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It is shown that each right self-injective, right nonsingular semigroup is isomorphic to a 

direct product of right self-injective, right non-singular semigroups of types (1), (n), (In), (IV) 

The structures of those semigroups of four types are studied. In particular, it is shown that 

every ~emigroup of type (D is a semilattice of groups. n is proved, that every . right 

self-injective, right non-singular. regular semigroup is strongly left reversiple. This gives 

another proof that every semigroup of type (1) is absolutely fiat and, consequently, a semigroup 

amalgamation base 

Imtroduction 

Let S be a semigroup with zero O and Ms a nonempty set with an operation 

of S on the right. Then Ms is called a right S-set with zero OM (srmply called a 

right S-set) if -(ms)t = m(st) and OMS = mO = OM for all= 'ineMs and all s, ieS. 

Dually, a left S-set is .defined. Let ip be a mapping of As int9 Bs, where As, Bs 

are right S-sets. Then ip is called an S-map if ip(as) = c(a)s for all a e As and 

s e S. A right S-set Ms is called injective if for any injective S-map ~ : As ~> Bs 

and any S-map n : As ~> Ms; there exists an S-map e : Bs ~' Ms With O~ ~ n. A 

semigroup S is called right self-injective if the right S-set Ss rs~ injective. Dually, 

a left self-injective,,semigroup is defined. A both left and right self-injective 

semigroup is simply called self-injective 

Let S be a semigroup with zero and I, J nght ideals of S with I c J. Then 

we 'saj that I is inte/section large in J if I n K ~ O for all nenzero right ideal K 

of S with K c J. In particular, if I is intersectron large in S, the I is simply called 

an intersection large right ideal. . A right ideal R of S is qall~~ dense if for any 

triple of a, b and c e S with a ~ b, there exists z e S such that cz.eR and az ~ bz. A 

semigroup S with zero is called right non-singular if every intersection large right 

ideal of S is dense. A Ieft non-sl:ngular semigroup is dually defined. A both left 

and right non-singular semigroup is simply called non-singular. In [12] the author 

has studied the structure of self-injectrve non-singular semigroups. According to 

Hinkle [8], all right self-injective, right nonsingular semigroups are obtain~d as 

maximal right quotient semigroups of right non-singular semigroups. As far as the 

author knows,' the structure of these semrgroups has not been known except in 

special cases (see [7]). In Section 1, we give a decomposition of a right self-injective, 
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right non-singular semigroup into semigroups of types (1), (II), (III) and (IV). In 

Section 2, we mvestrgate the structures of semigroups of four types. In the last 

section, we show that every right self-injective, right non-singular semigroup is 

strongly left reversible. Consequently, we obtain another proof that every 

semigroup of type (1) is a semigroup amalgamation base. Finally, we prove that 

a semigroup S of type (II) with the right socle ~ being intersection large is never 

strongly right reversible. Terminology and notations are referred to Clifford and 

Preston [5], unless otherwise stated 

S1. Decomposition theorem 

Throughout this paper, Iet S denote a semigroup. An element x e S is called 

nilpotent if x" = O for some positive integer n. An ideal I of S is called nilpotent 

if I" = O for some positive integer n. The purpose of this section is to prove the 

following : 

THEOREM I (Decomposition Theorem). Every right self-injective, right non-

singular semigroup is isomorphic to the direct product of right self-injective, right 

non-singular semigroups Sl' S2, S3, S4 of the following types (III) and (IV) : 

(Type I) S1 is a regular semigroup containing no nonzero nilpotent elements. 

(Type II) S2 is a regular semigroup, each of vvhich nonzero ideal contains nonzero 

nilpotent elemets. 

(Type 111) S3 contains no nonzero nilpotent elements and each nonzero idea/ of 

S3 is not regular as a semigroup. 

(Type IV) Each nonzero ideal of S4 contains nonzero nilpotent elements and is 

not regular as a semigroup. 

The proof of Theorem I follows from the following results. In Lemmas 1 
through to 6, we assume that S is a right self-injective, right non-singular semigroup 

LEMMA 1. (from [1, Theorem 10] and [8, Proposition 3.3]). 

(1) For each right ideal I of S, there is an injective right ideal K of S such 

that I is intersection large in K. 

(2) Let M, N be right ideals of S such that M is intersection large in N. If 

M ' is injective, then M = N. 

LEMMA 2. Let J be a right idea/ of S and let Jc = {xeTlxsnJ = O}. Then 
Jc is an injective right ideal of S such that J n Jc = O and J U Jc is intersection 

large. Also, J is intersection large in ( Jc)c . In this case Jc is called the complement 

of J. 
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PRooF. By lemma 1, there is an injective right ideal K of S such that Jc is 

intersection large in K. Obviously K n J = O. Hence K = Jc and Jc is injective 

Let teS with t ~ O. If tsnJ=0, then ts c Jc. Otherwise we have ts nJ ~ O 
Thus J U Jc is intersection large. We shall show next that J is intersection large 

in (Jc)c. Let ue(Jc)c with u ~ O. Then uSn(JUJc) ~ O and hence usnJ ~ O 

The lemma is proved 

COROLLARY I . Let I, J be injective right ideals of S. Then I n J is injective 

PROoF. From Lemmas I and 2, we have I = (Ic)c, J = ( Jc)c. Clearly, 
I n J c (IcUJc)c. On the other hand, (Ic U Jc)c c (Ic)c = I and (IcUJc)c c ( Jc)c 

= J. Hence I n J = (IcUJc)c and hence I n J is injective by Lemma 2 

LEMMA 3. Let I be a right ideal of S. Then the following are equivalent 

(1) I is injective. 

(2) I is generated by an idempotent. 

(3) There is a unique idempotent e e S such that es = I and elc = O. In this 

case, e is called a projection of I. 

PRooF. (1)=>(3) : Take an S-homomorphism ~ : I U Ic _> I such that ~(Ic) = O 

and ~(a) = a for all a e I. Since I is injective, ~ extends to an S-homomorphism 

~: S ~･1. Put ~~(1) = eel. Then elC = O, e2 = e and eS = I. Since IUlc is 

mtersectioh large m S and S is right non-singular, there are no such idempotents 

in S but e. 

(3) => (2) : Obvious. 

(2) => (1): This was proved in [12, Lemma 3] 

LEMMA 4. Let e be a centra/ idempotent and f the projection of (eS)c. Then 

f is a central idempotent and S is isomorphic to the direct product of two semigroups 

eSe, fSf 

PRooF. Firstly we have fS = SfS, since SfS n eS = O. Hence sf =fsf for all 

seS. We shall show that fsf=fs for all seS. Let seS. Then fsa =fsfa for 
a e eS UfS. Since eS UfS is intersection large in S and S is right non-singular, we 

get fs =fsf Therefore sf=fs for all s e S, that is f is central. Now define a 

semigroup-homomorphism v : S -> eSe x fSf by v(s) = (es, fs) for all s e S. Since 

eS UfS is dense, v is one-to-one. Let x e eSe, yefSf Then there is an S-
homomorphism ~ : eS UfS -> S such that ~(e) = x, ~(f) = y. Since Ss is injective, 

there exists w e S such that ~(a) = wa for all a e eS UfS, Then ew = x, fw = y. This 

implies .that v is onto. Hence S ~: eSe x fSf The lemma is proved, 

LEMMA 5. Let I be an idea/ of S containing no nonzero nilpoter7t ideals of 

S. Then there exist central idempotents e, fe S such that S - eSe x fSf and I Is an 
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intersection large -,right ideal of eSe. -

PROOF. By Lemma 1, there ~xists an injective . right ideal K bf S in which I 

is intersection large, By virtue of Lemma 4, We let e, f be the projections of K, 

Kc, respectively. Set V={xeSlexel}. Then we shall show that V is a~l 
intersection large right ideal of S. Let t e S with t ~ O. If et = O,' then t e V 

Otherwise we get etS n I ~ O. Then tS n V ~ O. Whence V is'interesection large in 

S. So, V is dense - ,and (fSe) V.cfSI =fl = O, , so that fSe ~ O. Also since 
(eSfS n I)2 = O, we have S(eSfS n I) = O, by assumption. Moreover eSfS = O sipce I 
is intersectipn l~rge in eS, ' Th~refore, fSe = eSf ~ O. Let '~eS.~ Then .ese ~ se since 

eS UfS is dense and (ese)a = (se)a for all a e eS UfS. Whence ese = se.'for all 

s e S. On the other hand, 'for ~ny nonzero ~ right ideal A of S with A c SeS, 

A n eS = A n (eS UfS) ~ O. Thus eS is intersection large in SeS, while eS is injective, 

by Lemma 3. Consequently, SeS = eS, and so se = ese for all s e S. - Therefore, e is 

central. The result follows from Lemma 4 

The following is essentially due 'to [8, Theorem 4.2] 

LEMMA 6. Let I be an ideal of S such that I is intersection large in S as a 
right ideal. If I is a regular semigroup, then so is S. 

PRdoF. Let x e S. Consider the set 7c(x) of all ordered pair (c, K) such that 

K is a right ideal of S cont-ained in xS and ip is an S-homomorphism of K' 'into 

S satisfying xip(u) = u for all u e K. Define an order relation ~ on 7~(x) by 

(ip, K) ~ (n, J) if and only if K :) J and n = ip IJ (the restriction of ip to J). . Then 

~(x) is an inductive ordered set respectively to ~ . By Zorn's lerhma, there exists 

a maximal element (c, K) in 7c(x). We shall show that K is intersection large in 

xS. Suppose that O ~ a e xS with aS n K = O. Then ay ~ O for some yel, since I 
is dense. Also since I is regular, there exist~ z e I with (ay)z(ay) ~ ay. Put 

t = ryz where a = xr. Now define an S-homomorphism ~ : ayS U K -> S suph that 

~ IK = ip and ~(v) = tv for all v e ayS. Then x(tay) = x(ryz(ay)) = (ay)z(ay) = ay ahd 

so x(~(w)) = w for all w e K U ayS,' a contradiction. Thus K is intersection large in 

xS. Since S is right self-injective, there exists b e S such that bu ='c(u) . for- all 

ueK., , We shall next. that xbx = x. Suppose that x ~ xbx. Set V= {ceSlxceK} 

As shown in the ~roof of Lemma 5,.we can show that V is an intersection large right 

ideal of S. Then V is dense. On the other haned, (xbx )s = xs for all ･seV, a 

contradiction. ' It must be that xbx = x. Therefore S is regular, as required. 

LEMMA 7 Let U, V be sermgroups. Then the dir~ct product 'U x V of U, V is 

right self-injective and right .non-singular tf and only tf so are both U and V 

PROOF. Necessity : By [13, Theorem 9], U x V is right self-njective. Also it 

is' clear that U x V is right non-smgular 
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Sufficlency : It suffices to ,how that both U and V, are right self-injective. Set 

T= U x V, e = (1. O) e T. Since e is central in T, it is easily shown that , eT is a 

right self-injectrve semigroup if and only if e T is injective as a right T-set. On the 

other hand, by Lemma 3, eT is an injective right T-set. Hence eT is a right 
self-injective semigroup. Since U c~: e T, we _have U is a right self-inj~ctive semigroup 

Similarly on~ can show that V is right self-injective. The lemma is proved 

The proof of Theorem I follows immediately from the following resul=ts 

PROPOSITION 1. , Let S be a right self-injective, right non-sing-ular semigroup 

Then there exist . right ,self-injective, right non-singular semigroups U. V such that U 

is a regular semigroup, each nonzero ideal of V is ' not a regular. semigroup and 

U >

, PROoF. ~Let , I be the union of all ideals of S which are regular 
semigrolrps. The I is an ideal _of S and a regular s~migroup. Whence I contains 

no ,nonzero nilpotent ideals of S. So by using Lemmas 5 , and 6, we can obtain 

the reguired semrgroups U. V 

PROPOSITlbN 2. Let S be the 'same as in Propositlon I . The there exist right 

Self-injective, right non-singular semigroups Y, Z ' ,such that Y contains no non2ero 

nilpotent element,' each ･ nonzero idea/ of Z contains nonzero nilpotent elements and 

Yx Z ~ S. 

PRooF. Let J be the union of all ideals of S which contains nonzero hilpotent 

elements. Then J is an ideal of S and contains llo ,no,nzero nilpotent elements. By 

Lemma 5, there , exist semigrollps Y. Z such that Y contains J as an intersection 

large ideal, each nonzero ideal of Z contains nonzero nilpotent elements and 

Y x Z ~: S. To prove the proposition, rt suffices to show that Ycbntains n6 nonzero 

nilpotent elements, , Let x e Ywith x2 = O. The XJX = O since (xJx.)2 = O. F, urther, 

XJ = O. , Smce J is a dense ,right ideal of Y, we obtain )c = O, proving the proposition 

S2. Sernigroups of types (1), (II), (HI), (IV) 

By a semigroup of type (1) [resp. (II), ,(III), (IV)], we mean right self-injective, 

right non-singular semigroup of type (1) [resp. (II), (III), (IV)]. The purpose of this 

section rs to clarify the structures of semigroups of these types. We begin with 

semrgroups of type (1) 

LEMMA 8. Let S be a right self-injective, right non-singulai' regular semigroup. 

Then, the following are equivalent. ' 
(1) S is self-injective and non-singular. 

(2) S has n,onzero nilpotent elements. 

(3) For any idelnpotents e,feS, ef= O implies fe = O. 
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PRooF. (1) ~ (2) By [12 Theorem 3], S is a semilattice of groups. So the 

result holds. 

(2) ~' (3) : Obvious. 

(3) => (1): Let e, f be any idempotents of S with e ~Pf (where ~~ denotes the 

Green's L-relation on S). Suppose that eS ~fS. By Lemma 1, eS n fS is not 
intersection large in eS since eS n fS is injective, by Corollary 1. Then there exists 

a nonzero x e eS such that xS n fS = O. Since S is regular, xS is generated by an 

idempotent and hence, by Lemma 3, xS is mjectrve. By Lemma 3, xS contams a 

projection h. Then hf = O and so, by assumption, fh = O. Consequently, eh = 

efh = O, so that he = O. Thus h = heh = O, a contradiction. Hence eS c fS 

Dually, we get fS c eS, Whence e ~~ f (where ~ denotes the Green's R-relation 

on S) and so, e =f Thus each ~2-class of S contains a unlque idempotent. Next 

we let a, b be any idempotents of S with a ~~ b. Set I = {seSlas = bs}. Then 

we shall show that I is an intersection large right ideal of S. So suppose that 

there is a nonzero c e S with cS n I = O. Since aS c I, we have cS n aS = O. Smce 

S is regular, by Lemma 3(3), cS contains a projection k. Then ka = kb = O. So, 

by assumption, ak = bk. Hence k e I, a contradiction. Thus I is intersection large 

and hence I is dense. Then we obtain a = b. Therefore each ~-class of S contains 

a unique idempotent. By [5. Theorem 1.17], S is an inverse semigroup. In this 

case, S is anti-isomorphic to S itself. So we conclude that S is self-injective and 

non-singular. The lemma is proved 

Ftom [12, Theorem 3] and Lemma 7, we have 

THEOREM 2. Every semigroup of type (1) is a self-injective, non-singular semigroup 

which is a semilattice 'of groups. 

Thus the structure of semigroups of type (1) has been clarified by [12] and [14] 

In the remaining part of this section (except Theorem 4), we assume that S 

satisfies the following (*) 

(*) The right socle ~ = E.(S) of S is an intersection large in S 

REMARK I . Without the assumption, the structures of semigroups of type (II), 

(III), (IV) seem difficult to be handled 

Let S be right self-injective, right non-singular semigroup satisfying (*). Since 

Z rs dense, it follows easily from [5, II. Theorem 6. 19] that Z is a O-direct union 

ideals SRi, where Ri's are non-nilpotent O-minimal right ideals of S. By applying 

[5, Theorem 6.5 and Lemma 5.2], it follows that S is isomorphic to the direct 

product of semigroups Homs(SRi, SRi) consisting of all S-endomorphisms of SRi, 

where we use the convertion f g(s) f(g(s))(s e SR,,f 9 eHomsR (SR,, SRi)). In 

this case Hom (SR,. SR ) HomsR (SR,, SR,), that rs the semrgroup of all left 
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translations of SRi, and SRi is a right non-sigular semigroup, equivalently, a right 

reductive semigroup. 

In the case of semigroups of type (II), the senugroups above SRi are right 

reductive completely O-simple semigroups (see [ 1 3]) 

From [7, Theorem 7.16] and [8, Theorem 5.6], it follows that 

THEOREM 3. Ever.v semigroup of type (II) satisfying (*) is isomorphic to a direct 

product of square column monomial matrix semigroups over groups with zero, and 

vice-versa. 

REMARK 2. Let S be a square column monomial matrix semigroup over a 
group with zero and T its subsemigroup consisting of all matrices with at most 

one nonzero entry. Then T is a completely O-simple inverse semigroup (so-called, 

a Brandt semrgroup) and S is isomorphic to A (T). More generally, one can see 

that the maximal right quotient semigroup of a non-singular inverse semigroup 

which rs not a semilattice of groups rs a semigroup of type (II) 

As for semigroups of type (III), we shall show 

A semigroup S is called indecomposable if it is not isomorphic to a direct 

product of two non-trivial semigroups 

THEOREM 4. An indecomposable semigroup S of type (III) is the semigroup 

obtained from a right cancellative semigroup without idempotents by adjoining a 

zero. Specially, S is an infinite semigroup 

PRooF. Suppose that there exists O ~ x e S such that xS rs not mtersection 

large in S. Then (xS)' ~ O and ((xS)')' ~ O. Let e, f be projections of (xS)', ((xS)')', 

respectively. Then ef = O and hence (fSe)2 = O. Since S contains no zero nilpotent 

elements, we get fSe = O. Similarly we obtain SeS n fS = O, so that SeS n xS = O 

By Lemma 2, SeS c eS. From the proof of Lemma 5, there exists a central 
idempotent h e S such that eS is intersection large in hS. By Lemma I and Lemma 

3, we have e = h. By lemma 4, eS is a direct summand of S as a 
subsemigroup. Since S is indecomposable, we know that e equals I or O, a 
contradiction. So we conclude that every nonzero right ideal of S is intersection 

large in S. By [8, Theorem 4.3], S - {O} is a right cancellative subsemigroup. All 

remaining parts of the therem are easily proved 

THEOREM 5. Every semigroup of type (III) satisfying (*) is isomorphic to a direct 

product of the semigroups of left translations of semigroups obtained from right 

cancellative, right simple semigroups 14'ithout idempotents by adjoining a zero element, 

and vice-versa. 

PROOF. Let S be a semigroup of type (III) and R a O-minimal right ideal. We 
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shall show first that the ideal SR is a O-minimal right ideal. By. [5, II, Theorem 

6.23], SR is a O-minimal ideal of S. By Lemma 5, there exists a central idempotent 

e e S such that I is intersection large in eS and eS is a (semigroup) direct summand 

of S. Since clearly eS is indecomposable, as shown in the proof of Theorem 4, it 

follows that every nonzero right ideal of eS is intersection large in eS. Hence 

SR = R. By Theorem 4, it follows that SR - {O} is a right cancellative subsemigroup 

wrthout idempotents. The proof of the theorem ,is complete 

REMARK 3. Baer-Levi semigroup is an important example of right cancellative, 

right simple semigroups without idempotents. Thus one can construct semigroups 

of type (III) satisfying (*) from Bear-Levi semigroups with zero adjoined (see [10]) 

Finally, we shall study the structure of semigroups of type (IV) satisfying (*) 

Let S be a semigroup of type (IV) satisfying (*). As is shown in the argument 

before Theorem 2, S is isomorphic to the direct product of semrgroups A(SRi), 

where Ri's are O-minimal right ideals of S. ' So we assume that the right socle of 

S is of form SR, where R is a hon-nilpotent O-minimal right ideal. Then by [5, 

II, Theorem 6.19] and our observation mentioned above, we can show that the 

semigroup SR satisfies any one of the following two conditions 

(IVl) SR is a right reductive, non-regular O-simple semigroup which is a union 

of at least two non-nilpotent O-minimal right ideals 

(IV2) SR is a right reductive, semigroup which is a union non-nilpotent 

O-minimal right ideals and nilpotent O-minimal right ideals and satisfies that (1) 

RIR2 = Rl, R2Rl = R2 for any non-nilpotent O-minimal right ideals R1, R2 and 

(2) NR = N, RN = O for any non-nilpotent O-minimal right ideal R and any nilpotent 

O-minimal right ideal N 

Summarizmg up the above, we obtain 

THEOREM 6. Evel'y semigroup of type (IV) satisfying (*) is isomorphic to a direct 

product of the semigroups of all left translations of semigroups satisf.ving ally one of 

the conditions (IV1) or (IV2)' 

REMARK 4. (1) The semigroup A(S) of a semigroup S satisfying (IV1) is of type 

(IV) if it is not regular. Saito and Hori [1l] ~ave method of constructing 

semigroups satisfying (IV1). (Also, semigroups of (IV1) are obtained from factor 

semigroups of Croisot-Teisser semigroups.) one can show that the semigroup A (S) 

of a Sarto-Hon semrgroup S is of type (IV) 

(2) If a semigroup S satisfies (IV2) and an additional condition (**) that all 

S-homomorphisTns from nilpotent O-minimal right ideals to non-nilpotent O-minimal 

right ideals are the zero map, then rt is easy to see that A (S) rs a semigroup of 

type (IV). A method of constructing a semigroup which is a O-union of nilpotent 

O-minimal right ideals and non-nilpotent O-minimal right ideals from a O-simple 
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semigtoup with a non-nilpotent O-minimal right ideal is described - in [5, II, 

P.11-12]. This enables us to construct semigroups satisfying (IV2) and (**) 

Following the last statement of Remark 4, we , give a simple .example of a 

semigroup of type (IV) 

EXAMPLE. Let G be a group and H its sub~roup such that there does not 

exrst any normal subgroup between H and G. Let N = G/H denote the set of 
left cosets of G mod H. Set S = G U N U {O}. Define multiplication on S as 

follows: (1) x'y = xy if x, yeG, or xeN, yeG (since N is a right G-set), (2) x'y 

= O if y e N, (3) x ' O = O ･ x = O. Then S is a right reductive semigroup such that 

S is a O-union of a non-nilpotent right O-minimal ideal GO and a nilpotent right 

O-minimal ideal N, and all S-homomorphism of N to G are the zero map. Also 
it is easy to see that A(S) = {e} US, e2 = e, en = ne = n . for all neN, N2 = O and 

eg = ge = e for all g e G. Then A(S) is a semigroup of type (IV) 

S3･ Strong reversibility 

Howre [9] and Hall [6] proved that every inverse semigroup is an 
amalgamation base in the class of semigroups (hereafter, called a semigroup 

amalgamation base). Consequently, we know that every semigroup of type (1) is 

a semrgroup amalgamation bas~. In the same paper [6], Hall also showed that 

every semrgroup which is a semigroup amalgamation base has the representation 

extenslon property (REP) and its dual (REP)"P." The author [14] showed that 

every rrght self-injectiv6 semigroup has (REP)"P. On the other hand, Bulman-

Fleming and McDowell [2] proved that every absolutely fiat semigroup (that is, 

every left or right S-set is S-fiat) is a semigroup amalgamation base (see also 

[3])･ Bulman-Fleming and McD'owell [4] introduced the stronger property "strong 

reversibilrty" than the property "Absolute flatness" 

According to [4], a monoid S is called strongly left [right] ' reversible ' if for 

any x, y e S, there exists z e S such that zx = x and zy e xS n yS [respectively, xz = x 

and yz e Sx n Sy], and strongly reversible if it is both strongly left and right reversible 

THEOREM 7. Let S be a right self-injective, right non-singular regulai' 
semigroup. Then S is strongly left reversible. 

PROOF. Let x, y e S. By lemma 3, there exist projections e, f of xS, xS n yS, 

respectrvely. Then we shall show that ey =fy. So suppose that ey ~fy. Clearly, 

there exists a right ideal A of S such that A n fyS = O and A U fyS is intersection 

large in yS, so that the set I = {se Slys e A U fyS} is an intersection large right 

ideal of S. Since S is right non-singular, I is dense and so, there eixsts t e S such 

that yt el and eyt ~fyt. However if yt efyS, then eyt = efyt =fyt, or if yt e A, 

then eyt = O =fyt (since A n xS = O and e, f are projections of xS, xS U yS), a 
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contradiction. Hence ey =fy . Now it is easily seen that ex = x and ey e xS n yS 

Therefore S is strongly left reversible. The therorem is proved 

Now it follows immediately from Theorem 2 and Theorem 7 that 

THEOREM 8. Every semigroup of type (1) is strongly reversible. 

From [4, Fleischer's Theorem], [3, Proposition 1.2] and [6, Theorems 3 and 

4], we have 

COROLLARY 2. Ever.v semigroup of type (1) is absolutely flat, and hence tt Is a 

semigroup amalgamation base. 

Further we have 

THEOREM 9. ' Let S be a semigroup of (II) satisfying (*). Then 

(1) S is always strongly left reversible. 

(2) S is never strongly right reversible. 

PRooF. The part (1) of the theorem is from Theorem 7. The part (2) will 

follow from Theorem 3 and the next lemma 

LEMMA 9. Let S be a right reductive completely O-simple semigroup. Then A (S) 

is strongly right reversible tf and only tf S is a group with .-ero. 

PRooF. Sufficiency : It is obvious 

Necessity : Assume that A(S) is strongly right reversible. Then it suffices to 

show that S is itself a O-minimal right ideal. Suppose that S contains two right 

O-minimal right ideals R1, R2' Then there exist f g e A(S) such that flR* = IR*, f(R) 

= O for all O-minimal right ideal R other than R1, and g(R1) = R2, 9(R2) = R2 

and g(R') = O for all O-minimal right ideal R' other than Rl, R2' Then there does 

not exist h e A(S) such that fh =f and ghe A(S)fnA(S)g. For if there exists such 

heA(S), then gh(R2)=0 (since gheA(S)f), and so, gh(Rl)=ghg(Rl) (since 
gh eA(S)g) = gh(R2)- = O. Evidently, h(R1)nR1 = O. Hence fh(R1)=0. This con-

tradicts fh = f The lemma is proved, and the proof of Theorem 9 is complete 

In a subsequent paper [16], we will discuss when semigroups of type (II) are 

semrgroup amalgamation bases 
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