Mem. Fac. Sci. Eng. Shimane Univ. Series B: Mathematical Science 41 (2008), pp. 143-145

ON THE SERIES EXPANSIONS OF STEP FUNCTIONS

NORICHIKA MATSUKI

Communicated by Mitsuru Uchiyama

(Received: March 20, 2007; revised: April 18, 2007)

ABSTRACT. We express [x] as an infinite series and give a new formula for the partial sums of the divisor function.

Let [x] be the greatest integer $\leq x$ and let [x] be the least integer $\geq x$. Vinogradov [3, pp. 37–38] proved that

$$x - [x] = \frac{1}{2} - \frac{1}{\pi} \sum_{k=1}^{n} \frac{\sin 2\pi kx}{k} + \frac{\theta}{\pi (n+1)\sin \pi x},$$

where $|\theta| \leq 1$. In this paper, using the following series, we express the step functions [x] and [x] as infinite series.

Lemma 1. Let f(x) be a real-valued function of a real variable that satisfies $|f(x)| < \infty$ and let

$$C_f(x) = 1 - \sum_{k=1}^{\infty} \frac{f(x)^2}{(1 + f(x)^2)^k}.$$

Then we have

$$C_f(x) = \begin{cases} 1 & \text{if } x \text{ is a zero point of } f(x), \\ 0 & \text{otherwise.} \end{cases}$$

Proof. If x is a zero point of f(x), then the lemma holds trivially. If x is no zero point of f(x), then

$$C_f(x) = 1 + f(x)^2 - \sum_{k=0}^{\infty} \frac{f(x)^2}{(1 + f(x)^2)^k}$$
$$= 1 + f(x)^2 - \frac{f(x)^2}{1 - 1/(1 + f(x)^2)} = 0.$$

2000 Mathematics Subject Classification. 41A58, 11P21.

Key words and phrases. step function, divisor function.

N. MATSUKI

In particular, taking $f(x) = \sin \pi x$, we have

$$C_f(x) = C_{\sin}(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Z}, \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Z} \end{cases}$$

Theorem 2. For $x \in \mathbb{R}$

(1)
$$[x] = x + \sum_{k=1}^{\infty} \left(\frac{\sin 2k\pi x}{k\pi} - \frac{\sin^2 \pi x}{2(1 + \sin^2 \pi x)^k} \right),$$

(2)
$$\lfloor x \rfloor = x + \sum_{k=1}^{\infty} \left(\frac{\sin 2k\pi x}{k\pi} + \frac{\sin^2 \pi x}{2(1 + \sin^2 \pi x)^k} \right).$$

Proof. (1) The function

$$g(x) = \begin{cases} x - 2k\pi & \text{if } (2k-1)\pi < x < (2k+1)\pi \text{ for } k \in \mathbb{Z}, \\ 0 & \text{if } x = (2k+1)\pi \text{ for } k \in \mathbb{Z}. \end{cases}$$

is expanded in the Fourier series:

$$g(x) = 2\sum_{k=1}^{\infty} \frac{(-1)^{k-1} \sin kx}{k}.$$

Hence

$$x - [x] = \frac{g(2\pi x - \pi)}{2\pi} + \frac{1}{2} - \frac{C_{\sin}(x)}{2}$$

$$= \sum_{k=1}^{\infty} \frac{(-1)^{k-1} \sin(2k\pi x - k\pi)}{k\pi} + \sum_{k=1}^{\infty} \frac{\sin^2 \pi x}{2(1 + \sin^2 \pi x)^k}$$

$$= \sum_{k=1}^{\infty} \left(\frac{\sin^2 \pi x}{2(1 + \sin^2 \pi x)^k} - \frac{\sin 2k\pi x}{k\pi} \right).$$

(2) Since
$$[x] = [x] + 1 - C_{\sin}(x)$$
, (2) follows.

Similarly, using $C_{\sin}(x)$, we can express a discontinuous periodic function f(x) that satisfies

$$f(x_0) \neq \frac{f(x_0+0) + f(x_0-0)}{2}$$

at a point of discontinuity x_0 as infinite series.

Further, from (1) the following result is derived immediately.

Theorem 3. Let f(x) be a real-valued function on a real variable. Then for $m, n \in \mathbb{Z}$ we have

$$\sum_{j=m}^{n} [f(j)] = \sum_{j=m}^{n} f(j) + \sum_{k=1}^{\infty} \sum_{j=m}^{n} \left(\frac{\sin(2k\pi f(j))}{k\pi} - \frac{\sin^{2}(\pi f(j))}{2(1+\sin^{2}(\pi f(j)))^{k}} \right).$$

Next we consider the partial sums of the diviser function. Let d(n) be the number of positive divisors of the positive integer n. Voronoï [4] proved the explicit formula

$$\sum_{n \le x}' d(n) = x(\log x + 2\gamma - 1) + \frac{1}{4}$$
$$-\frac{2}{\pi} x^{1/2} \sum_{n=1}^{\infty} \frac{d(n)}{n^{1/2}} \left(K_1(4\pi\sqrt{nx}) + \frac{\pi}{2} Y_1(4\pi\sqrt{nx}) \right)$$

for $x \geq 2$, where γ is Euler's constant, K_1 and Y_1 are Bessel functions, and $\sum_{i=1}^{n} f(x_i) = 1$ indicates that the last term is to be halved if x is an integer. The latest result on the remainder term defined by

$$\Delta(x) = \sum_{n < x} d(n) - x(\log x + 2\gamma - 1) \quad \text{for } x \ge 2$$

is due to Huxley [2], who proved that

$$\Delta(x) = O\left(x^{131/416} (\log x)^{26947/8320}\right).$$

As a particular case of Theorem 3, we obtain a new formula for the partial sums of the divisor function.

Corollary 4.

$$\sum_{j=1}^{n} d(j) = n \sum_{j=1}^{n} \frac{1}{j} + \sum_{k=1}^{\infty} \sum_{j=1}^{n} \left(\frac{\sin(2kn\pi/j)}{k\pi} - \frac{\sin^{2}(n\pi/j)}{2(1+\sin^{2}(n\pi/j))^{k}} \right).$$

Proof. By the well-known property [1, p. 264]

$$\sum_{j=1}^{n} d(j) = \sum_{j=1}^{n} \left[\frac{n}{j} \right],$$

the corollary follows immediately.

References

- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford University Press, Oxford, 1979.
- [2] M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. (3) 87 (2003), 591–609.
- [3] I. M. Vinogradov, Selected Works, Springer-Verlag, Berlin, 1985.
- [4] G. Voronoï, Sur une fonction transcendante et ses applications à la sommation de quelques séries, Ann. Sci. École Norm. Sup. (3) 21 (1904), 207–268, 459–534.

3-9-34, FUJISAKI, NARASHINO-SHI, CHIBA, 275-0017 JAPAN *E-mail address:* n-matsuki@tree.odn.ne.jp