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ABSTRACT. In this work the authors give a possible systematic way of extending
definitions from the category TOP to the category TOPy, the object of research
in Fibrewise General Topology. This is done by introducing the notions of triv-
ially C-map and locally trivially C-map, where C is some class of topological
spaces closed under homeomorphisms. Two classes of spaces are considered as
the collection C, the class of all metrizable spaces and the class of all linearly
ordered topological spaces (i.e., LOTS). In particular, this method gives another
possible way in defining a metrizable map, thus introducing the notion of 7'M -
map (trivially metrizable) and its local version called LT M-map (locally trivially
metrizable).

1. INTRODUCTION

Fibrewise General Topology (FGT) is a branch of General Topology which con-
cerns itself with the study of the category TOPy, the objects of which are contin-
uous maps into a fixed topological space Y, and for the objects f : X — Y and
g : Z — Y, a morphism from f into ¢ is a continuous map A : X — Z with the
property f = go A. This field of research can be justified by the fact that the two
concepts of topological space and continuous map are equally important and one
can look at a space as a map from this space onto a singleton space and in this
manner identify these two concepts. Thus, the category TOP of topological spaces
as objects, and continuous maps as morphisms, is a particular case of TOPy-, where
Y is a singleton space.

Research in FGT is mainly aimed at extending the main notions and results
concerning topological spaces to that of continuous maps. The carried out research
showed a strong analogy in the behavior of spaces and maps and it was possible to
extend the main notions and results of spaces to that of maps. In most cases there
is some choice in defining properties on maps and one usually prefers the simplest
and the one that gives the most complete generalization of the corresponding re-
sults in the category TOP. It would be beneficial to have a more systematic way of
extending definitions and results from the category TOP to the category TOPy and
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some hope is provided by the link between Fibrewise Topology and Topos Theory
[7, 8, 9, 10]. Unfortunately, as was noted in [6], this approach has several draw-
backs. In defining compact maps [12, Proposition 2.2 (V.P.Norin)]|, paracompact
maps [1], metacompact maps, subparacompact maps, submetacompact maps [2] and
metrizable type maps [3], one can see a systematic method in defining notions in
the category TOPy corresponding to definitions which involve coverings or bases
of topological spaces. This construction gave satisfactory definitions which can be
seen from the results obtained for such maps [1, 2, 3, 12]. One can also add that the
definitions of paracompact maps, metacompact maps, subparacompact maps and
submetacompact maps strengthened the result that paracompactness, metacom-
pactness, subparacompactness and submetacompactness are all inverse invariant
of perfect maps. Namely, it was proved that the inverse image of a paracompact T;
(resp. subparacompact, metacompact, submetacompact) space by a paracompact
Ty (resp. subparacompact, metacompact, submetacompact) map is paracompact
T, (resp. subparacompact, metacompact, submetacompact) [1, 2].

In this work we give a possible systematic way of extending definitions from the
category TOP to the category TOPy. This is done by introducing the notions of
trivially C-map and locally trivially C-map, where C is some class of topological
spaces closed under homeomorphisms.

We consider two classes of spaces as the collection C, the class of all metrizable
spaces and the class of all linearly ordered topological spaces (i.e., LOTS). The
authors have already introduced one possible way in defining a metrizable map [3],
these maps are called MT-maps (metrizable type maps). The above mentioned
method gives another possible way in defining a metrizable map, thus introducing
the notion of T'M-map (trivially metrizable) and its local version called LT M-map
(locally trivially metrizable). Examples are given to clarify the definitions and
results.

For undefined term related with FGT one can consult [1, 2, 3, 12]

2. TRIVIALLY AND LOCALLY TRIVIALLY C MAPS

Throughout this section the 77 separation axiom is not assumed in the definition
of regular, completely reqular, normal and collectionwise normal space. Thus, for
example, a T3-space is a T regular space.

Let f: X — Y be a continuous map and let 7 be a fixed topology on the space
Y. Also, let C be some class of topological spaces closed under homeomorphisms.

Definition 2.1. The map f is said to be trivially C (= TC) if it is parallel to a
space C' € C, i.e. there exists a space C' € C and an embedding e : X — YV x C
such that f = pry oe, where pry : Y x C' = Y is the projection of the product
onto the factor Y. Thus e is an embedding of f into pry.

Definition 2.2. The map f is said to be locally trivially C (= LTC) if for any
y € Y, there exists a neighborhood O, of y such that the restriction f|;-1p, :
[0, — O, is a TC-map and so, there exists a space C, € C and an embedding
ey : f710y = Oy x Cy such that f|;-10, = pro, o e,.
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Remark 2.1. One can note that in the definition of LTC-map, the space C, € C
can be different for every f|;-10, : 'O, — O,.

3. TRIVIALLY METRIZABLE MAPS

Let f: X — Y be a continuous map and let 7 be a fixed topology on the space
Y. Let M be the class of metrizable spaces.

Definition 3.1. The map f is said to be trivially metrizable (= TM) if it is a T M-
map, i.e. there exists a metrizable space M and an embedding e : X — Y x M
such that f = pry oe. Thus e is an embedding of f into pry. The map f is said to
be trivially metric (= TMC') if M is a metric space and the embedding e is fixed.

Theorem 3.1. A map f: X =Y is TM if and only if f is a Ty-map and there
exists a pseudometric p on X such that 7(p), the topology on X generated by p, is
a base for the map f.

Proof. Let f: X — Y be aTM-map. Since f is parallel to a metrizable space then
it is a Ty-map. Without loss of generality, one can assume that X C Y x M for
some metrizable space M. We define a pseudometric p on X in the following way.
For elements z = (y, m) and 2’ = (y',m’) of X, let p(z,2") = d(m,m'), where d is
a metric compatible with the topology of M. We now show that p is the required
pseudometric. Below, by B, and B, we denote the neighborhood balls with respect
to p and d respectively.

Let U(x) be an arbitrary neighborhood of x = (y, m). There exists some O, € T
and € > 0 such that z € (O, x By(m,e)) N X C U(x). Thus z € (pry'O, N
pry Ba(m, €)) N X = pry'O, N pry/ B,(m,e) C U(z).

Conversely, say f is a Ty-map and there exists a pseudometric p on X such that
7(p) is a base for the map f. We construct the following equivalence relation ~ on
X, x1 ~ a9 if p(z1,29) = 0. Let X/p be the factor space and let d(z,z") = p(z, z').
It is not difficult to see that d is well defined and that it is a metric on X/p.
Consider the map i : X — Y x X/p defined by i(z) = (f(z), 7).

Since f is a Tp-map we have that i is 1-1 map. Let U(x) be an arbitrary
neighborhood of an element # € X and say f(z) = y. There exists O, € 7
and € > 0 such that x € f~'0, N B,(z,e) C U(x). Consequently x € i *(O, x
By(Z,€)) C U(xz). On the other hand, if i(z) € Oy x By(Z,¢€) then i(z) €
Z'(fflOf(x) N Bp(x, 6)) C Of(x) X Bd(f, 6). ]
Example 3.2. Let X = S be the Sorgenfrey line and let Y = R be the real line with
the right topology, that is the topology generated on R be the neighborhood system
{R(z) : v € R}, where R(z) = {y € R:y > z}. Then the map f =idg : X - Y
is an T'M-map. One can take the pseudometric p to be the standard metric on R.

Although we cannot cite any reference to the following result, one can consider
it as mathematical folklore.

Theorem 3.2. The following are equivalent for a topological space X :
(1) X is pseudometrizable;
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(2) X is regular and has a o-locally finite base;

(3) X is reqular and has a o-discrete base;

(4) X s collectionwise normal and has a development;
(5) X has a normal development.

We thus have the following result.

Theorem 3.3. The following are equivalent for a continuous map f : (X,Q) —
(Y, 7):
(1) f is a TM-map;
(2) f is a To-map and there exists a reqular topology ' C Q on X which has a
o-locally finite base and is a base for f;
(3) f is a To-map and there exists a regular topology Q' C Q on X which has a
o-discrete base and is a base for f;
(4) f is a Ty-map and there exists a collectionwise normal topology Q' C Q on
X which has a development and is a base for f;
(5) f is a Ty-map and there exists a topology Q' C Q on X which has a normal
development and is a base for f.

As is the case for metrizable spaces, one has the following result (for a proof,
one can follow the proof of [Engelking, Theorem 4.4.15] for the case of metrizable
spaces).

Proposition 3.4. Pseudometrizability is an invariant of perfect maps.

Following the above proposition, one would expect the following result to hold.

e Let f: X —Y beaTM-map and ¢g: Z — Y a continuous map. Then if
A: f — g is a perfect morphism of f onto g, ¢ is also a T'M-map.

Unfortunately this is not the case since the morphism A may not be a continuous
map of the corresponding pseudometrizable space as the following example shows.

Example 3.3. Let Y be the space of all ordinal numbers < wy, i.e. the compact
LOTS [0,w], and let X be the product of ¥ with the two-point discrete space
D = {0,1}. Let f be the projection of X onto the factor Y. Now let Z be the
quotient space X/{(wr,0),(w1,1)} and let ¢ be the natural projection of X onto
Z. Finally, let ¢ : Z — Y be such a map satisfying f = g o ¢. Then, the map f
is T'M but ¢ is not, though ¢ is perfect, because any continuous map of Y to a
metric space is finally constant.

From the definition of T'M-map we have the following result.

Theorem 3.5. If f : X — Y is a TM-map and Z C Y 1is metrizable then so is
f1z.

The following result for products of T'M-maps holds.
Theorem 3.6. Let the maps p; : P, — Y, 1 < w, be TM-maps. Then the projection

p: P=J[{P relp;, :i <w} =Y is also a TM-map, where P is the fan product
of P; relative to the maps p;.



TRIVIALLY AND LOCALLY TRIVIALLY C MAPS 127

Proof. For each i < w let p; be a pseudometric on P; whose topology 7(p;) forms a
base for p;. Consider the pseudometric
p(z,y) = Z %Pi(«% yi)
i=1
on the Tychonoff product X = ]2, P,. We show that the topology 7(p) induced
on P is a base for the map p.

Let x = {x;} be any point in P and let U(z) be any neighborhood of z in P.
Let y = p;(z;) = p;(z;) for any i, j < w and consider any open set U(x) in X such
that U(x) N P = U(z). There exists Vi,...,Vk, open in Py,..., Py respectively,
such that z € (pr;'V; ¢ U(x). By definition, there exist a neighborhood O
of y in Y and € > 0 such that p;'O N B, (z;,¢) C V; for every i = 1,.... k.
Thus p~'O N (N, pr; (B, (i, €))) C U(z). Finally, since p;(z;,y;) < € whenever
p(z,y) < £, we get x € p 'O N B,(z, 5) C Ulx). O

4. LOCALLY TRIVIALLY METRIZABLE MAPS

We now define a local version of a TM-map. As in the above sections, let
f: X — Y be a continuous map and let 7 be a fixed topology on the space Y.

Definition 4.1. The map f is said to be locally trivially metrizable (= LT M) if
it is an LT M-map, i.e. for any y € Y, there exists a neighborhood O, of y such
that the restriction f|;-10, : 'O, — Oy is a TM-map.

Similar to Theorem 3.1 we have the following result.

Theorem 4.1. A map f: X =Y is LT M if and only if f is a Ty-map and there
ezxists an open cover O = {Oy : a € A} of Y and a collection of pseudometrics
E = {pa:a € A}, where p, is a pseudometric on [0, such that T(p,) is a base
for the map f|;-10, for every o € A.

Example 4.2. We now give an example of an LT M-map which is not a T'M-map.
Let X be the subset of the plane consisting of all points (z, y) with either z irrational
and y > 0, or with z = r,, (where r,79,... is an enumeration of the rationals) and
0<y<= Let A= {(x,y) € X : z rational } and B = {(z,y) € X : y = 0}. We
will now construct the following topologies on the set X.

e A basic neighborhood of (x,y) in X is a vertical open interval about (z,y)
if x is irrational, and is an ordinary plane neighborhood of (z,y) in X if x
is rational. This defines a completely regular topology Q7 on X (see [4]).
e Let Qp be the topology on the set X whose open sets are X,0,G = X \
A H=X\Band GNH.
Now we consider the map f = idx : (X,Qr) — (X,Qg). This map is an
LT M-map but not a T'M-map.
Assume that f is a TM-map and so there exists a regular topology Q' C Qr on
X which has a o-discrete base B = | J{B, : n < w}, where each B, is discrete with
respect to (', and is a base for the map f. Let B, = B, A H, B, = B, AG and
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By, = By, A (G N H). Finally, let B = | J{B,, B, By : n,m,k < w}. Then B is a
o-discrete base for some topology €2 C Q7.

Take any point (z,y) € X with rational z and let W be a basic Q7 neighborhood
of (z,y). By definition, there exists U € B such that (z,y) € UN H C W and so
there exists some n and U’ € B,, such that (z,y) € U' C W.

Now let (z,y) € X with irrational  and let W be a basic Q1 neighborhood of
(x,y). There can be two cases, either y = 0 or y > 0. Analogous to the above, but
using B!, or B'y, there exists a U’ € B such that (z,y) € U' C W.

This proves that the space (X, Q) is homeomorphic to the space (X, Q) and so
is a Ty-space. Thus (X,Q), an so (X, Qr), is a metrizable space which contradicts
the fact that (X, Qr) is not a normal space (see [4]).

The proof that f is an LT M-map follows from the fact that the subspaces G
and H are metrizable.

Of course one can also come up with local variants of the characterizations given
in Theorem 3.3 for T'M-maps.
As in Theorem 3.5 we have the following result.

Theorem 4.2. If f : X — Y is an LTM-map and Z C'Y 1is metrizable then so is
f1z.

Proof. Without loss of generality we prove the result for Z7 = Y. By the hypothesis,
there exists a collection O = {O, : y € Y’} such that f~'O, is metrizable for every
y. Since Y is paracompact, there exists a closed locally finite refinement F of
O. Finally, the proof follows from the fact that a space which is the union of a
locally finite collection of closed metrizable subspaces is metrizable (see for example
[5]). O

As mentioned in the introduction, the authors have already introduced one possi-
ble way in defining a metrizable map, these maps are called MT-maps (metrizable
type maps). The notion of MT-space was also introduced as the MT-map preim-
age of metrizable spaces. For details concerning MT-maps and MT-spaces one
can consult [3]. Any non metrizable MT-space (for example X = I x I) gives
an MT-map which is not an LTM-map (and so neither a TM-map). In fact
the example X = I x I with the lexicographic order topology gives a compact
MT-map (a CMT-map) which is not LTM (and so neither TM). Conversely, if
fi=idg : R - Rand fo : R — {0} C R, then f; X fo : Rx R — R x {0}
is a TM-map (and so also LTM-map) which is not an MT-map (since it is not
closed). On the other hand, any closed LT M-map (and so, any closed T'M-map)
is an MT-map.

5. GO-MmaPs AND LOTM

Let there be given a set X and a relation among its elements written as x < y.
Consider the following four conditions (of reflexivity, antisymmetry, transitivity
and connectedness):

(1) forallz € X, z < x;
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(2) ifz <y and y < z, then x = y;

(3) ifx <yand y < 2z, then z < z;

(4) for each pair x,y, either z < y or y < x.
It is well known that if conditions (1)—(3) are satisfied, we say that the relation
x < y is an ordering of X (or that the set X is ordered); the relation x < y is a
quasi-ordering if it satisfies conditions (1) and (3) only; it is a linear ordering if it
satisfies conditions (1)—(4). We now come to the following definition.

Definition 5.1. The relation = < y is a pseudo-ordering of X if it satisfies condi-
tions (1), (3) and (4).

Remark 5.1. One can note that in this case one can have two distinct elements
x,y € X satisfying x < y and y < .

For a,b € X satisfying a < b and b £ a let
la,o[={r e X :a<z<bzr£abszx}
lo, > [={reX:a<z,z £al};
|« b={reX :x<bbsal
la,— [={r e X:a<a};
| b ={r € X :2<b}.

Definition 5.2. Let X be a set equipped with a pseudo-order <. The set X with

the topology generated by the subsets ]a,b[, X and () as a base is called a pseudo
LOTS (= PLOTS). We denote this topology by A(<).

We now consider arbitrary subsets R and L of X and for each x € R we consider
the set [x,— [, while for each # € L we consider the set | <—,z]. Let 7(R, L) be
the topology on X generated by \(<), {[z,— [: z € R} and {] <, 2] : z € L}.
A space X with such a topology is called a pseudo generalized ordered space (=
PGO-space). Tt can be easily seen that every PGO-space can be embedded into a
PLOTS as a closed subspace (or as a dense subspace). Also, every subspace of a
PLOTS is a PGO-space.

Although PLOT'S and PGO-spaces are of interest on their own, our main inter-
est in this paper is their application to fibrewise topology. Let LOT S be the class
of linearly ordered topological spaces (= LOTS).

Definition 5.3. The map f : X — Y is said to be a trivially GO- (= TGO- ) map
ifitisa T LOT S-map, i.e. there exists a LOTS Z and an embeddinge : X — Y xZ
such that f = pry oe. Thus e is an embedding of f into pry. The map f is said
to be trivially LOTM (= TLOTM ) if f is a TGO-map and each fibre is a LOT'S.

Theorem 5.1. A map f: X — Y is a TGO-map if and only if f is a Ty-map and
there ezists a pseudo-ordering < of X such that T(R, L), is a base for the map f
for some subsets R, L C X.

Proof. Let f: X — Y be a TGO-map. Since f is parallel to a LOTS Z then it
is a Tp-map. Without loss of generality, one can assume that X C Y x Z. We
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define a pseudo-ordering < of X in the following way. For elements = (y, z) and
= (y,2") of X, let x < 2'if 2 5 2/, where < is a linear ordering of Z generating
its topology. We now show that < is the required pseudo-order.

Let U(z) be an arbitrary neighborhood of x = (y, z). There exists some O, € T
and a,b € Z such that z € (O,x]a,b[<) N X C U(x). Thus z € (pry'O, N
pry, (Ja,bl<)) N X C U(x). We now define the subsets L and R of X included in
the definition of the topology 7(R, L). By definition, z = (y, 2) € L, i.e. | <, z]< €
7(R, L), if there exists a € Z satisfying:

(i) there does not exist any 2’ € X with 2/ = (¢, a); and

(11) ] <—,l']g = (YX] At CL[#) nx.
Similarly, one defines the subset R. One can now easily see that 7(R, L) is the
required topology.

Conversely, say f is a Ty-map and there exists a pseudo-ordering < of X such
that 7(R, L) is a base for the map f, where 7(R, L) is a PGO-topology relative to
the pseudo-linear topology A(<). We construct the following equivalence relation
~on X, xy ~ zyif x1 < 2y and xo < x;. Let X/~ be the quotient space and let
T x 7 if v < 2'. We further take the Dedekind completion (X/~)*, which is a
LOTS, and denote its order by <’. Consider the map i : X — Y x (X/~)* defined
by i(2) = (/(x), 7).

Since f is a Ty-map we have that ¢ is 1-1 map. Let U(z) be an arbitrary neigh-
borhood of an element = € X and say f(z) = y. Assume that there exists O, € 7
and a,b € X, satisfying a < b and b £ a, such that x € f'O,N]a,b[<C U(x).
Consequently, z € i~'(0,x]a, b[</) C U(z). Other cases can be treated similarly.
On the other hand, if i(z) € Of)x]a, b« and ]a,bl<NX/~ = [¢,b[5 (other cases
can be treated similarly), then i(z) € i(f 'O N [c, bl<) C Oy x]a, b, for any
c € ¢and any b € b. O

Definition 5.4. The map f is said to be a locally trivially GO- (= LTGO-) map
if it is an LT LOT S-map, i.e. for any y € Y, there exists a neighborhood O, of y
such that the restriction f|s-10, : f~'0, = O, is a TGO-map. Similarly one can
define an LT LOTM.

Remark 5.2. If X is a GO-space, then the projection pry : X x X — X is a TGO-
map onto a GO-space while the total space X x X is not generally a GO-space.
Similarly, if X is a LOTS, then one obtains a TLOTM onto a LOTS where the
total space is not generally a LOTS. Naturally, any constant map p : X — {p},
where X is a non-LOT'S, GO-space, gives us a T'GO-map which is not a T LOT M.

Example 5.5. Let X be the 1-dimensional sphere S with its usual topology
(as a subset of R?). Consider the points p; = (0,1),p; = (0,—1) € S! and
let Y be the set S with the topology having the following open sets as a base
{SY,0,S"\{p1},S"\ {p_1}}. Then the identity map f =id: X — Y isa LTLOTM
but is not a TLOT M (neither a TGO-map).

Indeed, consider an embedding e : S — Y x L, where L is a LOT'S, such that
f = pry oe. Then e(S') C Y x L. Tt is not difficult to prove that for every
two distinct elements sy, s, € S' we have that e(s1) = (y1,11), e(s2) = (y2, l2) with
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Iy # l5. That is, the composition pryoe, where pry, : Y x L — L is the projection, is a
1-1 map. One can also note that prz(e(S')) is connected and compact and therefore,
is a LOT'S with no gaps nor jumps (see for example [11]). In particular, prz(e(S'))
has a maximal point which we denote by [,. Let s, = (u,v) be the unique element
of S' satisfying pry(e(s;)) = Iz, and let A = {z € S': d(s,,2) < €} for sufficiently
small € > 0, where d is the usual distance in S'. Then A is a connected subset of
St and therefore, pri(e(A)) is also connected and contains I,. Thus, prr(e(A)) is a
convex open neighborhood of [,,. Take any two points a and b in A on opposite sides
of s, satisfying d(a, s;) < d(sz,b) < €, without loss of generality one can assume
that prr(e(a)) < pri(e(b)). Now let B = {z € S' : d(s;,2) < d(ss,b)}, then
B is a connected open neighborhood of s, containing a but not b, and therefore,
prr(e(B)) is an open connected neighborhood of I, containing pry(e(a)) but not
prr(e(b)), which is a contradiction.
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