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ABSTRACT. It is known that every geodesic on each geodesic sphere in a complex
projective space is a homogeneous curve, that is, every geodesic is an orbit under
a certain one-parameter subgroup of the isometry group of the geodesic sphere.
In this paper, we give a family of homogeneous non-geodesic closed curves on
this geodesic sphere through submanifold theory.

1. INTRODUCTION

In this paper we consider some homogeneous curves on geodesic spheres in a
complex n(= 2)-dimensional complex projective space CP"(c¢) of constant holo-
morphic sectional curvature ¢(> 0). Geodesic spheres of radius smaller than the
injectivity radius of CP™(¢) are nice objects in differential geometry. They are
typical examples of naturally reductive Riemannian homogeneous manifolds (see
[11]). Every geodesic on a geodesic sphere in CP™(c) is hence an orbit under some
one-parameter subgroup of the isometry group of this geodesic sphere. We shall
say such a curve to be homogeneous.

It is also well-known that some geodesic spheres in CP"(c¢) are so-called Berger
spheres. That is, when the radius r (0 < r < 7/y/c) of a geodesic sphere in
CP"(c) satisfies tan?(y/cr/2) > 2, sectional curvatures of this geodesic sphere
lie in the interval [§K, K] (K = {4 + cot?(y/cr/2)}/4) with some § € (0,1/9).
But it has closed geodesics of length of (27/y/c)sin(y/cr) which is shorter than
At /\/e{4 + cot?(v/er/2)}. These closed geodesics are integral curves of the char-
acteristic vector field £ of this geodesic sphere which is defined by £ = —JA with
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the outward unit normal vector field A of this geodesic sphere and the complex
structure JJ on CP™(¢) ([17]). Futhermore, every its geodesic which is not congru-
ent to such integral curves has length longer than 47/+/c{4 + cot?(v/cr/2)} (see
Corollary 2.8 in [4]). In this context it is natural to pay attention to integral curves
of the characteristic vector field £ of a geodesic sphere in CP™(c).

We study curves on geodesic spheres in CP"(¢) through the parallel isometric
embedding f of CP"(c) into Euclidean space R™"+2) which is a composition of
the first standard minimal embedding of CP"(c) into some standard sphere and
a totally umbilic embedding of this sphere into R*"*2) (for details, see section
2). If we denote by ¢ the inclusion of a geodesic sphere into CP™(c), through the
isometric embedding f o, we can treat geodesic spheres in CP™(c) as Riemannian
submanifolds in R*™*2), Hence we can consider curves on geodesic spheres as curves
in R"*+2) Tt is known that the shape of each integral curve of the characteristic
vector field € on this geodesic sphere through f o is a circle in R*"*+2) in the sense
of Euclidean geometry (see [6]). Motivated by this fact, we classify all curves on
a geodesic sphere whose shapes through f o are circles in R*"*2) and show that
they are homogeneous.

2. CIRCLES AND THE PARALLEL ISOMETRIC EMBEDDING

Let M be a Riemannian manifold with Riemannian metric ( , ) and Riemann-
ian connection V. A smooth regular curve v = 7(s) on M parameterized by its
arclength s is said to be a circle if there exist a constant k(= 0) and a field of unit
vectors Y along v which satisfy the ordinary differential equations:

(2.1) Viy = kY and V.Y = —k7.

We call the constant k its curvature and {%,Y} its Fenet frame. A circle of null
curvature is nothing but a geodesic. Given a point x € M, an orthonormal pair of
vectors (u,v) € Ty M xT, M and a positive constant k, there exists locally a unique
circle v : (—e€,€) — M of curvature k£ whose initial frame at v(0) = z is (u,v). It is
known that on a complete Riemannian manifold the domain of each circle can be
extended to R (cf. [13]).

The following canonical isometric embedding f of CP"(¢) into a Euclidean space
R*"+2) plays a key role in this paper. We consider the first standard minimal
embedding of f; of CP"(c) into an (n(n+2) —1)-dimensional standard sphere
S"n+)=1((n+1)c/(2n)) of constant sectional curvature (n+1)c/(2n), which is
constructed by eigenfunctions with respect to the first eigenvalue of the Laplacian
on CP"(c), and a totally umbilic embedding f, of S""*2~1((n+1)c/(2n)) into
R™"*+2) (for details on standard embeddings, see [16]). The composition

f=fa0fy: CP () =5 S"H 7Y (n41)e/(2n)) 5 RIOH
has the following nice geometric properties:

1) The second fundamental form o of f is parallel and satisfies o(JX, JY) =
o(X,Y) for all vectors X, Y on the submanifold CP" (c) with complex struc-
ture J (see [7]);
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2) Tt is /c-isotropic, namely the second fundamental form o of f satisfies
(0(X,X),0(X, X)) = c for each unit vector X on CP"(c) (cf. [9]);
3) When n = 1, this embedding is congruent to a natural totally umbilic
embedding of S?(c) into R3.
Through this isometric embedding some circles on CP™(c¢) can be seen as circles
on Rn(nJrZ) )

Lemma 1 ([15]). For each geodesic v on CP"(c), the curve f oy is a circle of
curvature \/c in a Buclidean space RM™2).

We here classify circles on a Kéhler manifold M with complex structure .J by
another invariant. For a circle v satisfying (2.1), we set 7(s) = (¥(s), JY (s)) and
call it its complex torsion. It should be noted that the complex torsion 7 of a circle
v is a constant function with —1 < 7 < 1:

Vi (1, JY) = Vs, JY) + (3, IV3Y) = (Y, JY) = k{3, J9) = 0.

We say a circle with complex torsion 7 = 41 to be a Kdhler circle and a circle with
null complex torsion to be totally real circle. A Kahler circle of curvature k£ on a
Kahler manifold is hence a curve satisfying either

(2.2) Vi =kJy  or Viy=—kJq.

On CP™(c), a circle is Kéahler if and only if it lies on some totally geodesic complex
line CP'(c), and is totally real if and only if it lies on some totally geodesic totally
real real projective plane RP?(c/4) of constant sectional curvature c¢/4. We regard
geodesics as Kahler circles of null curvature.

Through the parallel embedding f : CP"(¢) — R™™*?) we can say the following
which is an extension of Lemma 1:

Lemma 2 ([6]). A curve v on CP"(c) is a Kdhler circle if and only if the curve
foxis a circle in Euclidean space R"™*2) . When v is a Kdhler circle of curvature
k (2 0), the curvature of the circle f o~y is Vk* + c.

This lemma is a generalization of the fact that a curve on a standard sphere
S?%(c) is a circle, namely either a great circle or a small circle, if and only if the
curve is a circle of positive curvature as a curve in a Fuclidean 3-space. By this
lemma our problem is reduced to find curves on a geodesic sphere which can be
seen as Kahler circles in a complex projective space.

3. STRUCTURE TORSIONS

Since two geodesic spheres in CP"(c) are isometric to each other if their radii
are the same, we denote by G(r) a geodesic sphere of radius 7 (0 < r < 7/4/c ) in
CP"(c). It is well-known that each geodesic sphere has an almost contact met-
ric structure induced by the complex structure J on CP"(c). This structure
(p,&,m,(, )) on G(r) is a quartet of the vector field £ = —JN, the induced
metric (, ), the function n : TG(r) — R defined by n(v) = (v,&) and the map
¢ : TG(r) — TG(r) given by ¢(v) = J(v —n(v)§). The Riemannian connections



136 S. MAEDA AND T. ADACHI

V of CP"(c) and V of G(r) are related by the following formulas of Gauss and
Weingarten:

(3.1) VxY = ViV + (AX, V)N,
(3.2) VN = —AX

for vector fields X and Y tangent to G(r), where A is the shape operator of G(r)
in CP"(c). As V.J =0 we see
(3.3) Vx& =0pAX.
Indeed,
Vi€ = Vxé — (AX, N = JVx(=N) + (AX, IN)N
= JAX — (JAX, NN = pAX.

We now study curves on G(r) whose shapes through . are Ké&hler circles in
CP"(c).

Lemma 3 ([10]). A smooth curve v on G(r) can be seen as a Kihler circle of cur-
vature k(2 0) through the inclusion v if and only if it satisfies both of the following
equations:

(3.4) Vi = ko,

where double signs take the same signatures.

Proof. For a smooth curve v on G(r) we have

Viy = Viy + (A7, N and  J§ = ¢ + (V)N = ¢7 + p, N,
hence get the conclusion. ]

We here give the definition of Sasakian curves on an odd dimensional Riemannian
manifold M furnished with an alomost contact metric structure
(0,6,m,(, )). A curve v on M with Riemannian connection V is said to be a
Sasakian curve if it satisfies V54 = k¢ with some constant £.

Sasakian curves were treated in [2] and were called trajectories for canonical
magnetic fields on a geodesic sphere. Kahler circles were originally called trajec-
tories for Kahler magnetic fields, which are uniform magnetic fields on a Kahler
manifold. As corresponding objects to these Kéhler magnetic fields on geodesic
spheres, the second author considered canonical magnetic fields. Though canonical
magnetic fields are not uniform, each trajectory on a geodesic sphere in CP"(¢) has
constant first curvature ||V:¥|| by the following lemma. Given a Sasakian curve
v =7(s) on G(r) in CP™(c) we define its structure torsion p, by p, = (¥,£). We
then have [|¢¥]| = /1 — p2 and the first curvature of a Sasakian curve satisfying

Vi = kg is k| /1~ 2.
Lemma 4. The structure torsion of a Sasakian curve vy on G(r) is constant along
Y.
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Proof. By use of (3.3) we find
Pl = Vi (1, €) = (kd9,€) + (3, 6A%) = (1, 9AF) = (¥, Ady) = —(¢A%,4),
which shows p! = 0 with the fact that ¢A = A¢ holds on G(r). O

The notion of structure torsions of Sasakian curves on a geodesic sphere is a
quite important invariant. It is deeply related to the congruence of Sasakian curves.
In order to state precisely the congrunce theorem for Sasakian curves on geodesic
spheres, we review the definition on congruence for curves in a Riemannian manifold
M. Two curves 7,7, on M are congruent (in the usual sense) if there exist an
isometry ¢ of M and a constant so with y2(s) = (¢ 0 71)(s + sg) for each s. We
call two curves 7y, v, on M strongly congruent to each other if there is an isometry
@ of M with v(s) = (¢ ov)(s) for each s.

The following is a strongly congruence theorem for Sasakian curves.

Lemma 5 ([2]). Two Sasakian curves v1, v2 on G(r) in CP"(c) satisfying Vs,%; =
ki¢i with structure torsions p,, (i = 1,2) are strongly congruent to each other if
and only if one of the following conditions holds:
i) |p71| = |p’Y2| =1,
ii) Py = Py = 0 and k1| = |k2l,
iii) 0< |p71| = |p72| <1 and klp’)’l = k2p’72'

As a consequence of this lemma we can show the homogenity of Sasakian curves.

Corollary 1. Every Sasakian curve on a geodesic sphere G(r) in CP™(c) is homo-
geneous.

Proof. Let v be a Sasakian curve. For each fixed t € R we set a curve pu; by
pi(s) = v(s +t) for every s. Clearly they are strongly congruent to each other by
Lemma 5. We hence have an isometry ¢; of G(r) with v(¢) = ¢;(7(0)) for each ¢
and get the conclusion. O

4. CURVES WHOSE SHAPES IN R*"*1) ARE CIRCLES

We now show our results on Sasakian curves on a geodesic sphere in a complex
projective space from the viewpoint of submanifold theory. For this purpose we
consider the isometric embedding f o ¢ given by

fou: G(r) = CP"(c) SN Rr(n+2)
where f is the parallel embedding of CP™(c) into R™™+2) (for details, see section
2) and ¢ is an inclusion mapping of G(r) into CP"(c).

We study curves on a geodesic sphere G(r) whose shapes through the isometring

embedding f o are circles in the ambient Euclidean space R*"+2),

Theorem 1. Let G(r) be a geodesic sphere of radius 0 < r < w/(2+/c) in CP™(c).

(1) For 0 = k < \/c¢/sin(y/cr), there are no curves on G(r) whose shape tho-
rugh f o is a circle of curvature k.
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(2) When k = +/c/sin(y/cr), the shape of a curve on G(r) through f o is a
circle of curvature k if and only it a geodesic with structure torsion p, = %1,
namely it is an integral curve of & on G(r).

(3) When k > +/c¢/sin(y/cr), the shape of a curve v on G(r) through f o
is a circle of curvature k if and only if it is a Sasakian curve satisfying
V¥ = £V K2 — ¢ ¢¥ and whose structure torsion is

py = tc (k= VK2 —¢) cot(y/c r/2),

where double signs take the same signatures.

Trivially these curves in (2), (3) are closed with length 27 /.

Theorem 2. Let G(r) be a geodesic sphere of radius r with w/(2y/c) <r < 7m/\/c
in CP"(c).
(1) For 0 £ k < \/c, there are no curves on G(r) whose shape thorugh f o is
a circle of curvature k.
(2) When k = +/c, the shape of a curve on G(r) through fou is a circle of curva-
ture Kk if and only it is a geodesic with structure torsion p, = £ cot(y/c r/2).
(3) When /e < k < y/c/sin(y/cr), the shape of a curve v on G(r) through
fouisa circle of curvature k if and only if it is a Sasakian curve satisfying
V¥ = £VK? — ¢ ¢y and whose structure torsion is

py =2 (k= VK2 —¢) cot(v/c 1/2),

where double signs take either the same signatures or the opposite signa-
tures.
(4) When k = +/c/sin(y/cr), the shape of a curve on G(r) through f o is a
circle of curvature k if and only it a geodesic with structure torsion p, = %1.
(5) When k > +/c/sin(y/cr), the shape of a curve v on G(r) through f o
is a circle of curvature k if and only if it is a Sasakian curve satisfying
V¥ = £V K2 — ¢ ¢¥ and whose structure torsion is

Py = :I:c_l/2(/<; — VK2 —c)cot(vcr/2),

where double signs take the same signatures.
Trivially these curves in (2), (3), (4), (5) are closed with length 27 /k.

Proof of Theorems 1 and 2. The shape operator A of G(r) on CP"(c) satisfies
A = /cceot(ver)E and Au= (v /2)cot(ver/2)u

for every tangent vector u € TG(r) orthogonal to €. By Lemmas 2 and 3, we are
hence enough to consider Sasakian curves satisfying both V;¥ = £v/k2 — ¢ ¢y and

(4.1) pav/c cot(ver) + (1 — pg)g cot <\/;_7"> = +VkK? —c p,.

Regarding this equality (4.1) as a quadratic equation with respect to p,, we obtain
the conclusions by the same discussion in [2] or [10]. O
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By these theorems we find that there are infinitely many homogeneous curves
on a geodesic sphere in CP™(c) whose shapes in R*™*+2) through f o are circles.
We can say that two of those curves are not congruent if their shapes through fo.
do not have the same curvatures, because f o. is an equivariant mapping. But the
converse does not hold in general. The following is an immediate consequence of
Lemma 5 and Theorem 2, which shows that information on curvature for shapes
in R*™*2) does not give a sufficient condition for non-congruency of those curves

on G(r).

Corollary 2. On a geodesic sphere G(r) in CP"(c) of radius r with 7/(2/c)
< r < w/y/e, for each k with \/c < k < \/c/sin(y/cr), there are two congruence
classes of homogeneous curves with respect to the full isometry group of G(r) whose
shapes in R*™2) through f o are circles of the same curvature k.

On CP"(c) two circles are congruent to each other with respect to the full isom-
etry group of CP"(c) if and only if they have the same curvatures and the same
absolute values of complex torsions. This, together with Lemma 2, implies that
those Sasakian curves in Corollary 2 are congruent to each other with respect to
the full isometry group of CP"(c) if we consider them as curves in CP"(c).

5. SHAPES OF SASAKIAN CURVES IN CP"(c)

In this paper we devote ourselves to study Sasakian curves whose shapes in
CP"(c) are Kéhler circles. We here make mention of shapes of other Sasakian
curves on geodesic sphere G(r) (0 < r < w/y/c ) in CP"(c) through the inclusion ¢.

To do this, we recall the definition of helices in Riemannian geometry. A smooth
curve v on CP™(c) parameterized by its arclength is called a helix of proper order
d if there exist positive constants ki, ..., kq—1 and a field of of orthonormal frames
{Y1 =4,Y,,..., Yy} along v satisfying

67}/] - _ijlyvjfl + h;ijj+l (] = 17 27 R d)7

where kg = kg = 0 and Yy, Y;,1 are null vector fields along v. When it is an orbit

of some one-parameter subgroup of the isometry group of CP"(c), we say that it

is Killing heliz. That is, such a Killing helix is a homogeneous curve on CP™(c).
For about geodesics we can say the following.

Proposition 1 ([4]). Let vy be a geodesic on a geodesic sphere G(r) (0 < r < 7/ /c)
in CP™(c). The curve v oy through the inclusion v : G(r) — CP"(c) is as follows:

(1) When the radius r satisfies w/(2\/c) < r < w/\/c, if p, = £cot(y/cr/2),
then the curve 1oy is a geodesic;

(2) If py = £1, that is v is an integral curve of &, then the curve Loy is a
Kidhler circle of curvature \/c| cot(y/c r)l;

(3) If py = 0, the curve 1oy is a totally real circle of curvature (v/c/2) cot(\/c r/2);

(4) Otherwise, the curve v oy is a Killing helix of proper order 4.

For about Sasakian curves which are not geodesics, their features are a bit com-
plicated.
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Proposition 2 ([2]). Let v be a Sasakian curve with p, = 0 on G(r) in CP"(c)
satisfying V5 = ko (k # 0). Then its shape in CP"(c) through inclusion ¢ is a
Killing heliz of proper order 4 and lies on some totally geodesic CP?(c).

Proposition 3 ([2]). Let v be Sasakian curve with 0 < |p,| <1 on G(r) in CP™(c)
satisfying V5 = ko (k # 0).
(1) When 2kp, = 2p2\/ccot(y/cr) + (1 — p2)y/ccot(y/cr/2), which is the case
of our theorems, its shape in CP™(c) is a Kdhler circle.
(2) When 2k = py\/ctan(y/cr/2), its shape in CP™(¢) is a non-Kdhler circle
of positive curvature.

(3) When 2kp,{1—tan>(\/cr/2)} = 2p2\/ccot(y/cr)+(1—p2)y/ccot(y/cr/2),
its shape in CP™(c) is a Killing heliz of proper order 3.
(4) Otherwise, its shape in CP™(c) is a Killing heliz of proper order 4.
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