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The aim of this paper is to study some properties of Dirichlet potentials and pure
potentials of order p on an infinite network. It will be shown that several assumptions in the
-theory of ‘general nonlinear potential theory are fulfilled in our case. The space of Dirichlet
potentials of order p will play a crucial role in our study if the network is hyperbolic of order
p- A noniinéar_ version of Cartan’s domination principle will be shown with elementary
" properties of ! p-superharmonic functions. - ' ' . '

§1. -Introductiomn

It has been well-known that a discrete analogue to potential theory on Riemann
surfaces (see for instance [5] and [7]) plays important roles in the study of discrete
harmonic functions on an infinite network or random walks. Our aim is to
investigate nonlinear version of discrete potential theory along the.same lines as in
[6] or [8]. For notation and terminology, we mainly follow [8] and [10].

" More' precisely, ‘let N={X,Y, K, r} be an infinite network which is ldcally
finite and has no self-loop. Denote by L(X)(resp. L(Y)) the set of all real valued
functions on the set X (resp. Y) of nodes (resp. arcs) and by L,(X) the set of all
ue L(X) with finite support. Let p and q be positive numbers such that 1 <p <
and 1/p+1/qg=1. The energy H,(w) of we L(Y) of order p is defined by -

Hp(w) = Zer "(J’)|W(Y)|p

The mutual energy <w, w)> of w, w e L(Y) is defined by

w, W) =Y oy T IWOW ()

if the sum is well-defined. Denote by L,(Y;r) the set of all we L(Y) with finite
energy of order p. The mutual energy is well-defined for the pair of elements in
L,(Y;r) and L,(Y;r). ‘

The Dirichlet sum D,(u) of ueL(X) of order p is defined by
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D,(u) = H,(du) = } ey r() | du(y) 17,
where due L(Y) is the discrete derivative of u, i.e.,
du(y) = — 1(3) " Ywex K(x, p)u(x).

Denote by D (N) the set of all ue L(X) with finite Dirichlet sum of order p and
by DP(N) the closure of Lo(X) in D(N) with respect to the norm:

lull, = [Dp(u) + [u(xo) P17,

where x, is a fixed node. An element of D@ (N) is called a Dirichlet potential of
order p.
The (discrete) p-Laplacian 4,ue L(X) of ue L(X) is defined by

Apux):= Y ey K(x, y)ldu(y)|P~sign(du(y)),
where sign(f) =1 if t >0 and sign(t)= — 1 if t <O.

A Dirichlet potential u of order p is called a pure potential if it is p-
superharmonic on X, ie., 4,u(x) <0 on X. According to the framework of
Kenmochi and Mizuta [3], we shall study some properties of pure potentials.
Several assumptions in [3] will be verified in Sections 2, 3 and 4. By means of
the domination principle for pure potentials and a result in §7 that the lower
envelope of two p-superharmonic functions is also p-superharmonic, we shall obtain
Cartan’s domination principle.

§2. Preliminaries

Let us introduce the following real valued function which plays a central role
in our study:

b,(t) = |t]P™ sign(t) = [¢["~ 1.
Define ¢,(w)e L(Y) for we L(Y) by
d,(W)() = &, (w(y)-
Then weL,(Y; r) implies ¢,(w)eL,(Y;r). Notice that
Apu(x) = Yoy K(x, )¢, (du(y)),
H,(W) = },ey )W) d,(w() = <w, ¢,(w)),
D,(u) = {$,(du), du) = H,(¢,(du)).

For later use, we list the following fundamental properties related to ¢ ,(cf. [8]):
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LemMA 2.1. ¢, (w) — ¢,(W), w —w' ) >0 for all w, w e L,(Y;r). The equality
holds only if w=w'.

LemMMA 22. Let ueDP(N). Then
D,(v) — D,u)> <p,(du), do — duy
for every ve DP(N).
LemMA 2.3. Let u, fe L(X). If any one of u and f belongs to Ly(X), then
(ppldu), df > = — Y ex [4,u(x)] S (x).

Recall that N is parabolic of order p if the value of the following extremum
problem related to a nonempty finite set 4 of nodes and the ‘point of infinity
vanishes:

(P.1) Find d,(4, o) = inf{D,(u); ue Lo(X) and u =1 on A}.

We say that N is hyperbolic of order p if it is not parabolic of order p. The
following result is well-known (cf. [6]):

LemMa 2.4. The following are equivalent:

(@) N is parabolic of order p;

(b) DPN) =DP(N);

(c) 1eDP(N).
For otl}er practical criteria for parabolicity, we refer to [5] and [6].
‘By Lemmas 2.1 and 2.4, we have

LEMMA 2.5. Assume that N is hyperbolic of order p. If two Dirichlet potentials
u and v of order p satisfy '

{by(du) — ,(dv), du — dvy =0,
then u = v.

The following result was shown in the proof of [8; Theorem 2.1]:

LEMMA 2.6. Assume that N is hyperbolic of order p and let {u,} be a sequence
in DP(N). If {D,(u,)} is bounded, then {u,(x)} is bounded for every xeX.

We proved in [9; Theorem 4.1]

LemMa 2.7. Let {v,} be a sequence in DP(N) which converges pointwise to
veL(X). If {D,(v,)} is bounded, then ve DY (N).
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By the same argument as in [4; Theorem 4.1], we can prove the following
nonlinear version of discrete Green’s formula:

LEMMA 2.8. Let veDP(N) and ue DP(N). Then Green’s identity

($pdu), dvy = — 3 x[4,u(x)]v(x)
holds if any one of the following conditions is fulfilled:

(l) ' erX I[Apu(x)]v(x)l < @0,
(ii) veLl*(X) and — d,ueL”(X).

§3. Functional spaces

In order to apply the theory due to Kenmochi and Mizuta [3] to our study,
we shall verify their axiom for functional spaces. '

We say that a subspace & of D®(N) satisfies. Axiom (a) if the following
condition is fulfilled: o '

(H.1) For every nonempty finite subset F of X, there exists a constant M(F) such
that '

(3.1) Yoser [U(X)] < M(F)[D,(u)]*"
for all ue&.
Clearly D (N) does not satisfy (H.1), since 1eD®(N).

TueoREM 3.1. DP(N) satisﬁes Axiom (a) if and only if N is‘hy.perbolic of
order p. - co

Proor. Assume that N is hyperbolic of order p and let F be a nonempty
finite subset of X. It suffices to show that there exists a constant M(F) which
satisfies (3.1) for all ue DY’(N) with D,(u) = 1. Supposing the contrary, we can find
a sequence {u,} in DE(N) such that D,(u,)=1 and ) .plu,(x)|> 0 as
n—oo0. Since F is a finite set, we may assume |u,(b)] — 0 as n— o for some
beF. This contradicts our assumption by Lemma 2.6. Therefore (H.1) is
fulfilled. Next assume that N is parabolic of order p. Then there exists a nonempty
finite subset F of X such that d,(F, ) =0. Thus we can find a sequence {u,}
in Lo(X) such that u, = 1 on F and Dp(u',’) — 0 as n — oo, which contradicts (H.1).

THEOREM 3.2. If N is hyperbolic of order p, then DY’ (N) is a Banach space
with respect to the norm |ul,:= [D,(u)]'"

Proor.. Clearly |ul, is a pseudo-norm on D®”(N). In case N is hyperbolic
of order p, |ul,=0 and ueD{(N) imply u=0 by Lemma 2.4. Hence [ul,
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is a norm on DP (N). To prove the completeness of D’(N) with respect to this
norm, let {u,} be a sequence in D@ (N) such that |u, — u,|, —0 as n, m — co. Then
{|u,],} is bounded, and hence {u,(xo)}(xo€ X) is bounded by Lemma 2.6. Let {u,}
and {u} be subsequences of {u,} such that both {u,(xo)}. and {u(xo)} converge.
Recall that DP(N) is a Banach space with respect to the norm ||- I, and that
DW(N) is a closed subspace of D®(N). There exist «, u’e DY’ (N) such that

lu, —u'll,»0 and fu, —u"|,—>0
as n— oo. ' It follows that
[ —u"|, < U —uyl, + [u, — uyl, + |y — 0|, >0

as n— oo, so that ' = u”. Namely there exists ue DY (N) such that |u, —ul,—0
as n— oo. : : o '

§4. Contractions

We say that a function T on the real line R into itself is a normal contraction
of R if TO=0 and |Ts — Ts'| < |s — s'| for every s, s€R. For ueL(X), define
Tue L(X) by (Tu)(x) = T(u(x)). If T is a normal contraction, then D ,(Tu) < D ,(u),
so that ueD®P(N) implies Tue DP(N):.

We proved in [9; Theorem 4.2]

THEOREM 4.1. Let T be a normal contraction of R. Then ueDY(N) implies
TueDP(N). |

Let us consider the following (;ondition related to a contraction T of R:
() byl + To) — §y(du), do—To)>=0
for every u, ve]_)“”(N).

We shall prove

THEOREM 4.2. Assume that a normal contraction T of R is monotone, i.e.,
4.1) (Ts; — Tsy)(sy — S5) =0 for every sy,5s,€R.
Then Condition (C,) holds.

ProOF. Take u, veDP(N) and yeY and put

s(y) = du(y), 51(y) = d(To)(y), 52(9) = d(v — To)(y).

To verify (C,), it suffices to show that
4.2) G,(s() + 51(1)s2(1) = ¢, (s(¥)s2(y)
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holds for every yeY. Let e(y) = {a, b} and set
o = Tv(a) — To(b) and f = v(a) — v(b).
Since off >0 by (4.1) and |a| < |B], we have
s10)s2(0) = r(») > (@f — «*) 2 0.
Since ¢,(t) is an increasing function, (4.2) holds.

Let k be a nonnegative number or co. Then the mapping T, from R to R*
defined by

T,.s = min{max(s, 0), k}

is a monotone contraction of R. In particular, T,s= max{s, 0} =s*. For
ve L(X), put v* =T v and v~ = T, (- v).

COROLLARY 4.3. For every u, ve DP(N),
Copldu—v™)), dv™ > = {Py(du), dv™ ).
Proor. Replacing u by —u in (C,), we have
{Ppdu — T,v) — ¢,(du), dv — T, v) ) <0
for every u, ve DW)(N).

REMARK 4.4. We see by [3; Proposition 2.1] that the following two conditions
are equivalent: ’ '

(k) Cé,(du + dTy) — ¢ (du), dv — dT,v> > 0
for every u, ve D¥ (N);
(D¥) D,(u) + D,(v) = D,(u + T(v — w) + D,(v — T(v — u))

for every u, ve DP(N).

§5. Potentials of order p

For pe L(X), denote by PSD®(y) the set of solutions of the nonlinear Poisson
equation: 4,u = — pu with finite Dirichlet sum of order p.
We proved in [10; Theorem 3.2]

LEMMA 5.1. PSDY(u) is nonempty if and only if there exists we L (Y ; r) which
satisfies the relation:

wx):= Yy K(x, Y)w(y) = p(x) on X.



Nonlinear Potentials 21

If N is hyperbolic of order p and if PSD®(y) is nonempty, then PSD®(u)n
D®(N) is a singleton by [10; Theorem 3.3]. In this case, we denote this element
by u, and call y the associated measure of u,. ‘

By Lemma 2.3, we see easily

LemMA 5.2. Let ueDP(N). Then the following are equivalent:
(a) ue PSD? (n);
(b) {p(du), df) = = Yoex f (X))
for all fe Ly(X).

Denote by AM,(N) the set of all associated measures of potentials of order
p. In case N is hyperbolic of order p, Lo(X)<=AM,(N) by [10; Theorem
4.1]. Notice that by [10; Theorems 3.1 and 3.2],

{4,u; ueDP(N)} = AM,(N).

Clearly, AM,(N) is a linear space by Lemma 5.2. Furthermore we proved the
following result in [10; Theorem 4.4] as a counterpart of [3; Lemma 3.1].

LemMA 5.3. Let p, ve AM,(N) and ce L(X). If p(x) < o(x) < v(x) on X, then
o€ AM,(N). ’

We have

LEMMA 5.4. Assume that We L,(Y ;1) and {W, df ) >0 for all fe Lo(X)nL* (X).
Then p:= — owe LY (X) and PSDP () is nonempty.

ProoF. By Lemma 5.1, PSD®(y) is nonempty. By our assumption,
p(x) = — 0Ww(x) = W, de, > 20

for every xe X, where g.,(z) =0 for z # x and &(x) = L.

§6. Pure potentials of order p

We always assume in this section that N is hyperbolic of order p.
We recall

DEFINITION 6.1. A Dirichlet potential u of order p is called a pure potential of
order p if it is p-superharmonic on X, ie., 4,u(x) <0 on X.

We shall prove

THEOREM 6.2. Let € DY(N). Then the following are equivalent:
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(@) ©is a‘pure potential of order p; -
) D (U Y5> Dp(v) for all ueD"”(N)ﬂL+(X) ‘
(c) © is a unique optimal solution of the following extremum problem: -

(P.2) Minimize D,(u) -
subject to ueDP(N) and u>7 on X;

() {,(d), dudy>0 for all ueDP(N)nL*(X).

Proor. Clearly (b) and (c) are equivalent. Assume that § is an optimal
solution of (P.2). Then we have by the variational technique

6 <¢p(dv) duy= Zyey r(y)¢p(dv(y))du(y) 20

for every ueDP(N)nL*(X). Taking u = ¢,, we se¢ by (6.1) that 4 v(x) <0 on
X. Thus (c) implies (a) and (d).

Next we assume that # is a pure potential of order p. Then we have by
Lemma 2.2

D,(u + 8) = Dy(5) = < pd,(dd(), du(y)
for every ue DP(N). Let uzeDg”(N)'n L*(X). Then we have by Lemma 28
<¢p(d5)’ du> = - erX [Apﬁ(x)]u(x) = 05

and hence D,(u + 7) > D,(?). Namely (a) implies (b) and (d). Clearly, (d)‘ implies
(a) by Lemma 2.3. ' '

THEOREM 6.3. A pure potential of om’er p is nonnegatwe namely, ueD(’”(N)
and 4,u(x) < 0on X zmply u(x) >0 on X.

Proor. Let v be a pure potential of order p ‘and consider the normal
contraction T of R defined by.Ts=|s|. Then [v|eD¥(N) by Theorem 4.1 and
D,(|v]) < D,(v). Since u = |v] —veDP(N)nL*(X), we see by Theorem 6.2

D,(v) <D,(u+v) = D?(lvl),

and hence D,(v])=D, (v) "By the uniqyeness of the .optimall' solution of (P.2),
v = |v|e L* (X). ' ‘

We prepare , o
LEmMMA 6.4. Let p, ve AM,(N). Ifu(x) >v(x) on X, then
Copldu,) — d,(du,), dvy >0
Jor every veDP(N)n L* (X).
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Proor. By Lemma 2.8,
K pldu,), dvy = — Voex [4,1,(x)]0(x)
= T eex b0(x)
2 YexV(X)v(x) = { @,(du,), dv ).
For u, ve L(X), define u A ve L(X) by o
(u A v)(x).:= min {u(x), v(x)}.
The following result was proved in [3 Theorem 3.2].

THEOREM. 6.5. Let p, ve AM,(N). If there exists aeAMp(N) such that
(1 A V)(X) = a(x) on X, then there exists ne AM,(N) such that u,=u, A u, and
n(x) =o(x) on X.

Proor. By Lemma 5.3, 7= p A ve AM,(N). Consider the following extremum
problem: ' '

(P.3) Minimize J(v):= D,(v) — {pd,(du,), dv)
subject to veC = {veD"”(N) v(x) = (4, A u,)(x) on X}

For simplicity, put wo = ¢,(du,) and o = inf{J(v); veC}. From the relation
[ Wo, dv>| < M,[D,(®)]1"" with M, = [H,(wo)]" < oo,
J(D) = Dp(v) - le [Dp(v)]llpn

it follows that o> inf{t? —pM,t;teR*}> — 0. Let {v,} be a minimizing
sequence for (P.3). Then {J(v,)} is bounded, ie., there exists a constant M, such
that

IDp(n)] < pI<Wo, dv, | + M,

for all n. Tt follows that {D,(v,)} is bounded. Thus {v,(x)} is bounded for every
xeX by Lemma 26. By choosing subsequences if necessary, we may assume
that {v,(x)} converges to e L(X) for every xeX. Then 5eD§(N) by Lemma 2.7,
so that 7eC. We have

n—*oo

liminf D,(v,) > D,(?) and hm (wo, dv, > = {wy, di ),
and hence '

o= lim J(v,) > J(®) = o.

n—oo

Namely # is an optimal solution of (P.3). Therefore
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(6.2) 0 < (¢,(dd) — ¢,(du,), dv — di >

for every veC. In fact, since tv + (1 — t)feC for any veC and teR such that
0<t<1, we have

J@) < J(tv + (1 — 1)),

Therefore the derivative of J(tv + (1 + 1)) (with respect to t) at t = 0 is nonnegative
and (6.2) follows. Define Bve L(Y) for ve L(X) by ‘

Bu(y):= ¢,(dv(y)) — ¢,(du.(y))

and put W= B5. Then WeL,(Y;r) and 0 < W, df) for all fe Lo(X)nL*(X) by
(6.2), since v=0+feC. By Lemma 54, there exists u,eD¥(N) such that
A= —0WeL*(X). Thus :

4,0 = 0¢,(dd) = OW + 8¢, (du,) = — A — 1,
namély o =u, with n =14 1. Since n > 1 > 0, our proof is complete if we show
that & = u, A u,.

For simplicity, put g =u, — 5. Then ge D (N),
tAu,=u,—g" and —DAu,=g".

By Corollary 4.3,

(p(d(F A w)), dg™ > = { b,(dlw, — g7)), dg™ >

> ($,(du,), dg™ >,
so that by Lemma 6.4 -
CB@ A ), dg™ > > (¢y(du,), dg™ > — { ¢,(du,), dg™ )
=Yxex 9~ (UX) = Yrex 97 (0)7(x) 2 0,
since u(x)>1(x)=>0 on X. By (6.2),
< ydD) — G, d(D A w), d5 — dE A ) >
= (B, d0 —d@ A u,))— (Bl Au,),dg”)<0,

since & A u,eC. It follows from Lemmas 2.1 and 2.5 that =3 A u
we obtain 7 =i A u,. Therefore ¥ =u, A u,.

L Similarly

COROLLARY 6.6. If u and v are pure potentials of order p, then u A v is also
a pure potential of order p. '

We have by [3; Theorem 3.3]
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THEOREM 6.7. Let p, ve AM,(N). Assume that there exists o€ AM,(N) such
that (u A v)(x) = o(x) on X and

<¢p(dun) - ¢p(duo')9 d(uu - u\;)+ > =0.
Then u,(x) < u,(x) on X.

Proor. Now the modification of the proofs in [3] to our case may be
clear. But we give the proof for completeness By Theorem 6.5, there exists ne
AM,(N) such that

ﬁZG and uu/\u'v=u,r
Notice that
w, — Uy =u, — , A u, = (U, —u,)".
By our assumption and Lemma 6.4,
C$pldu,) — dp(duy), dlu, —1,)>
= ¢,(du,) — ¢,(du,), dlw, — u,)" >
+ { d,(du,) — ¢,(du,), d(w, —u,)" )
= — () — ¢,(du,), dlw, —u,)* > <0,

since (u, —u,)* € DP(N)NL* (X).i Thus u, = u, by Lemmas 2.1 and 2.5. Hence
u,(x) <u,(x) on X.

COROLLARY 6.8. Let ,u,veAMp(N) If u(x)<v(x) on X, then u,(x) <u,(x)
on X. : ‘

For fe L(X), denote by Sf the support of f, ie.,
Sf={xeX;f(x) # 0.

COROLLARY 6.9. Let feL{(X) and v be a pure potentzal of order p. If
up(x) < v(x) on Sf, then the same inequality holds on X.

Proor. Take ¢ =0 in Theorem 6.7. Note that (u, — v)* e DP(N)n L* (X) by
Theorem 4.1. If u,(x) < v(x) on Sf, then (u; — v)*(x) = 0 on Sf, so that by Lemma
2.8

Cppldug), Ay — 0)F > = — Yoes, [ [up(0) — v(x)]" =0.
Hence u(x) < v(x) on X by Theorem 6.7.

We shall prove the following discrete analogue to Cartan’s domination
principle:: ‘ :
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THEOREM 6.10. Let fe Li(X) and he DW(N)nL*(X) be p-superharmonic on
X. If ug(x) < h(x) on Sf, then the same inequality holds on X.

Proor. Let v=wu; A h. Then .
v="[u; + h—|u; — h|]/2e DP(N).

Since u, and h are p-superharmonic, v is also. p-superharmonic by Theorem 7.6.
Since 0 <v<u, on X and u,eDP(N), we see by. [8; Theorem 3.2] that
veD@P(N). Thus v is a pure potential. By assumption, v(x) =u,(x) on Sf, and
hence u,(x) < v(x) on X by Corollary 6.9. Therefore u,(x) < h(x) on X.

§7. Appendix: p-superharmonic functions

We shall review some properties of p-superharmonic functions on an infinite
network. The results in this section are special cases of the general theory due to
Maeda [2]. For the study of nonlinear networks, it is worth reproducing some
parts of his preliminary manuscript [1].

Denote by U(a) the set of neighboring nodes of a, by S,(z) the set of arcs
between a and z. Then

4,10 = = Teatto Toesio 70V 76,(/ @) — £ @)

Given ae X and a real valued function f on U(a) deﬁne the function F, ,(t)
for teR by :

a f(t ZZGU(a) ZyESa(z) r(y)l p¢p(t —f(Z))

Then Fa s is a continuous and strlctly 1ncreasmg function on R and 4,f(a) =
F,;(f(a)). Furthermore

Fo <0 if t <min{f(); ze U(a)};
F, ()>0 if t>max{f(z); ze U(a)).

Therefore there exists a unique fo€R such that F,;(t,) =0. Denote by m,(f; a)
this ¢4, ie.,

Fa,f(mp(f; a)) =0.

This m,(f; a) is regarded as a kind of mean value of f on U(a).
We can easily prove the following:

THEOREM 7.1. Let ue L(X) and A be a subset of X. Then the following are
equwalent “ ‘

(@ wuis p- harmomc (resp. p- superharmomc) on A pe. -
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4,u(x) =0 (resp. 4,u(x)<0) on A.
() () = my(u; X)(resp. u(x) = m,(u; x)) on A;
(¢) < y(du),df> =0 (resp.< ¢,(du), df> = 0) for every fe LE(X) such that Sf < A.
LemMmA 7.2. Let u,ve L(X) and aeX.
(i) Ifu<v on Ua), then m,(u; a) <my(v; a)
(ii) If u<v on U(a) and u(z) < v(z) for some z€ U(a), theﬁ m,(u; a) <m,(v; a).

PrOOF. (i) Since t—u(z) >t —v(z) on U(a), F,,(t) > F,,(t) for every teR.
Thus F,,(m,(u; a) < F,,(m,(u; a)) =0 and m,(u; a) < m,(v; a). To prove (ii), let
u<v on U(a) and u(z) <v(z) for some zeU(a). Then we see by the above
observation that F,,(t)> F,(t) for every teR. Thus'F,,,,,(mp(u; a)) <0 and
my(u; a) < m,(v; a).

As a fundamental relation of m,(f; a), we observe
(i) m,(—f5 @) = — my(f; a).
This follows from the relation F, _,(t) = — F, ;(—1).
LemMa 7.3. (Local minimum principle) Let u, ve L(X) and ae X. - If u énd v are

p-superharmonic at a and u(z) + v(z) > 0 for all zeU(a), then u(a) + v(a) >0 and
u(a) + v(a) = 0 occurs only when u(z) + v(z) =0 for all ze U(a).

PROOF. Since u> — v on U(a), we see by Lemma 7.2 and (iii) that

my(u; a) > m,(—=v; a) = —m,(v; a).

Since u and v are p-superharmonic at a, u(a) = m,(u; a) and v(a) > m,(v; a). Hence
u(@) = —v(a). If, in addition, u(z) + v(z) > 0 for some ze U(a), then m,(u; a) > —
m,(v; a) by Lemma 7.2 (ii), so that u(a) > v(a).

" COROLLARY 7.4. Let u, ve L(X) be p-superharmonic on X. If u+v>0o0n X
and u(a) + v(a) = 0 for some aeX, then u+v=0 on X. ‘

THEOREM 7.5. (Minimum principle). Let A be a finite subset of X and let
u, ve L(X) be p-superharmonic on A. Ifu+v>0o0nX — A, then u +v >0 on X.

PrOOF. Let ¢ = min{u(x) + v(x); xe A}. Suppose that ¢ <0 and put B = {xe
X;u(x)+v(x)=c}. By our assumption, Bc A and B#@. Since ¢<0 and
u+v>00n X —A,(u—c)+v>0on X. Noting that u — ¢ is p-superharmonic
and that u—c)+v=0 on B, we see by Lemma 7.3 that U(x)< B for all
xeB. Since N is connected, it follows that B = X, a contradiction. Hence ¢ >0,
ie., u+0v>0 on A
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‘As a special case of [1; Corollary of Proposition 1.3], we have
THEOREM 7.6. If u and v are p-superharmonic on A, then so is u A v.

ProoF. Put f=unAv. For any aeA,f <u and f <v on U(a), so by Lemma
7.2

Fo (@) > F,,(u(a) = 0,
Fo;(v(a) = F,,(v(a) = 0.
Hence, _
~ 4,1(@) = F, /(f(@) = min{F, (u(a)), F, ;v(@)} > 0.

Therefore f is p-superharmonic at a.
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