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The aim of this paper is to study some properties, of I~irichlet potentials and pure 

potentials of order p on an infinite network. It will be shown that several assumptions in the 

theory of 'general nonlipear potenti~l theo.ry are fulfilled in our ca, se. The space of Dirichlet 

potentials of ord, 9r p will play _a c~Ycial role in our study if the network is hyperbolic of order 

p. A nonlmear version of ~artan's domination principle will be sho)vn with elementary 

properties of p-superhatmonic functions 

S1. '･Introduction' 

It has been well-known that a discrete analogue to potential theory on Riemann 

surfaces (see for instance [5] and [7]) plays important roles in the study of discrete 

harmonic functions on an infinite network or random walks. Our aim is to 
investigate nonlinear version of discrete potential theory along the. s~me lines as in 

[6] or [8]. For notation and terminology, we mainly follow [8] and [10] 
Mdre' precisely, ' Iet N = {X, 'Y, K, r} be an' infinite tietwork which is locally 

finite and has no self-loop. Denote by L(X)(resp. L(Y)) the set of all real valued 

functions on the set X (resp. Y) of nQd~s_ (resp. arcs) and by Lo(X) the set of all 

u e L(X) with finite support. Let p and q be positive numbers such that I 

and 1/p + 1/q = 1. The energy Hp(w) of w eL(Y) of order p is defined by 

Hp(w) = ~y=Y r(y) I w(y)lP. 

The mutual energy 

 of w, w' e L(Y) is defined by 
 = ~y=Y r(y)w(y)w'(y) 

if the sum is well-defined. 'Denote by Lp(Y; r) the set of all w e L(Y) with finite 

energy of order p. The mutual energy is well-defined for the pair of elements in 

Lp(Y; r) and Lq(Y; r). 

The Dirichlet sum Dp(u) of u e L(X) of order p is defined by 
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Dp(u) = Hp(du) = ~y=Y r(y) I du(y) IP 

where du e L(Y) is the discrete derivative of u, i.e., 

du(y) = - r(y)~ I ~.~x K(x, y)u(x). 

Denote by D(P) (N) the set of all u e L(X) with finite Dirichlet sum of order p and 

by D(P)(N) the closure of Lo(X) in D(P)(N) with respect to the norm : 

ll u Ilp = [Dp(u) + Iu(xo)lP]l/P 

where xo is a fixed node. An element of D(P)(N) is called a Dirichlet potential of 

order p. 

The (discrete) p-Laplacian ApueL(X) of u e L(X) is defined by 

Apu(x) := ~y=Y K(x, y) I du(y) IP ~ I sign(du(y)), 

where sign(t) = I if t ~ O and sign(t) = - I if t

A Dirichlet potential u of order p is called a pure potential if it is p-

superharmonic on X, i.e., Apu(x) ~ O on X. According to the framework of 
Kenmochi and Mizuta [3], we shall study some properties of pure potentials 

Several assumptions in [3] will be verified in Sections 2, 3 and 4. By means of 

the domination principle for pure potentials and a result in S7 that the lower 

envelope of two p-superharmonic functions is also p-superharmonic, 'we shall obtain 

Cartan's domination principle 

S2. Prelimimaries 

Let us introduce the following real valued function which plays a central role 

in our study : 

ipp(t) = I tlP~ I sign(t) = I tlP~2t 

Define ipp(w) eL(Y) for weL(Y) by 

ipp(w)(y) = ipp(w(y)). 

Then w eLq(Y; r) implies ipp(w) eLp(Y; r). Notice that 

Apu(x) = ~y=Y K(x, y)ipp(du(y)), 

Hp(w) = ~y~Y r(y)w(y)cp(w(y)) = 

, 
Dp(u) = 

 = Hq(ipp(du)). 
For later use, we list the following fundamental properties related to ipp(cf. [8]) 
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LEMMA 2.1. 
 > o for all w w eL (Y r) The equaltty holds only tf w = w'. 

LEMMA 2.2. Let u e D(P)(N). Then 

Dp(v) - Dp(u) ~ 

 
for every v e D(P)(N). 

LEMMA 2.3. Let u, feL(X). If any one of u and f belongs to Lo(X), then 

 = - ~.=x [Apu(x)]f(x). 

Recall that N is parabolic of order p if the value of the following extremum 

problem related to a nonempty finite set A of nodes and the =point of infinity 

vanishes 

(P.1) Find dp(A, oo) = inf{Dp(u); ueLo(X) and u = I on A}. 

We say that N is hyperbolic of order p if it is not parabolic of order p. The 

following result is well-known (cf. [6]): 

LEMMA 2.4. The following are equivalent: 

(a) N is parabolic of order p ; 

(b) D(oP)(N) = D(P)(N) ; 

(c) I e D(P)(N). 

For other practical criteria for parabolicity, we refer to [5] and [6] 

By Lemmas 2.1 and 2.4, we have 

LEMMA 2.5=. Assume that N is hyperbolic of order p. If two Dirichlet potentials 

u and v of order p satisfy ' 
 = O, 

then u = v. 

The following result was shown in the proof of [8 ; Theorem 2.1] 

LEMMA 2.6. Assume that N is hyperbolic of order p and let {u~ } be a sequence 

in D(P)(N). If {Dp(u~)} is bounded, then {u~(x)} is bounded for every x e X. 

We proved in [9 ; Theorem 4.1] 

LEMMA 2.7. Let {v~ } be a sequence in D(P)(N) which converges pointwise to 

v e L(X). If {Dp(v~)} is bounded, then v e D(P)(N) 



18 Atsushi MURAKAMI and Maretsugu YAMASAKI 

By the same -argument as in [4 ; Theorem 4.1]t' we can prove the following 

nonlmear version of discrete Green's formula 

LEMMA 2.8. Let v e D(P)(N) and u e D(P)(N). Then Green's identity 

 = - ~.=x[Apu(x)]v(x) 

holds tf any one of the following conditions is fulfilled: 

(i ) , - ~.=x I [Apu(x)]v(x)1 

(ii) veL+(X) and - ApueL+(X). 

S3･ Functional spaces 

In order to apply the theory due to Kenmochi and Mizuta [3] to our study, 

we shall verify their axiom for functional' spaces 

We say that ~ subspace ~ of D(P)(N) satisfies. , Axi,om (a) if ~he following 

condition is fulfilled 

(H.1) For every nonempty finite subse,t F of X, there exrsts a constant M(F) such 

that 

~.~F I u(x)1 ~ M(F) [Dp(u)]l/P (3.1) 

for all u e~. 

Clearly D(P)(N) does not satisfy (H.1), since I e D(P)(N) 

THEOREM 3.1. D(oP)(N) satisfies Axiom (a) tf and only tf N is ' hyperbolic of 

order p. 

PRooF. Assume . that N ,ia hyperbQlic of order p and, Iet F be a nonempty 

finite subset of X. It suffices to show that there exists a constant M(F) which 
satisfies (3.1) for all u e D(oP)(N) with Dp(u) = 1. Supposing the contrary, we can find 

a sequence {u~} in D(oP)(N) such - that Dp(u~)=1 and ~*=F I u~(x)l~>00 as 

n H' oo. Smce F rs a finite set, we may assume lu~(b)1 -> oo as n ~> oo for sQme 

b eF. This contradicts our assumption by Lemma 2.6. Therefore (H.1) is 
fulfilled. Next assume that N is parabolic of order p. Then there exists a noriempty 

finite subset F of X such that dp(F, co) = O. Thus we can find a sequence {u~} 

in Lo(X) such that u~ = I on F ahd Dp(u~) -> O as n -> oo, which contradicts (H.1) 

THEOREM 3.2. If N is hyperbolic of order p, then D(oP) (N) is a Banach space 

vvith respect to the norm I u lp:= [Dp(u)] 1/P' -

PRooF. . Clearly I u lp is a pseudo-norm on D(P) (N). In case N is hyperbolic 

of order p, Iulp = O and ueD(oP)(N) imply u = O by Lemma 2.4. Hence lulp 
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is a norm on D(oP) (N). To prove the completeness of D(oP)(N) with ,respect to thi~ 

norm, Iet {u~} be a sequence in D(oP)(N) such that I u~ - u~Ip -> O as n, m ~> oo. Then 

{lu~lp} is bounded, and hence {u~(xo)}(xo e X) is bounded by Lemma 2.6. Let {u~} 

and {u~} be subsequences of {u~} such ,that both {u~(xo)} ' and {u~(xo)} converge 

Recall that D(P)(N) is a Banach space with respect to the norm 11 ' Il and that 
D(P)(N) is a closed subspace of D(P)(N). There exlst u u" e D(oP) (N) sucPh that 

Ilu~ - u'llp ->0 ahd ' ' llu~~- u"Ilp->'O ' 

as n -> oo. ' It' follows that 

lu' - u"Ip ~ Iu' - u~lp + Iu~ - u'"'1p + Iu" u"I ~'O 

= . Namely there exists u e D(P) (N) such that I u ul ~> O as n -> oo, so that u u" 

as n -> oo. 

S4. Comtractions 

We say that a function T'on the real line R into itself is a normal contraction 

of R if TO = O and I Ts - Ts'l ~,I~ i s'l ,for every s, ,s' eR. For , ueL(X),_ define 

Tu e L(X) by (Tu)(x) = T(u(x)). If T is a normal contraction, then Dp(Tu) ~ Dp(u), 

so that u e D(P)(N) iniplies Tu e D(P)(N). 

We proved in [9 ; Theorem 4.2] 

THEOREM 4.1. Let . T be a ,normal contraction of, R. Then u e D(oP)(N) itnplies 

Tu e D(oP) (N). 

Let us consider the following condition related to a contraction T of R 

(Cp) 
 ~: O 
for every u, v e D(P)(N). 

We shall prove 

THEOREM 4.2. Assume that a normal contraction T of R is monotone, i.e., 

(4.1) every sl' s2 e R. (TSI - Ts2)(sl - s2)~:O for 

Then Condition (Cb} holds. ' ' 
PROOF. Take u, v e D(P)(N) and ~j e Y and put 

s(y) = du(y)., sl(y) = d(Tv)(y), s2(y) = d(v - Tv).(y). 

To verify (Cp), it suffices to show that 

(4.2) ipp(s(y) + sl (y))s2(y) ~ ipp(s(y))s2(y) 
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holds for every y e Y Let e(y) = {a, b} and set 

cc = Tv(a) - Tv(b) and p = v(a) - v(b). 

Since ocp ~ O by (4.1) and l~l ~ Ipl, we have 

sl (y)s2(y) = r(y)~2(ocP - oe2) ~ O. 

Since ipp(t) is an increasing function, (4.2) holds 

Let k be a nonnegatrve number or oo Then the mappmg 7; from R to R + 
defined by 

Tks = min{max(s. O), k} 

R In partrcular, T*s=max{s, O} = s+.' For is a monotone contraction of . 
veL(X), put v+ = T*v and v~ = T*(- v) 

COROLLARY 4.3. For every u, v e D(P)(N), 

. , ~ > ~ 

. 

PRooF. Replacing u by - u in (Cp), we have 

 ~ o . 

for every u, v e D(P)(N). 

REMARK 4.4. We see by [3 ; Proposition 2.1] that the following two conditions 

are equivalent : 

(C~)  ~~ O 

for every u, veD(oP)(N); ' 

(D~) Dp(u) + Dp(v) ~~ Dp(u + Tk(v - u)) + Dp(v - Tk(v - u)) 

for every u, v e D(oP)(N). 

S5. Potentials of order p 

For p e L(X), denote by PSD(P)(//) the set of solutions . of the nonlinear Poisson 

equation : Apu = - // with finite Dirichlet sum of order p 

We proved in [10; Theorem 3.2] 

LEMMA 5.1. PSD(P)(p) is nonempty tf and only tf there exists w e Lq(Y; r) which 

satisfies the relation : 

aw(x) := ~y=Y K(x y)w(y) /4(x) on X 
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If N is hyperbolic of order p and if PSD(P)(/l) is nonempty, then PSD(P)(/l) n 

D(P)(N) is a singleton by [10; Theorem 3.3]. In this case, we denote this element 

by up and call /4 the associated measure of up 

By Lemma 2.3, we see easily 

LEMMA 5.2. Let u e D(P)(N). Then the following are equivalent: 

u e PSD(P) (ll) ; ( a) 

 = - ~.~xf(x)l/(x) (b) 

for all fe Lo(X). 

Denote by AMp(N) the set of all associated measures of potentials of order 

p. In case N is hyperbolic of order p, Lo(X) c AMp(N) by [lO;Theorem 
4.1]. Notice that by [10; Theorems 3.1 and 3.2], 

{Apu ; u eD(P)(N)} c AMp(N). 

Clearly, AMp(N) is a linear space by Lemma 5.2. Furthermore we proved the 
following result in [10; Theorem 4.4] as a counterpart of [3 ; Lemma 3.1] 

LEMMA 5.3. Let //, v eAMp(N) and er e L(X). If ,l(x) ~ a(x) ~ v(x) on X, then 

We have 

LEMMA 5.4. Assume that I~ e Lq(Y; r) and 

 ~ O for allfe Lo(X) n L+ (X) Then // := - a'~ e L+(X) and PSD(P)(/l) is nonempty. 

PROOF By Lemma 5.1, PSD(P)(/l) is nonempty. by our assumption, 

u(x) = - ali~(x) = 

 ~~ O 
for every x e X where e (z) O for z ~ x and 8 (x) = 1. 

S6. Pure potentials of order p 

We always assume in this section that N is hyperbolic of order p 

We recall 

DEFINITION 6.1. A Dirichlet potential u of order p is called a pure potential of 

order p if it is p-superharmonic on X, i.e., Apu(x) ~ O on X 

We shall prove 

THEOREM 6.2. Let ~ e D(oP)(N). Then the following are equivalent 
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(a) ~'is a ~pure poten, tia/ 'of order p; 

(b) Dp(~ ~ ~) ~ 'Dp(~) for a'll u eD;(~p)(N) n L+(~) ; ' 

(c) ~ is a unique optimal solution of the following extremum problem 

(P.2) Minimize .D~(u) 

subject to ueD(oP)(N) and u ;~ ~ on X; 

(d) 

 ~~ O for all u e D(oP)(N) n L+(X). 

PRooF. Clearly (b) and (c) are equivalent. Assume that ~ .is an op,timaj 

solution of (P.2). Then we have by the variational technique 

(6 i) ' ' ' ' -' ' . . . , . ~ ipp(dv)? da > = ~y=Y r(y)ipp(d~(y))d~(y) ,_>= O 

for every u eD(oP)(N) n L+(X). Taking u = 8*, we see' by' '(6.1) -that. Ap~(x) ~ o' on 

X. Thus (c) implies (a) and (d) 

Next we assume that ~ is a pure potential of order p. Then we have by 

Lemma 2.2 

Dp(u + ~) - b,(~) ~ 

 
for every u e D(P)(N). Let u e D(oP)(N) n L+ (X). then we have by Lemm~~ 2..8 

 = - ~.~x [Ap~(x)] u(x) ~ O, 

and hence Dp(u + ~) ~ Dp(~). Namely (a) im,plies (~) and (d). Cle~rly, (d) implies 

(a) by Lemma 2.3 

THEOREM 6.3. , A pur~ potential of order p .is..nonnegative, na/?~ely, u e D(oP)(N) 

and Apu(x) ~ O ' on 'X imply u(x) ~ 'O on X. 

PRooF. Let v be a pure potential of order p and consider the normal 
contraction T of R defined by . Ts =. Isl. Then l'vleD(oP)(N)' by' .Theorem , 4.1 and 

Dp(lvl) ~ Dp(v). Since u = Ivl - v eD(oP)(N) n L+ (X), we see by Theorem 6.2 

Dp(v) ~ Dp(u + v) = Dp(lvl), 

and hence Dp(1 vl) = Dp(v). By the uniqYeness of the optimal solution of (P.2), 

v = Iv eL+(X). 

We , prepare 

LEMMA 6.4. Let //, v e AMp(N). If l/(x) ~ v(x) on X, then 

 > o 

for every v e D(P)(N) n L+ (X). 
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PROOF By Lemma 2.8, 

 = - ~.=x [Apu (x)] v(x) 

= ~.=x u (x) v (x) 

:~ ~.=xv(x)v(x) ~; 

. 

For u, v e L(X), define u A v e L(X) by 

(u A v)(x) := min {u(x), v(x)} 

The following result was proved in [3, Theorem 3.2]. 

THEOREM 6.5. Let p, v e AMp(N)~ If there exists a e AMp(N) such that 
(// A v)(x) ~ a(x) on X, then there exists n e AMp(N) such , that un ~= uu A u. and 

n(x) ~~ a(x) on X. 

PRooF. By Lemma 5.3, T = p A v e AMp(N). Consider the following extremum 

problem 

(P.3) Minimize J(v) := Dp(v) - 

 subject to veC = {veD(oP)(N) ; v(x) ~: (uu A u.)(x) on X} 

For simplicity, put wo = ipp(du.) and oc = inf{J(v) ; v e C}. From the relation 

l

1 ~ ~~1[pp(v)]l/P with M1 = [Hq(wo)]l/q 
J(v) ~: Dp(v) - pMl [Dp(v)]l/P 

it follows that o( ~ inf{tP - pMlt;teR+}> - co. Let {v.} be a minimizing 
sequence for (P.3). Then {J(v~)} is bounded, i.e., there exists a constaht M2 such 

that 

IDp(v~)1 

1 + M2 
for all n. It follows that {Dp(v~)} is bounded. Thus {v~(x)} is bounded ,for every 

x e X by Lemma 2.6. By choosing subsequences if ne9essary, we may assume 
that {v~(x)} converges to ~eL(X) for every x e X. Then ~el)(oP)(N) by Lemma 2.7, 

so that ~eC. We have 

liminf Dp(v~) ~: Dp(v~). and l.im 

 = 

 and hence 

Qc = Iim J(v~) ~ J(~) ~: oc. 

"~" 

Namely ~ is an optimal solution of (P.3). Therefore 
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(6.2) 

for every veC. In 
O 

fact 
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o ~ 

 
since tv + (1 - t)~eC for any veC and teR s uch that 

J(~) ~ J(tv + (1 - t)v~). 

Therefore the derivative of J(tv + (1 + t)v~) (with respect to t) at t = O is nonnegative 

and (6.2) follows. Define Bv e L(Y) for v e L(X) by ' 

Bv(y) : = ipp(dv(y)) - cp(du.(y)) 

and put W = B~. Then ~WeLq(Y; r) and O ~ 

 for all feLo(X) n L+ (X) by (6.2), since v = ~ +fe C. By Lemma 5.4, there exists ujL e D(P)(N) such that 

~ = - a~WeL+(X). Thus 

Ap~ = aipp(dv~ = a~V+ aipp(du.) = - ~ - T, 

namely ~ = un with n = ~ + T. Since n > T > a our proof is com lete if we show 

that ~=up A u ~ ~ ' P For simplicity, put g u = p - vl Then g eD(P)(N), 

~ A up = up - g and v v A up = g~. 

By Cor61lary 4.3, 

 = 

 
~ 

, 
so that by Lemma 6.4 

 > 

 - 

 ~.~x 9 (x)l/(x) - ~.~x 9 ~ (x)T(x) ~~ O, 

since l/(x) ~ 1:(x) ~ O on X. By (6.2), 

= 

 - 

 ~ o, slnce ~ A uu e C. It follows from Lerrimas 2.1 and 2.5 that ~ = ~ A uu. Similarly 

we obtain ~ = ~ A u+. Therefore 5 = up A u.. 

COROLLARY 6.6. If u and v are pure potentials of order p, then u A v is also 

a pure potential of oi'der p. 

We have by [3 ; Theorem 3.3] 



Nonlinear Potentials 25 

THEOREM 6.7. Let //, v e AMp(N). Assume that there exists a e AMp(N)' such 

that (,4 A v)(x) ~ a(x) on X' and 

 = O. 

Then uu(x) ~ u.(x) on X. 

PRooF. Now the modification of the proofs in [3] to our case may be 
clear. But we give the proof for completeness. By Theorem 6.5, there exists . n e 

AMp(N) such that 

n>er and u Au~=un' 

Notice that 

up - un = ~ u/1 A u. = (u/1 ~ u.)+ . uu 

By our assumption and Lemma' 6.4, 

 ' 

= 

-
+ 

 
= - 

 '~ o, 
since (ull ~ u~)+e D(P)(N) n L+(X).' Thus uu = un by Lemmas 2 1 and 2 5 Hence 

up(x) ~ u~(x) on X. 

COROLLARY 6.8. Let u, v e AMp(N), If ll(x) 

on X. 

For fe L(X), denote by Sf the support of f i.e., 

Sf = {x eX ; f(x) ~ O}. 

COROLLARY 6.9. Let feL~ (X) and v be a pure potential of order p. If 
uf(x) ~ v(x) on Sf, then the same inequality holds on X 

PROoF. Take a = O in Theorem 6.7. Note that (uf ~ v)+ e D(oP)(N) n L+(X) by 

Theorem 4.1. If uf(x) ~ v(x) on Sf, then (uf ~ v)+(x) = O on Sfi so that by Lemma 

2.8 

 = - ~.~sf f(x) [uf(x) - v(~)] + = O. 

Hence uf(x) ~ v(x) on X by Theorem 6.7 

We shall prove the following discrete analogue to Cartan's dommation 

principle 
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TH~OREM 6.10. Let.feL+0 (X) and h e D(P)(N) n L+ (X) .be' p-superhormonic on 

X. If uf(x) ~ h(x) on Sfi then the same inequality holds on X. 

PRooF. Let v = uf A h. Then 

v = [uf + h - Iuf ~ hl]/2eD(P)(N). 

Since uf and h are p-superharmonic, v -is also,. p-superh~rmonic by TheQren; 7.6 

Since ,O ~ ,v ~'uf on X and uf e I~(oP)(N), .we see by . [8,; Theorem 3.2] .that 

v e D(oP)(N). Thus v is a pure potential. By assumption, v(x) = uf(x) on Sf, ~nd 

hence uf(x) ~ v(x) on X by Corollary 6.9. Therefore uf(x) ~ h(x) on X 

S7. Appendix : p-superharmonic fumctions 

We shall review some properties of p-superharmonic ' functions on an infinite 

network. The results in thrs section are special cases of the gener~l. th~ory d,ue to 

Maeda [2]. For the study of nonlinear networks, it is worth reproducing some 

parts of his preliminary manuscript [1] 

Denote by U(a) the set of neighboring nodes of a, , by S.(z) the set of arcs 

between a and z. Then 

A f(a) = - ~ ~ r(y)1-Pc (f(a) -f(z)). 
.=U(*) y~s*(z) p 

Given a e X and a real valued function f on U,(a), define the function F.,f(t) 

for teR by ' ~ 
F.,f(t) = ~.=U(.) ~y=s.(.) r(y)1 - P ipp(t - f (z)). 

Then F.,f Is a continuous and strictly increasing function on R and Apf(a) = -

F*,f(f(a)). Furthermore 

F~,f(t) 

F.,f(t) > O if t > max{f(z) ; z e U(a)} 

Therefore there exists a unique to e R such that F.,f(to) = O. Denote by mp(f; a) 

this to' i.e., 

F.,f(mp( f; .a)) =. O. 

This mp(f; a) is regarded as a kind of mean value of f on U(a) 

We can easily prove the following : 

THEOREM 7.1. Let u e L(X) and A be a subset , of X. Then the following are 

equivalent : 

(a) u is p-harmonic (resp. p-superharmonic ) on A I e 
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A u(x) O (resp A u(x) 

(b) u(x) = mp(u ; x)(resp. u(x) ;~ mp(u ; x)) on A ; 

(c) 

 = O (resp.,

 ~~ O) for eve'y fe L+0(X) such that Sf c A. LEMMA 7.2. Let u, veL(X) and aeX. 

( i ) If u ~ v on U(a), then mp(u ; a) ~ mp(v ; a) 

(ii) If u ~ v on U(a) and u(z) 

PRooF. (1) Smce t - u(z) ~ t - v(z) on U(a), F.,~(t) ~ F~,.(t) for every t e R 

Thus F* .(m (u a)) 

u ~ v on U(a) and u(z) 
observation that F~,~(t) > F.,.(t) for every t eR. ' Thus ' fr.,.(mp'(u ; a)) 

mp(u ; a) 

As a fundamental relation of mp(f; a), ive observe 

(iii) mp(-f; a) = - Irip(f; a). 

This follows from the relation F., _f(t) = ~ F./(~ t) 

LEMMA 7.3. (Local minimum principle) Let u, v e L('X) and a e X. If u and v are 

p-superharmonic at a' and u(z) + v(2) ~ O for all z e U(a), then u(a) + v(a) ~~ O and 

u(a) + v(a) = O occurs only when u(z) + v(z) = O for all z e U(a). 

PRooF. Since u ~: - v on U(a), we see by' Lemma 7.2 and (iii) that 

m (u a) > m ( v a) = - mp(v ; a). 

Since u and v are 'p-superharinonic'at a, u(a)' ~ mp(u ; a) and v(a) ~: mp(v ; a). Hence 

u(a) ~ - v(a). If,. in addition, u(z) + v(z) > O for some z e U(a), then mp(u ; a) > -

mp(v ; a) by Lemma 7.2 (ii), so that u(a) > v(a) 

COROLLARY 7.4. Let u; v e L(X) be p-superharmonic on X. If u + v ~ O on X 

and u(a) + v(a) = O for some aeX, then u + v = O on X. 

THEOREM 7.5. (Minimum principle). Let A be a finite subset of X and let 

u, v e L(X) be p-superharmonic on A. If u + v ~~ O on X - A, then u + v ~~ O on X. 

PROOF. Let c = min{u(x) + v(x) ; x e A}. Suppose that c 

X ; u(x) + v(x) = c}. By our assumption. B c A and B ~ ~f. Since c 

u + v ~ O on X - A, (u - c) + v ~ O on X. Notmg that u - c rs p-superharmonic 

and that (u - c) + v = O on B, we see by Lemma 7.3 that U(x) c B for all 
x e B. Since N is connected, it follows that B = X, a contradiction. Hence c ~ O, 

i.e., u + v ~~ O on A. 
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As a special case of [1; Corollary of Proposition 1.3], we have 

THEOREM 7.6. If u and v are p-superharmonic on A, then so is u A v. 

PRooF. Put f = u A v. For any, a e A, f ~ u and f ~ v on U(a), so by Lemma 

7.2 

F~,f(u(a)) > F. ~(u(a)) > o 

F~,f(v(a)) ~ F...(v(a)), ~ O. 

Hence, 

Theref ore 

- Apf(a) = F~,f(f(a)) ~ min {F.,f(u(a)), Fa'f(v(a))} ~ O. 

f is p-superharmonic at a 
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