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We will present a principle of linearized stability of stationary solutions to nonlinear
evolution eqautions having possibly multi-valued subdifferential operators in Hilbert spaces,
with the help of ‘nonsmooth analysis.’ )

Introduction

Let H be a Hilbert space and ¢:H — (— 00, + o0 ] be a proper lower semicon-
tinuous convex function. In this paper, we give a principle of linearized stability
of stationary solutions of nonlinear evolution equations of the form

%(t) + d0(u(1)30,

where 0¢ is the subdifferential of ¢.

Subdifferentials are typical and important examples of maximal monotone
operators in Hilbert spaces. Since a maximal monotone operator generates a non-
expansive semigroup, it is evident that all the stationary solutions of the above
equation are stable. But the asymptotic stability cannot always be obtained. Our
purpose is to investigate the asymptotic stability of stationary solutions by the
method of ‘linearization’. Of course, the subdifferential d¢ is not Fréchet
differentiable in general, and so we need to introduce a different notion of
differentiability in order to consider the ‘linearization’ of the operator. We adopt
the idea of tangent cones from ‘nonsmooth analysis’ and use the proto-differentiation
introduced by Rockafellar [7]. In [6], we have considered the similar equations
having single-valued quasi-m-accretive operators in Banach spaces. There, the
single-valuedness of the operators is essentially used. One of the purposes of this
paper is to treat multi-valued operators. We remark that the subdifferential
operators bring to the parabolic regularity to the solution and this feature plays
an important role in our argument.

We prepare some notations and preliminary lemmas in §1. Our main result is
stated in §2. In §3, we analyze the regularized equation and its linearization. The
proof of our main theorem is contained in §4.
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1. Preliminaries

In order to formulate our results, we have to explain the notion of derivatives
which we will adopt from ‘nonsmooth analysis’. Let U be a metric space and X be
a Banach space. For F:U — 2%, define

liminf Fw):= () J () (F(u)+ eB),

u=rug(in U) £>0 n>0 ueB(uo, n)

limsup Fu):= () () U (F(u)+ ¢eB),

u=rug(in U) £>0 1> 0 ueB(uo, )

where B(ug, ) denotes the n-ball centered at u, in U and &B denotes the &-ball
centered at 0 in X. If liminf,,, F(u)=limsup,., F(u), then we denote it by
lim,, ., F(u).

Now, let X and Y be Banach spaces and let F:X —2Y be a multi-valued

operator, which domain, range, and graph are defined as follows:

D(F):= {xeX|F(x) # @}, R(F):= |) F(x),

xeD(F)
G(F):={(x, y)e X x Y|xeD(F), ye F(x)}.

For (x, y)e G(F), we define multi-valued operators 0;F(x, y) and d,F(x, y): X — 27 by

G(0;F(x, y) = lirrignft”l[G(F) —(x, 1,
G(0,F(x, y) = liml%up tTHGF) — (x, y)],

in other words,
(u, v)e G(0; F (x, y)) <= Vt, | 03(u,, v,) > (4, v) in X x Y:
(x + tyuy, y + t,0,)€ G(F),
(u, v)e G(0,F(x, y)) <= 3t,103(u,, v,) > (4, v) in X x Y:
(c + t,u,, y + t,v,)€ G(F).

The operators 0;F(x, y) and 0,F (x, y) are called the intermediate derivative and the
contingent derivative of F at (x, y), respectively in ‘nonsmooth analysis’. For further
details, see e.g. [1,4] If 0,F(x, y)= 0,F(x, y), then we denote it simply by
O0F(x, y). If this is the case, F is said to be proto-differentiable at x relative to y
and OF(x, y) is called the proto-derivative. See [7]. When F is single-valued, we
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write OF (x):= 0F(x, F(x)).

Let F be a single-valued mapping from X to Y with D(F) = X. We say that
F is Gateaux differentiable at x € X if there exists a dF(x)e L(X, Y)(= the space of
all continuous linear mappings from X into Y) such that

(¥-lim t~U[F (x + th) — F(x)] = dF(x)h VheX.

dF(x) is called the Gateaux derivative of F at x.
The following lemma is shown in [6, Lemma 1.1].

LemMa 1.1. Let X and Y be Banach spaces. Let F: X — Y be a single-valued
Lipschitz continuous mapping with D(F) = X. If 0;F(x)e L(X, Y), then F is Gateaux
differentiable at x and 9;F(x) = dF(x). '

Let H be a Hilbert space. Denote by <-,-> the inner product. A possibly
multi-valued operator Q:H — 2% is said to be monotone if '

X=p,x' =y>=20 Y(xx), 1 y)eGQ)

A monotone operator Q is called maximal monotone if there is no monotone
extention of Q. For a maximal monotone operator Q, we define the resolvent and
the Yosida approximation by J¢:=( + 4Q)"! and Q,:=(1/A)(I —J%) for A >0,
respectively. It is well known that Q is maximal monotone iff J 2 is a nonexpansive
mapping defined on all of H for all 1> 0. Q, is a Lipschitz mapping with constant
2/A (in fact, 1/2) and is also a maximal monotone operator. See [3].

The following lemma is a special case of [6, Lemma 1.2] and so the proof is
omitted.

LeMMA 1.2 Let Q be a maximal monotone operator in H.  Assume that 9,Q(x, y)
is also maximal monotone. Then (8;Q(x, y)); = 6;Q,(x + Ay, y) for (x, )€ G(Q). The
same fact is also true for 0.

Finally we, give the definition of subdifferential operator. For a proper lower
semicontinuous (l.s.c.) convex function ¢:H — (— o0, + o], define

0p(x):= {yeH|p(2) — o(x) =y, z—x), VzeH}.

The possibly multi-valued operator d¢ is called the subdifferential of ¢ and this is
the important example of maximal monotone operators. See [3].

2. Main result

Let H be a Hilbert space and denote by ||| its norm. Let A be a possibly
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multi-valued maximal monotone operator in H. It is well known that 4 generates
a nonlinear nonexpansive semigroup {S(f)},», on D(_A) If we put u(t) = S(t)ug, ug €
D(A), then ue C([0, c0); D(A)) gives a unique ‘generalized or weak’ solution of the
Cauchy problem:

iu(t) + Au(t)20, 0<t< oo,
a (E: 0, ug)
u(0) = u,. S
See [2, 3].

In what follows, we assume the following:hypotheses:

(H1) The operator A has the multi-valued' linear maximal monotone proto-
derivative at x € D(A) relative to y € Ax, that is, for each (x, y) € G(A), there
exists a multi-valued linear maximal monotone operator 0A(x, y): H — 2H
such that ¥

G(0A(x, y)) = l,iff,‘ tHG(A) — (x, Y]

(H2) The correspondence (x, y)—>0A(x, y) is lower semicontinuous in the following
sense (cf. [1]):

. liminf  G(0A(x, y)) > G(0A(z, w)).
‘ (x,9)=(z,w) in G(4) ‘
(H3) For any (u, 0)eG(A), there exist a neighborhood # . of (u,0) and a
nondecreasing function L:[0, c0) — [0, co) such that

| JGAP o — JoAWDp || < Allx — ull + Iy 1) L(lv )
for all (x, y)e G(A)n%, veH, and 4> 0.

(H4) A is the subdifferential of some proper ls.c. convex function ¢:H —(— o,
+ o0].

Remark 2.1. In separable Hilbert space, we can show that any maximal
monotone operator has deriative dA(x, y) in the sense of (H1) for dense (x, y) in
G(A). See [5]: : :

Now, we state our main theorem:

THEOREM 2.1. Let (H1)—(H4) be satisfied. Let iic D(A) be a stationary solution
of (E), ie., Aiia0, or equivalently, St)u = u. If there exists an w >0 such that
0A(@, 0) — wl is maximal monotone, then u is asymptotically stable in the sense that
there exist constants 1 >0, C >0, y >0 such that
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IS@)uo — il < Ce™"lluo —ul, Vt=0,

whenever uoem) and |ug — || <n.

3. Linearized equation

In this section we assume the hypotheses (H1) and (H2) only. At first, we
note that A, is Géteaux differentiable at each ue H by the hypothesis (H1) and
Lemmas 1.1 and 1.2. Thus, dA,(u) = 0A4,(u) = (0A(J{u, A;u));.

Let {S,(t)} be a nonlinear semigroup on H generated by — A;. Then
u,(t) = S,(t)x, xeH, gives a unique classical solution u, e CH([0, o0); H) of the
regularized equation of (E), ie., u, satisfies

i“z(t) + Au,t)=0, 0<t<T
a (Ey; 0, %)
u,(0) = x.

for all T> 0. Furthermore, recall that lim,,oS;(*)uo = S(*)uo in C([0, T]; H) for
uy € D(A), where {S(r)} is a semigroup generated by — 4. (See [2, 3].)
Let 0 <s < T and consider the linearized equation of (E,):

ivl(t) + dA;l(Sl(t)x)Ul(t) = O, S S < 7:
de. (Lys s, w)
v,(8) = weH.

To show that (L,; s, w) has a solution, we need the following two lemmas.
LemMa 3.1. liminf,,G(dA;(u) > G(dA4,[v)).

Proor. Take («, f)e G(dA,(v)) = G((OA(J4v, A;v));). Then (« — AB, B) belongs
to GOA(J%v, A,v). Let u,—»v. Then (J4u,, Au,)—(J4v, A;v)in G(4). Hence,
by (H2), there is a sequence (&,, 7,)€G(OA(J{u,, A;u,)) such that (&, n,) —
(@ — AB, B). Note that (&, + Ay, n,) € G((OA(J 4u,, Azu,));) = G(dA;(u,)). Since
(&, + M, 1,) = (@, B), this shows that (o, p) belongs to liminf, _,G(dA;(u,)). U

LeMMA 3.2. For any xe H and A > 0, urdA,(u)x is a continuous mapping from
H o H.

PROOF. Since dA,(u) = (0A(J4u, A,u)),, we notice that dA,(u)eL(H, H) and
it is maximal monotone by (H1). Especially, we have ||d4,w)x| <(2/4)[|x|l. Let
u,—v. Then by Lemma 3.1,

liminf G(dA;(u,)) © G(dA,[v))>(x, d4,(v)x).

Up =0



6 Nobuyuki- KaTo -

Thus there exists a sequence (£,, dA4,(u,)¢,) € G(dA,(u,)) converging to (x, dA4,(v)x).
Therefore, we have

ldA;(u,)x — dA,()x]| < [|dAx(u,)x — dA; () &l + | dA; (u,)E, — dA;(u,)x |
2.
<7 Ix — &all + 1 dA;(u,) S — dA; (u,) x| =0

as n—oo. O
At this stage we can show the existence of solutions to (L;; s, w):

PROPOSITION 3.1. - There exists a unique strong solution v,e W'i(s, T; H) of
(Lj; s, w), for which the equation is satisfied a.e. te(s, T), and ||v,()] < ||w].

PROOF. Set 043(t):= 0A(J1S,(t)x, A;5,(t)x). Note that
1 .
dAl(Sl(t)x) = (aAi(t))A = 1(1 - JZA)»(I))

and 0A4%(t) is maximal monone by (H1). Thus v+ J{4:®p is nonexpansive. Also,
by Lemma 3.2, for any veH and 4> 0, t—J%4:®y is continuous. Thus we can
use [3, Corollary 1.1, p.11] and conclude that (L;; s, w) has a unique strong solution
v,e Whi(s, T; H). Since dA,(S,(f)x) is a linear maximal monotone operator,

1d

0 < dA,(S;()x)v,(0), v,(8)> = — 3T ll02(2) 12, ae. t,

from which one can easily deduce that [|v,(t)| < ||lv,(s)||. O

REMARK 3.1. As a matter of fact, v,e C*([s, T]; H) and it is a classical solution
since v, satisfies the relation
‘ _t=s Crot s :
v,)=e T w+ J e JiOy, (t)dx,

s

as shown in [3, Corollary 1.1, p.11] and t+— J43®y,(¢) is continuous.
Let us define &;: H—» Wht:= Wh'(0, T; H) by

(Z,x)(@):=S,(t)x for te[0,T7],

where T> 0 is given arbitrarily. The next proposition characterizes the solution of
(L33 0,v0) by the proto-derivative of the solution of (E;). The basic idea is due
to [4].

PROPOSITION 3.2. 0% ,(x)(vo) = v;, the unique solution of (Lj; 0, vy), where 8 is
taken in H x Wi, :
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~ Proor. Firstly, we will take ved,%,(x)(v,) and show that v =wv;. Next, let
v=v,. We will show that ved,¥ ;(x)(vo).
(i) Take ve€d,&,(x)vy). Then there exist t,|0 and (w,, z,) = (vg, ) in
H x WY1 such that (x +t,w,, ¥;x + t,2,)€G(Z;). Therefore,

ti L[ 2% + tyw,) — F3x] = z, >0 in W (= C([0, T1; H)).
Then we can extract a subsequence {k} = {n} such that
2 IS0 + t,w,) — $,0x] = 2,(0) > o(e), Ve[, T,
7 [S5(0 0 + towy) — Si0)x] = z(B) > V' (1), a.e te(O, T).
The latter reads
7 L AS(O)(x + tw) — 4;8,(0x] = — z () > — (), ae te(0, T).
Noting that A4,S,(t)(x + t;w,) = 4;8;(0)x — t,z(t) and §,(6)(x + tewy) = S,(0)x +
t,z(t), we have
(S1(0)x + 1z, (1), A;8,()x — Lz (1)) € G(A,).
Hence (v(t), — v'()) € G(0,4,:(S,(t)x)) = G(dA,(S 4(0x)) and so v(t) satisfies
V'(t) + dA, (S, ()x)v(t) =0, ae. te (0, T).
Moreover, since z,(0) = w, = v, in H, the initial condition v(0) = v, is fulfilled. By
the uniqueness of the solution, we conclude that v = v, as claimed.
(i) Next, let v =v,e W"'(0, T; H) be the strong solution of (L;; 0, vo).
Let ¢,/ 0 and put B,(t):= t; ' [4:(S:(t)x + t,0(t)) — A;S,(¢)x]. Then B,(t) —
dA,(S, ) x)o(t) = — v'(t) ae. te(0, T). Since || B, (A < 2/Alv(@®)l, we have B,—
— ¢/ in I}(0, T; H) by the Lebesgue dominated convergence theorem. Then, putting
a(t):= — [, Ba(t)dT + vo, We have

T

JSup | m,(t) — (@) < f I Ba(x) + V()| dT — 0 as n— co.
<t< 0

Therefore, m, — v in W (0, T;t H). Now, put x,(t):= S;(®)(x + t,v0). Then x,€
C([0, T]; H) and x, satisfies
{X;‘(t) + A).xn(t) = Oa te [03 T]a
x,(0) = x + t,v,.
On the other hand, if we set y,():=.S,(t)x + t,m,(t), then y,€ W*'(0, T; H) and y,
satisfies
{y;l(t) + Alyn(t) = Alyn(t) - Al(Sl(t)x + t_nv(t)), ae.te (0’ T),
yn(o) =X+ tnUO9
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because y, () = S3(6)x — 1,8,(t) = — (4;8,(t)x + 1,8,(t) = — A;(S;(Ox + £,v(t)). By
the well-known estimate for solutions of inhomogeneous evolution equations (see

2, 3)) o
1xat) = 1O < f 1 A33n(0) — A5(S3(0)% + ty0(@) de
! (]
| é%ff f ) — v(o) . e
. 0. ! .
Noting that [y, () + A,u@)l = | — A,(S:(0x + t,0(0) + A,(S,(0% + t,71,(0)] <
@/ Mt llv() — m,(¢) ||, we have
5400 = O < | = 4,0+ Au0] + 1= A3, = 7,0
< % 1) = 1O + 27[ 176) — o)
2 ! 2
< th f 17(0) — 0(x) | dr + Tt 17,0 — o(0)]. (3.2)
0

Next, we set v,(t):= (x,(t) — S,()x)/t,. Then by (3.1,

1
llva(t) — v(@) || =  (0) = 8:@0x — 1,00)|

n

1 . '
| < - [ x,(8) = S3(®)x — t,m, ()| + || 7,(2) — v(2)]|

. °n

- tl 1) — 31 + 17,(0) — 00|

n

< f 1 7,(8) — 0@ d + 17,(0) — 001
0

From this estimate, we conculde that v, —v in C([0, T]; H) as n— oo.

On the other hand, by (3.2)

14400 = YOl = 1540 ~ S0 ~1,0 0

n

1
< Ix,(8) = S3(®)x — t,m, O + [, (2) — v' (@)

n

1
= Ixa(8) = ya@ 1l + I, (0) — V@)l

n
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t 2 . , :
< % f [|7,(z) — v(z) ld7 + 1 I7,(2) — v@) || + I, () — V'@ |-
0 v ‘
Hence, by intergrating the above over [0, T],

J‘T o) —v(@ldr < %g j Im,(z) — v(z) || d
0 0

2 T T - 7
+ TJ | 7u(z) — v(0) | dT + J 7(e) — v'(¥) [ dT — 0
0 . 0 . L

as n— oo. Thus .we obtain v, » v in W(0, T; H) as n— co. Finally, noting that
yl(x + tnvo)(.) = X”(') = SA(.)x + tnvn(.) = (ylx)() +’tnu‘n(.)5 we have (x’ 's_p),x) =+
t,(vo, v,)€ G(Z;), and s0 (vo, V)€ G(0;%;(x)) holds. O

LeEMMA 3.3. The operater &,: H— W"(0, T; H) is Gateaux differentiable at each
xeH, and A ,(x) = 0F 4(x).

PrOOF. &, is Lipschitz continuous since

T T
|F1z2 — &L axwra = J I S.(t)z — S;(Ox |l de + j [ S5()z — S5()x || dt
0 0
T ‘ T C
= J‘ I18:(t)z — S;()x | dt +f | — A;8:(8)z + A;5,(@O)x | dt
0 0 ‘

2T 2
<Tlz—xl| +7||Z—XII =<1 +1>T|I,Z — x|

Next we will show that D(05,(x)) = H and 0.,(x): H—» W'1(0, T; H) is a bounded
linear mapping. Then we can use Lemma 1.1 to reach the assertion. By
Proposition 3.2, 0%,(x)vy = v,(*; vo) is a unique strong solution of (L,; 0, vy).
Since dA,(S,(t)x) is a bounded linear maximal monotone operator -defined on H,
20 ;(X)vg + fOSL ;(x)wy becomes the strong solution of (L,; 0, v,) with initial
value avy + fwg. Then the uniqueness of the solution implies that .5, (x)(oawy + Bw,)
=00, (X)vg + PO, (X)wq (linearity). Furthermore,

[ a5”1(3()00 [ —j I UA(I vo) [l dt +f [ 05(t; vo)ll dt
j lvo Il dt + J |dA;(S; (@) x)va(t; vo)ll de

2T 2
< Tl = lvoll = (1 +E>Tllvoll-
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This completes the proof. O

ReMARkK 3.2. The conclusion of Lemmas 3.2 and 3.3 is stronger than
[6, Proposition 3.2] since W'! < C([0, T]; H). It is not necessary to be stronger
to proceed the argument.

LEMMA 34.  The mapping z+— dS;(2)v is continuous from H to C([0, T]; H) fbr
every veH, T> 0.

This lemma is shown by the same way as [6, Lemma 3.3], using Kisyniski’s
technique. Hence the proof is omitted. The next lemma is also proved in the
same way as in [6, Lemma 3.4]. :

LemMA 3.5. The following equality holds:

1

Vﬂy—&’lx=J‘

0

d¥;0y + (1 = 0)x)(y — x)d60 in C([0, T]; H), (3.3)

where the intergral is taken in the sense of Bochner.

4. Proof of Theorem

Let T> 0 and fix t,€(0, T) arbitrarily. Let ue A~10. When (H4) holds, the
following esitimate concerning the parabolic regularity is valid by virtue of [3, p.59

(22)]:

' 1
1J38:6)x — ull + | 4;8,0x ] < I1x — ul| + || A%u| + ;llx —ul

=<1+%)||x—u||s(1+tl)||x~un, tefty, T 4.1)

0

Hence, there exists a 6 > 0 such that |x —u|| < & implies
(J4S,(0)x, 4;8,(00x)eG(A)n« for te[t,, T, 4.2)

where % is the one appeared in the hypothesis (H3). We need the following lemma,
which is derived from (H3). In fact, it is where (H3) is used.

LEMMA 4.2. Let to, u, 6 be as above. Take x satisfying ||x — u | <6 and
weH. Let vi(t)=vj(t; ty, w) and v4(t) = v4(t; ty, w) be solutions of (L;;tg, w)
corresponding to the operators dA;(S,(1)x) and dA,(S,(H)u)(= dA 1), respectively.
Then we have

i) — i@ < (¢ — to)<1 + )llx —u[ L(Iwi). (4.3)

1
Lo
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Proor. For simplicity, we set J}(f):= J42®, where 0A4}(t) is the one in the
proof of Proposition 3.1. Then v} satisfies

—to 1 .-
(O = e Tow+ - J T i (0vi(r)de (@.4)

to

as mentioned in Remark 3.1. It follows from (4.1);(4.2), (4.4) and (H3) that

lvi() — i1 < % I €T || J3@i) — 4@l de

to

<! j ¢TI OV — BEHEId + f ST 140030 — T o) de

to

! 1" 1=t
< j e 1 (13Sa0)x —ull + [ 4:8,@x L3 e + - j e 7 ||vi(z) — vi(r) | de

to

t T 1 ! T
s(l +f~>ux—uuL<uwu)f eT’dr+zf ¢T | vj(r) — vi(r)  de
to

0 to

t

- (1 + ti)nx —ulLOwA — =T + ek f %e% 103() — v(0) 1 de.

0 to

By Gronwall’s lemma, we achieve the desired inequality (4.3). [

ProoF OF THEOREM 2.1. Let # be a stationary solution of (E), ie., A#30. By
the assumption of Theorem 2.1, there exists an w >0 such that 0A(#, 0) — wl is
maximal monotone. Then it follows that 4,4 =0 and dA,(#) — w,I is maximal
motone with w,:= w/(1 + Aw). Then we have the estimate

105(t; to, Wl < e 7w, weH, t>t,, (4.5)

where vi(t; ty, w) is a solution of (L, ; to, w) with the operator dA4,(S,(t)i) = dA4,().
For, by the fact that dA,(#) — w,I is a linear maximal monotone operator,

_ _ _ 1d
o, |05 17 < <dA;@)v5 1), vi(t)) < — 37 1A% ae t=>t,.

From this one easily sees that || vi(t)]| < e™ 27| vi(to) .
Now take &,€(0, w). Since w,Tw, there is a 1, >0 such that 0 <A< 4,
implies that 0 <w — w, <& Let 0<i< A, Then there exists an o >0 such
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that 0 <o <@ — ¢y < w, < w. Furthermore, we can take ¢ > 0 such that 0 < ¢ <
e~ — g~(@~eo Now let § >0 be a constant depending on ¢, and i, for which
(4.2) with @ in place of u is satisfied. Besides, take # > 0 such that 0 < # < min{J,

e/L(1)ty}, where L(r):= ( %)L(r).

Put #:=2ty5(>t,) ‘an‘d observe that by Lemma 4.2 and (4.5), the following
estimate holds: ' '

IldZ 3 (X)vo (@) = [103(F; to,[dS 2(x)vo (2o ) I
< 103(E; to, [AF3(x)vo (ko)) — V3(F; to, [dF 1(x)0o1 (o)) |
+ 103(E; to, [dF 3(x)vo1(to))
< tollx — Al L(I [d 3 (x)vo 1 (to) ) + e~ **° | [dS 1(x)vo 1 (ko)
< tonL(llvel) + e~ vg |, (4.6)

provided | x — #|| <#y. From (4.6), we know that if |x — | < #, then

(Sup IdZ5x)vol @) St L(1) + e @700 < g 4 pT(@ o0 < @000,
voll <

Since vi—dS,(x)v is linear, we obtain
I[d7,(x)v]1@)l < e *[lv| for veH, 47
whenever || x — il <y, 0< i< 4,.

Let |x —i|| < and 06[0 1]. Slnce ||0x+(1—0)u—u||—9||x—u||<11,
by (4.7),

I [d«%(@x +1 - 9)u)(x — 0)](F) II e ™|x—ul.
Noting that S,(t)u = u, it follows from Lemma 3.5 that if |x —a| <, then

18:()x — ]| < e ™°fx—ill. - (4.8)

Let ugeD(A). | uy.— | <#n. For any integer k,
1S5@)uo — all = I S5(Duo — SE@al < lluo — il < n.
Accordingly, we can use (4.8) repeatedly, and have
I8 (kEyuo — |l = [|S5(E)uo — @)l = 1|S,(D(S5 ™ (o) — all
<e ™| ST Pue — i < - S‘e'“’“" lug'— il 4.9)

.Now, take any t > f( = 2t,) and put
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k:=[t/f] ([ ] denotes the Gaussian bracket), t*:=1 — ki.

Then 0 <t — < ki <t, especially 0 < t* <f. Hence we have

182 (O)ug — @l = I1S:(t*)S(kP)uo — | < | (kE)uo — @]

< e oy, — il = P luo — il  (by (4.9)

< T8 up — it = e3e ¥ up — il

. o 3
Consequently, setting y = 3 >0 and C = 2" = ¢™°, we have

I S,(®)uo — all < Ce™"|lug — il

Since u,eD(A) letting 4|0, we acheive

IS@E)uo — all < Ce™"|lup —ull, t>T.

For 0<t<¥ it is easily verified that |S()uo — il <efe™|lug —all. Thus the
proof is complete. [
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