t~v(t) II 

= I 11 x~(t) - y~(.t) 11 + Il 7c~(t) -, v(t) Il 

2' 
~~ o 

From this' estimate, we conculde that v~ - v m C([O T] H) as n - oo 

On the other hand, by (3.2) 

ll v (t) v (t) Il I Il x' (t) - S~(t)x - t~v'(t) Il 

t~ " 

~ 1_ Ilx~(t) - S~(t)x t~1r.(t) Il + Il 7c (t) v (t) ll 

t
~
 

1_ Jl x~(t) y (t) Il + IllT (t) v (t) Il 

t
~
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~ ~2 o 117c~(T) - v(T) IldT + ~ Il 17:~(t) - v(t) 11 + 11 7c~(t) - v'(t) Il 

Hence, by intergrating the above over [O, T], 

ll v (T) v (T) Il dT ~ ~2 11 7T (1;) v(1;) Il dT 

T
 

+ - Il 7c~(T) - v(1:) 11 dT + Il 71:~(T) - v'(1;) 11 dT - O 

~o 
as n -> oo. Thus we obtain v~ -> v in W1'1(O. T; H) as n -> oo. Finally, noting .that 

~PA(x + t~vo)(' ) = x~(' ) = SA(' )x + tnvn( ' ) ~ (~PAx)(' ) + ,tnvn(' )' we have (x, ~PAx) + 

tn(vo' vn)eG(~Ph), and so (vo' v) e G(ai~PA(x)) holds. C] 

LEMMA 3.3. The operater ~PA : H -> W1'1(O, T ; H) is Gdteaux dlfferentiable at each 

x e H, and d~PA(x) = a~pA(x). 

PROoF. ~PA is Lipschitz continuous smce 

Il ~PAZ - ~PAX llw"' = Il S (t)z S (t)x 11 dt + Il S (t)z S (t)x lldt 
o
 

= 11 SA(t)z - SA(t)x 11 dt + Il - AASA(t)z + AASh(t)x 11 dt 

- Ilz-xll= 1+; Tllz xll 2T 

Next we will show that D(e~PA(x)) = H and e~PA(x) : H -> Wl'l(O, T; H) is a bounded 

linear mapping. Then we can use L'emma 1.1 to reach the assertion. By 
Proposition 3.2, a~PA(x)vo ~ vA('; vo) is a unique strong solution of (LA; O, vo)' 

Since dAA(S~(t)~x) is a bounded li'ne,ar maximal monotone operator -'defined on H, 

oce~PA(x)vo + pe~PA(x)wo becomes the strong solution of (L~; O, vo) with initial 

value ocvo + pwo' Then the uniqueness of the solution implies that a~PA(x)(ocvo + pwo) 

= -cce~pA(x)v,o + pa~PA(.x)wo (linearity). ,Furthermore, 

ll a~PA(x)vo ll w"' = llv (t vo)Ildt + Il v (t vo)ll dt 

~ 11 vo ll dt + Il dAA(SA(t)x)vA(t ; v6) 11 dt 

2T ~ TIlvoll + ~ llvoll = I +~ Tllvoll 

A
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This completes the proof. [] 

REMARK 3.2. The conclusion of Lemmas 3.2 and 3.3 is stronger than 
[6, Proposition 3.2] since W1'1 c C([O, T] ; H). It is not , necessary to be stronger 

to proceed the argument 

LEMMA 3.4. The mapping z H> d~PA(z)v is continuous from H to C([O, T] ; H)for 

every veH, T> O. 

This lemma is shown by the same way as [6, Lemma 3.3], using Kisyfiski's 

technique. Hence the proof is omitted. The next lemma is also proved in the 

same way as m [6, Lemma 3.4] 

LEMMA 3.5. The following equality holds : 

~PAy - ~PAX = d~PA(ey + (1 - e)x)(y - x)dO in C([O, T] ; H), (3.3) 

where the intergral is taken in the sense of Bochner. 

4. Proof 'of Theorem 

Let T> O and fix to e (O, T) arbitrarily. Let u e A ~ I O. When (H4) holds, the 

following esitimate concerning the parabolic regularity is valid by virtue of [3, p.59 

(22)] : 

ll J~ SA(t)x - u ll + 11 AASA(t)x fl ~ Ilx - u ll + IIAou 11 + -It ll x - u [l 

= I +1 Ilx-ufl ~ I +tl llx ull te[to, T] (4.1') 
t
 

Hence, there exists a 6 > O such that llx - u ll 

(J~SA(t)x, AASA(t)x) e G(A) n i~f for t e [to' T] (4.2) 

where c~/ is the one appeared in the hypothesis (H3). We need the following lemma 

which is derived from (H3). In fact, it is where (H3) is used 

LEMMA 4.2. Let to' u, ~ be as above. Take x satisfying llx-ul 
weH. Let v~(t) = v~(t; to' w) and v~(t) = v~(t; to' w) be solutions of (LA; to' w) 

corresponding to the operators dAA(SA(t)x) and dAA(SA(t)u)(~ dAA(u)), respectively. 

Then we have 

llv~(t) - v~(t)ll ~ (t - t ) I + tl Ilx ullL(llwll) (4.3) 
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PRooF. For simplicity, we set J~(t) :=JeAA~(t) where aA~(t) is the one in the 

proof of Proposition 3.1. Then v~ satisfies 

It t - t* * - t v~(t) = e~ A w + ~ e h J~(T)v~(T)dT (4.4) 
to 

as mentioned m Remark 3.1. It follows from (4.1), (4.2), (4.4) and (H3) that 

1 t *-t 
Ilv (t) v (t) Il ~ ~ e A Il J~(1)v~(T) - J~(T)v~(T) lldl 

t* 

1 t *-t I t *-t ~ ~ (T) J (T)v (T) Il dT + ~ e A Il J~(T)v~(T) - J~(T)v~(T) IldT e A Il J~(T)v~ -

_ e A (ll J~SA(T)x - u 11 + IIAASA(T)xlDL(llv~(T) lDdT + ~ toe A 11 v~(T) - v~(T) IldT 

t* 

1 t *-t I t *-t ~ (1 + to Ilx - uIIL(llwlD e ~ dT + ~ e A Ilv~(T) - v~(T)lldT 

t* t* 

t-to t 1 1 + I llx uIIL(llwlDA(1 - e~ A ) + e~~ e~ Ilv~(T) - v~(T)lld? 

By Gronwall's lemma, we achieve the desired inequality (4.3). [] 

PROOF OF THEOREM 2.1. Let ~ be a stationary solution of (E), i.e., Aa30. By 

the assumption of Theorem 2.1, there exists an co > O such that aA(a, O) - col rs 

maximal monotone. Then it follows that AAa = O and dAA(a) - coAI is maximal 

motone with coA := co/(1 + ~co). Then we have the estimate 

~'(t t~) fl w ll, weH, t ~ to' (4'5) ll v~(t; to' w)ll ~ e~ ~ 

where v~(t; to' w) is a solution of (LA; to' w) with the operator dAA(SA(t)a) = dA;L(a)' 

For, by the fact that dAA(a) - coAI is a linear maximal monotone operator, 

ld coAllvA(t)[1 

 ~ - ~ dt Ilv~(t)ll ae t > t 

From this one easily sees that ll v~(t) Il ~ e~"'(t~t*)II v~(to)II 

Now take 80 e (O, co). Since coA T co, there is a ~o > O such that O 

implies that O 

 O such 
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that O 

 o such that Q e~"t* - e~(~~*')t*. Now let ~ > O be a constant depending on to' and a, , for which 

(4.2) with a in place of u is satisfied. Besides, take n > O such that O 

8/L(1)to}' where L(r) I + I , L(r) 
t
o
 

Put t:= 2to(> to) and observe that by Lemma 4.2 and (4.5), the following 

estimate holds 

ll [d~PA(x)vo](t) Il = Il v~.(~; to'[d~PA(x)vo](to)) Il 

~ Il v~(~; to' [d~PA(x)vo](to)) ~ v~(t; to' [d~PA(x)vo](to)) Il 

+ Il v~(t; to' [d~Ph(x)vo](to)) ll 

~ to ll x - a ll L(ll [d~PA(x)vo](to) Il) + e~ Il [d~P (x)vo](to) Il ~^t* 

(~ *')t' Ii vd ll, ' (4.6) ' ~ tonL(Ilvoll)+e~ ~ 

provided llx u ll 

sup ll [d~PA(x)vo](f)ll ~ tonL(1) + e~ ~ (~ *')t* 
n ., n ~ 1 

Since v H> d~PA(x)v is linear, we obtam 

ll [d~PA(x)v](~) Il ~ e~"t' llvll for veH, (4.7) 

whenever ll x - a ll 

Let llx-all 
by (4.7), 

ll [d~P (Ox + (1 O)u)(x u)](t)ll 

Noting that SA(t)a = a, it follows from Lemma 3.5 that if llx - a 11 

Il SA(~)X - all ~ e~"t' 11 x - ~ll.･ ' (4.8) 

Let uo eD(A). Iluo '~ ~ ll 

' Il S~'(t)uo ~ all = 11 S~(~'uo ~ S~(t)all ~ lluo ~ all 

Accordingly, we can use (4.8) repeatedly, and have 

ll SA(k~)uo ~ all = Il S~(t)uo ~ all = 11 SA(~(Sk~1(r)uo) ~ a II 

~ e~'t* 11 Sk~1(~)uo ~ ~ll ~ "･ ~ e~"kt (4.9) " Il uo '~ a ll. 

Now, take any t > T( = 2to) and put 
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k := [t/r] ([ I denotes the Gaussian bracket), t* := t - k~ 

Then O 

ll SA(t)uo ~ all = Il SA(t*)SA(kt)uo ~ all ~ Il Sh(kt)uo ~ all 

.kt ~ e~ "Iluo ~ all = e~~kT Iluo ~ all (by (4.9)) 

Consequently, setting y = ~ > O and C e2 e"t* we have 
2
 

IIS (t)u uli 

Since uo e D(A) Ietting ~ ~ O, we acheive 

IIS(t)uo ~all ~ Ce~ytlluo ~all, t> ~ 

For O ~ t ~ T, it is easily verified that llS(t)uo ~ all ~ ere~tll uo ~ all 

proof is complete. [] 
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