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It is shown that each right self-injective, right nonsingular semigroup is isomorphic to a

direct product of right self-injective, right non-singular semigroups of types (I), (II), (I1I), (IV).

The structures of those semigroups of four types are studied. In particular, it is shown that

every semigroup of type (I) is a semilattice of groups. It is proved that every right

self-injective, right non-smgular regular semigroup is strongly left reversible. This gives

~ another proof that every semigroup of type (I) is absolutely flat and, consequently, a semigroup
amalgamation base.

Introductlon

Let S be a semigroup w1th zero 0 and My a nonempty set with an operation
of S on the right. Then Mj is called a right S-set with zero 0y (simply called a
right S-set) if (ms)t = m(st) and Ops =m0 =0, for all me Mg and all s, t€S.
Dually, a left S-set is defined. Let ¢ be a mapping of Ag into Bs, where Ag, Bg
are right S-sets. Then ¢ is called an S-map if ¢(as) = ¢(a)s for all aeA; and
seS. A right S-set Mg is called injective if for any injective S-map &: A5 — Bs
and any S-map 7: As — Mg, there exists an S-map 6: Bg— Mg with 6 =n. A
semigroup S is called right self-injective if the right S-set Sy is injective. Dually,
a left self-injective. semigroup is defined. A both left and right self-injective
semigroup is simply called self-injective. '

Let S be a semigroup with zero and I, J right ideals of S with I < J. Then
we say that I is intersection large in J if InK # 0 for all nenzero right ideal K
of S with K = J. In particular, if I is intersection large in S, the I is simply called
an intersection large right ideal. A right ideal R of S is called dense if for any
triple of a, b and ce S with a # b, there exists ze S such that czeR and az #bz. A
semigroup S with zero is called right non-singular if every intersection large right
ideal of S is dense. A left non-singular semigroup is dually defined. A both left
and right non-singular semigroup is simply called non-singular. 1In [12] the author
has studied the structure of self-injective non-singular semigroups. According to
Hinkle [8], all right self-injective, right nonsingular semigroups are obtained as
maximal right quotient semigroups of right non-singular semigroups. As far as the
author knows, the structure of these semigroups has not been known except in
special cases (see [7]). In Section 1, we give a decomposition of a right self-injective,
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right non-singular semigroup into semigroups of types (I), (II), (III) and (IV). In
Section 2, we investigate the structures of semigroups of four types. In the last
section, we show that every right self-injective, right non-singular semigroup is
strongly left reversible. Consequently, we obtain another proof that every
semigroup of type (I) is a semigroup amalgamation base. Finally, we prove that
a semigroup S of type (II) with the right socle X' being intersection large is never
strongly right reversible. Terminology and notations are referred to Clifford and
Preston [5], unless otherwise stated.

§1. Decomposition theorem

Throughout this paper, let S denote a semigroup. An element xeS is called
nilpotent if x" = 0 for some positive integer n. An ideal I of S is called nilpotent
if I"=0 for some positive integer n. The purpose of this section is to prove the
following:

THEOREM 1 (Decomposition Theorem). FEvery right self-injective, right non-
singular semigroup is isomorphic to the direct product of right self-injective, right
non-singular semigroups S,, S,, S5, S, of the following types (1I1) and (IV):

(Type I) S, is a regular semigroup containing no nonzero nilpotent elements.

(Type II) S, is a regular semigroup, each of which nonzero ideal contains nonzero
nilpotent elemets.

(Type III) S; contains no nonzero nilpotent elements and each nonzero ideal of
S5 is not regular as a semigroup.

(Type 1V) Each nonzero ideal of S, contains nonzero nilpotent elements and is
not regular as a semigroup.

The proof of Theorem 1 follows from the following results. In Lemmas 1
through to 6, we assume that S is a right self-injective, right non-singular semigroup.

LemMA 1. (from [1, Theorem 10] and [8, Proposition 3.3]).

(1) For each right ideal 1 of S, there is an injective right ideal K of S such
that 1 is intersection large in K.

(2) Let M, N be right ideals of S such that M is intersection large in N. If
M 'is injective, then M = N.

LEMMA 2. Let J be a right ideal of S and let J¢ = {xe T|xSnJ =0}. Then
JC is an injective right ideal of S such that JnJC€ =0 and JUJC is intersection
large. Also, J is intersection large in (J€)°. In this case J€ is called the complement

of J.
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ProoF. By lemma 1, there is an injective right ideal K of S such that J€ is
intersection large in K. Obviously KnJ =0. Hence K = J¢ and J€ is injective.
Let teS with t #0. If tsnJ =0, then ts < JC. Otherwise we have tsnJ # 0.
Thus JUJC is intersection large. We shall show next that J is intersection large
in (JE)C. Let ue(J€)C with u#0. Then uSn(JUJC) #0 and hence usnJ # 0.
The lemma is proved.

COROLLARY 1. Let I, J be injective right ideals of S. Then InJ is injective.

ProoF. From Lemmas 1 and 2, we have I=(I°)°, J=(J)C. Clearly,
InJ =« (I€uJCF. On the other hand, (IUJC) = (I°)¢ =1 and (ICUJC)C = (JO)
=J. Hence InJ = (I€UJC) and hence InJ is injective by Lemma 2.

LemMa 3. Let I be a right ideal of S. Then the following are equivalent.

(1) I is injective.

(2) I is generated by an idempotent.

(3) There is a unique idempotent e€S such that es =1 and el =0. In this
case, e is called a projection of I.

PrOOF. (1)=>(3): Take an S-homomorphism ¢: IUI¢— I such that £(I€) =0
and &(a) = a for all ael. Since I is injective, ¢ extends to an S-homomorphism
E:S—1 Put Zl)=ecl. Then eI°=0, e*=e and eS=1 Since IUI® is
intersection large in S and § is right non-singular, there are no such idempotents
in S but e.

(3)=(2): Obvious.
(2)=>(1): This was proved in [12, Lemma 3].

LEmMMA 4. Let e be a central idempotent and f the projection of (eS)°. Then
f is a central idempotent and S is isomorphic to the direct product of two semigroups

eSe, fSf.

Proor. Firstly we have fS = SfS, since SfSneS =0. Hence sf=fsf for all
seS. We shall show that fsf=fs for all se€S. Let s€S. Then fsa = fsfa for
aceSUfS. Since eSUSS is intersection large in S and S is right non-singular, we
get fs =fsf. Therefore sf=fs for all seS, that is f is central. Now define a
semigroup-homomorphism v: S — eSe x fSf by v(s) = (es, fs) for all seS. Since
eSUSS is dense, v is one-to-one. Let xeceSe, yefSf. Then there is an S-
homomorphism &: eSUfS — S such that &(e) = x, &(f) =y. Since Sy is injective,
there exists we S such that &(a) = wa for all aeeSUfS, Then ew = x, fw =y. This
implies -that v is onto. Hence S ~ eSe x fSf. The lemma is proved,

LemMA 5. Let I be an ideal of S containing no nonzero nilpotent ideals of
S. Then there exist central idempotents e, f€ S such that S ~ eSe x fSf and I is an
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intersection large right ideal of eSe.

ProOF. By Lemma 1, there exists an injective right ideal K of S in which I
is intersection large, By virtue of Lemma 4, we let e, f be the projections of K,
K€, respectively. Set V= {xeS|exel}. Then we shall show that V is an
intersection large right ideal of S. Let teS with t#0. If et =0, then teV.
Otherwise we get etSNI #0. Then tSNV#0. Whence V is interesection large in
S. So, V is dense and (fSe)VcfSI=fI=0, so that fSe=0. Also since
(eSfSnI)* =0, we have S(eSfSnI) = 0, by assumption. Moreover eSfS = 0 since I
is intersection large in eS, Therefore, fSe = eSf = 0. Let'seS'.' Then ese = se since
eSUfS is dense and (ese)a = (se)a for all aceSUfS. Whence ese = se for all
seS. On the other hand, for any nonzero right ideal 4 of S with 4 c SeS,
AneS = An(eSUfS) #0. Thus eS is intersection large in SeS, while eS is injective,
by Lemma 3. Consequently, SeS = eS, and so se = ese for all seS. - Therefore, e is
central. The result follows from Lemma 4.

The following is essentially due to [8, Theorem 4;2].

LemMMA 6. Let I be an ideal of S such that I is intersection large in S as a
right ideal. If I is a regular semigroup, then so is S.

Proor. Let xeS. Consider the set m(x) of all ordered pair (¢, K) such that
K is a right ideal of S contained in xS and ¢ is an S-homomorphism of K into
S satisfying x@(u) =u for all ueK. Define an order relation > on =m(x) by
(¢, K) > (n, J) if and only if K o J and 5 = ¢|; (the restriction of ¢ to J). Then
7(x) is an inductive ordered set respectively to >. By Zorn’s lemma, there exists
a maximal element (¢, K) in n(x). We shall show that K is intersection large in
xS. Suppose that 0 # aexS with aSnK = 0. Then ay # 0 for some yel, since I
is dense. Also since I is regular, there exists zel with (ay)z(ay) = ay. Put
t =ryz where a = xr. Now define an S-homomorphism ¢: aySUK — S such that
Elg = ¢ and &E(v) = tv for all veayS. Then x(tay) = x(ryz(ay)) =(ay)z(ay) = ay and
so x(¢(w)) = w for all we K UayS, a contradiction. Thus K is intersection large in
xS. Since S is right self-injective, there exists beS. such that bu = ¢(u). for all
ue K. . We shall next that xbx = x. Suppose that x # xbx. Set V= {ceS|xceK}.
As shown in the proof of Lemma 5, we can show that Vis an intersection large right
ideal of S. Then V is dense. Onthe other haned, (xbx)s = xs.for all seV, a
contradiction. It must be that xbx = x. Therefore S is regular, as required.

Lemma 7. Let U, V be semigroups. Then the direct product U x VofU, Vis
right self-injective and right non-singular if and only if so are both U and V.

ProoF. Necessity: By [13, Theorem 9], U x V is right self-njective. Also it
is clear that U x V is right non-singular.
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Sufficiency: It suffices to how that both U and V. are right self-injective. Set
T=UxV, e=(1,0)eT. Since e is central in T, it is easily shown that eT is a
right self-injective semigroup if and only if eT is injective as a right T-set. On the
other hand, by Lemma 3, ¢T is an injective right T-set. Hence eT is a right
self-injective semigroup. Since U ~ eT, we have U is a right self-injective semigroup.
Similarly one¢ can show that V is right self-injective. The lemma is proved.

The pfoof of Theorerh 1 follows iinmediately from the following results.

- ProposiTION 1. -Let S be a right self-injective, right non-singular semigroup.
Then there exist right self-injective, right non-singular semigroups U, V such that U
is ‘a regular semigroup, each nonzero zdeal of V is not a regular semigroup and
Ux VxS -

PROOF Let I be the union of all ideéls of S which are regular
semigroups. The I is an ideal of S and a regular semigroup. Whence I contains
no nonzero nilpotent ideals of S. So by using Lemmas 5.and 6, we can obtain
the reguired semigroups U, V.

PROPOSITION 2. Let S be the same as in Proposition 1. The there exist right

self-injective, right non-singular semigroups Y, Z -such that Y contains no nonzero

nilpotent element, each nonzero ideal of Z contains nonzero nilpotent elements and
Yx Z~S. .

PrOOF. Let J be the union of all ideals of S which contains nonzero nilpotent
elements. Then J is an ideal of S and contains no nonzero nilpotent elements. By
Lemma 5, there. exist semigroups Y, Z such that Y contains J as an intersection
large ideal, each nonzero ideal of Z contains nonzero nilpotent elements and
Yx Z~S8. To prove the proposmon it suffices to show that Y contains no nonzero
nilpotent elements, - Let xe Y with x> = 0. The xJx = 0 since (xJx)> = 0. Further,
xJ = 0. .Since J is a dense right ideal of Y, we obtain x = 0, proving the proposition.

§2. Semigroups of types (I), (II), (III), (IV)

By a semigroup of type (I) [resp. (II), (III), (IV)], we mean right self-injective,
right non-singular semigroup of type (I) [resp. (II), (IIT), (IV)]. - The purpose of this
section is to clarify the structures of semigroups of these types. We begin with
semigroups of type (1). '

LEmMMA 8. Let S be a right self-injective, rzght non-singular iegular semigroup.
Then the following are equivalent.

(1) S is self-injective and non-singular.

(2) - S has nonzero nilpotent elements.

(3) For any. idempotents e, feS, ef =0 implies fe = 0.
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Proor. (1)=(2): By [12, Theorem 3], S is a semilattice of groups. So the
result holds.

(2)=>(3): Obvious.

(3)=(1): Let e, f be any idempotents of S with e & f (where & denotes the
Green’s L-relation on S). Suppose that eS ¢ fS. By Lemma 1, eSnfS is not
intersection large in eS since eSN S is injective, by Corollary 1. Then there exists
a nonzero xe€eS such that xSnfS =0. Since S is regular, xS is generated by an
idempotent and hence, by Lemma 3, xS is injective. By Lemma 3, xS contains a
projection h. Then hf=0 and so, by assumption, fh =0. Consequently, eh =
efh =0, so that he=0. Thus h=heh =0, a contradiction. Hence eS cfS.
Dually, we get fS < eS, Whence e £ f (where # denotes the Green’s R-relation
on S) and so, e =f. Thus each #-class of S contains a unique idempotent. Next
we let a, b be any idempotents of S with a # b. Set I = {seS|as=bs}. Then
we shall show that I is an intersection large right ideal of S. So suppose that
there is a nonzero ceS with ¢SnI =0. Since aS < I, we have ¢cSnaS =0. Since
S is regular, by Lemma 3(3), ¢S contains a projection k. Then ka = kb= 0. So,
by assumption, ak = bk. Hence kel, a contradiction. Thus I is intersection large
and hence I is dense. Then we obtain a = b. Therefore each #-class of S contains
a unique idempotent. By [5, Theorem 1.17], S is an inverse semigroup. In this
case, S is anti-isomorphic to S itself. So we conclude that S is self-injective and
non-singular. The lemma is proved.

From [12, Theorem 3] and Lemma 7, we have

THEOREM 2. Every semigroup of type (1) is a self-injective, non-singular semigroup
which is a semilattice of groups.

Thus the structure of semigroups of type (I) has been clarified by [12] and [14].
In the remaining part of this section (except Theorem 4), we assume that §
satisfies the following (*):

(*) The right socle X~ = X,(S) of S is an intersection large in S.

RemMARk 1. Without the assumption, the structures of semigroups of type (II),
(ITI), (IV) seem difficult to be handled.

Let S be right self-injective, right non-singular semigroup satisfying (). Since
X is dense, it follows easily from [5, I, Theorem 6.19] that X' is a O-direct union
ideals SR;, where R;’s are non-nilpotent O-minimal right ideals of S. By applying
[5, Theorem 6.5 and Lemma 5.2], it follows that S is isomorphic to the direct
product of semigroups Homg(SR;, SR;) consisting of all S-endomorphisms of SR;,
where we use the convertion:f-g(s) =f(g(s))(seSR;, f, g€ Homgp (SR;, SR;)). In
this case, Homg(SR;, SR;) = Homgg (SR;, SR;), that is, the semigroup of all left
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translations of SR;, and SR; is a right non-sigular semigroup, equivalently, a right
reductive semigroup. :

In the case of semigroups of type (II), the semigroups above SR; are right
reductive completely O-simple semigroups (see[13]).

From [7, Theorem 7.16] and [8, Theorem 5.6], it follows that

THEOREM 3. Every semigroup of type (1) satisfying (%) is isomorphic to a direct
product of square column monomial matrix semigroups over groups with zero, and
vice-versa. ‘

REMARK 2. Let S be a square column monomial matrix semigroup over a
group with zero and T its subsemigroup consisting of all matrices with at most
one nonzero entry. Then T is a completely O-simple inverse semigroup (so-called,
a Brandt semigroup) and S is isomorphic to A(T). More generally, one can see
that the maximal right quotient semigroup of a non-singular inverse semigroup
which is not a semilattice of groups is a semigroup of type (II).

As for semigroups of type (III), we shall show:

A semigroup S is called indecomposable if it is not isomorphic to a direct
product of two non-trivial semigroups.

THEOREM 4. An indecomposable semigroup S of type (III) is the semigroup
obtained from a right. cancellative semigroup without idempotents by adjoining a
zero. Specially, S is an infinite semigroup.

PROOF. Suppose that there exists 0 # xeS such that xS is not intersection
large in S. Then (xS)° # 0 and ((xS)Y)° # 0. Let e, / be projections of (xS)", ((xS)°),
respectively. Then ef = 0 and hence (fSe)> = 0. Since S contains no zero nilpotent
elements, we get fSe =0. Similarly we obtain SeSnfS =0, so that SeSnxS = 0.
By Lemma 2, SeS ceS. From the proof of Lemma 5, there exists a central
idempotent he S such that eS is intersection large in hS. By Lemma 1 and Lemma
3, we have e=h. By lemma 4, eS is a direct summand of § as a
subsemigroup. Since S is indecomposable, we know that e equals 1 or 0, a
contradiction. So we conclude that every nonzero right ideal of S is intersection
large in S. By [8, Theorem 4.3], S-{0} is a right cancellative subsemigroup. All
remaining parts of the therem are easily proved.

THEOREM 5. Every semigroup of type (1) satisfying («) is isomorphic to a direct
product of the semigroups of left translations of semigroups obtained from right
cancellative, right simple semigroups without idempotents by adjoining a zero element,
and vice-versa.

Proor. Let S be a semigroup of type (III) and R a 0-minimal right ideal. We
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shall show first that the ideal SR is a O-minimal right ideal. By. [5, II, Theorem
6.23], SR is a 0-minimal ideal of S. By Lemma 5, there exists a central idempotent
ee S such that [ is intersection large in eS and eS is a (semigroup) direct summand
of S. Since clearly eS is indecomposable, as shown in the proof of Theorem 4, it
follows that every nonzero right ideal of eS is intersection large in eS. Hence
SR = R. By Theorem 4, it follows that SR- {0} is a right cancellative subsemigroup
without idempotents. The proof of the theorem is complete.

REMARK 3. Baer-Levi semigroup is an important example of right cancellative,
right simple semigroups without idempotents. Thus one can construct semigroups
of type (III) satisfying () from Bear-Levi semigroups with zero adjoined (see [107).

Finally, we shall study the structure of semigroups of type (IV) satisfying (x).

Let S be a semigroup of type (IV) satisfying (x). As is shown in the argument
before Theorem 2, S is isomorphic to the direct product of semigroups A(SR)),
where R;’s are 0-minimal right ideals of S. So we assume that the right socle of
S is of form SR, where R is a non-nilpotent 0-minimal right ideal. Then by [5,
II, Theorem 6.19] and our observation mentioned above, we can show that the
semigroup SR satisfies any one of the following two conditions:

(IV,) SR is a right reductive, non-regular 0-simple semigroup which is a union
of at least two non-nilpotent 0-minimal right ideals.

(IV,) SR is a right reductive, semigroup which is a union non-nilpotent
0-minimal right ideals and nilpotent O-minimal right ideals and satisfies that (1)
R,R, =R,, R,R, =R, for any non-nilpotent 0-minimal right ideals R,, R, and
(2) NR = N, RN = 0 for any non-nilpotent 0-minimal right ideal R and any nilpotent
0-minimal right ideal N.

Summarizing up the above, we obtain

THEOREM 6. Every semigroup of type (IV) satisfying (*) is isomorphic to a direct
product of the semigroups of all left translations of semigroups satisfying any one of
the conditions (IV,) or (IV,).

REMARK 4. (1) The semigroup A(S) of a semigroup S satisfying (IV,) is of type
(IV) if it is not regular. Saito and Hori [11] gave method of constructing
semigroups satisfying (IV,). (Also, semigroups of (IV,) are obtained from factor
semigroups of Croisot-Teisser semigroups.) one can show that the semigroup A(S)
of a Saito-Hori semigroup S is of type (IV).

(2) If a semigroup S satisfies (IV,) and an additional condition (x*) that all
S-homomorphisms from nilpotent 0-minimal right ideals to non-nilpotent 0-minimal
right ideals are the zero map, then it is easy to see that A(S) is a semigroup of
type (IV). A method of constructing a semigroup which is a O-union of nilpotent
0-minimal right ideals and non-nilpotent 0O-minimal right ideals from a O-simple
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semigroup with a non-nilpotent O-minimal right ideal is described in -[5, II,
P.11-12]. This enables us to construct semigroups:satisfying (IV,) and (#x).

Following the last statement of Remark 4, we: give a simple example of a
semigroup of type (IV).

'ExampLE. Let G be a group and H its subgroup such that there does not
exist any normal subgroup between H and G. Let N = G/H denote the set of
left cosets of G mod H. Set S=GUNU{0}. Define multiplication on S as
follows: (1) xey =xy if x, yeG, or xeN, yeG (since N is a right G-set), (2) xoy
=0if yeN, (3) xc0=0°ox=0. Then S is a right reductive semigroup such that
S is a O-union of a non-nilpotent right O-minimal ideal G° and a nilpotent right
0-minimal ideal N, and all S-homomorphism of N to G are the zero map. Also
it is easy to see that A(S)={e}US, e* =e, en=ne=n for all neN, N> =0 and
eg=ge=-ce for all geG. Then A(S) is a semigroup of type (IV).

§3. Strong reversibility

Howie [9] and Hall [6] proved that every inverse semigroup is an
amalgamation base in the class of semigroups (hereafter, called a semigroup
amalgamation base). Consequently, we know that every semigroup of type (I) is
a semigroup amalgamation base. In the same paper [6], Hall also showed that
every semigroup which is a semigroup amalgamation base has the representation
extension property (REP) and its dual (REP)°’.” The author [14] showed that
every right self-injective semigroup has (REP)’’. On the other hand, Bulman-
Fleming and McDowell [2] proved that every absolutely flat semigroup (that is,
every left or right S-set is S-flat) is a semigroup amalgamation base (see also
[3]). Bulman-Fleming and McDowell [4] introduced the stronger property “strong
reversibility” than the property “Absolute flatness”.

According to [4], a monoid S is called strongly left [right] reversible if for
any x, yeS, there exists ze S such that zx = x and zyexSnyS [respectively, xz = x
and yze SxNnSy], and strongly reversible if it is both strongly left and right reversible.

THEOREM 7. Let S be a vright self-injective, right non-singular regular
semigroup.  Then S is strongly left reversible.

Proor. Let x, yeS. By lemma 3, there exist projections e, f of xS, xSnyS,
respectively. Then we shall show that ey =fy. So suppose that ey # fy. Clearly,
there exists a right ideal A of S such that AnfyS =0 and AU fyS is intersection
large in yS, so that the set I = {se S|yse AU fyS} is an intersection large right
ideal of S. Since S is right non-singular, I is dense and so, there eixsts teS such
that ytel and eyt # fyt. However if ytefyS, then eyt = efyt = fyt, or if yte A,
~then eyt =0=fyt (since AnxS=0 and e, f are projections of xS, xSUyS), a
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contradiction. Hence ey =fy. Now it is easily seen that ex = x and eyexSnysS.
Therefore S is strongly left reversible. The therorem is proved.

Now it follows immediately from Theorem 2 and Theorem 7 that
THEOREM 8. Every semigroup of type (1) is strongly reversible.

From [4, Fleischer’s Theorem], [3, Proposition 1.2] and [6, Theorems 3 and
4], we have

COROLLARY 2. Every semigroup of type (1) is absolutely flat, and hence it is a
semigroup amalgamation base.

Further we have

THEOREM 9. - Let S be a semigroup of (II) satisfying (*). Then
(1) S is always strongly left reversible.

(2) S is never strongly right reversible.

Proor. The part (1) of the theorem is from Theorem 7. The part (2) will
follow from Theorem 3 and the next lemma.

LeMMA 9. Let S be a right reductive completely 0-simple semigroup. Then A(S)
is strongly right reversible if and only if S is a group with zero.

Proor. Sufficiency: It is obvious.

Necessity: Assume that A(S) is strongly right reversible. Then it suffices to
show that S is itself a O-minimal right ideal. Suppose that S contains two right
0-minimal right ideals R,, R,. Then there exist f, ge A(S) such that f|g, = 1g,, f(R)
=0 for all 0-minimal right ideal R other than R,;, and g(R,) =R,, g(R;) =R,
and g(R’) = 0 for all O-minimal right ideal R’ other than R,, R,. Then there does
not exist he A(S) such that fh = f and ghe A(S)f nA(S)g. For if there exists such
heA(S), then gh(R,)=0 (since gheA(S)f), and so, gh(R,)= ghg(R;) (since
ghe A(S)g) = gh(R,) = 0. Evidently, h(R,)nR, =0. Hence fh(R;)=0. This con-
tradicts fh =f The lemma is proved, and the proof of Theorem 9 is complete.

In a subsequent paper [16], we will discuss when semigroups of type (II) are
semigroup amalgamation bases.
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