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ABSTRACT. In this paper, we call a special elliptic element an Spr-element, we
define an equivalence relation on the set of Spr-elements of a real form of a com-
plex simple Lie algebra, and we classify Spr-elements of each real form of all
complex simple Lie algebras under the equivalence relation. Besides, we demon-
strate that the classification of Spr-elements under the equivalence relation cor-
responds to the classification of simple irreducible pseudo-Hermitian symmetric
Lie algebras under Berger’s equivalence relation. In terms of the correspondence,
we achieve the classification of simple irreducible pseudo-Hermitian symmetric
Lie algebras without Berger’s classification.

1. INTRODUCTION

Let g be a real simple Lie algebra, let ¢ be an involutive automorphism of g,
and let h be the +1-eigenspace of o in g. Then, the pair (g,0) or (g, h) is said to
be a simple symmetric pair or symmetric Lie algebra. This pair corresponds to an
infinitesimal version of a simple (affine) symmetric space, and these pairs have been
already classified by Berger [Be] in 1957. Notice that he achieves the classification
under the following equivalence relation (cf. Definition 7.2 in [Be, pp. 96]):

Berger’s equivalence relation. Let (g,01) and (g,02) be two
symmetric Lie algebras. Then (g, 07) is said to be ezt-isomorphic
to (g,02), if there exists an automorphism ¢ of g such that oy =
poaop L.
In the same paper [Be|, he has introduced the notion of pseudo-Hermitian sym-
metric space: A symmetric space G/H is called pseudo-Hermitian, if it admits an
invariant complex structure J and an invariant pseudo-Hermitian metric g (with
respect to .J). Simple pseudo-Hermitian symmetric Lie algebras are infinitesimal
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14 N. BOUMUKI

versions of simple pseudo-Hermitian symmetric spaces (see Definition 2.1.3 for de-
tail). If (g, 0y) is ext-isomorphic to (g, 02), and if (g, 0;) is pseudo-Hermitian, then
so is (g, 02). Therefore, simple pseudo-Hermitian symmetric Lie algebras have been
classified by Berger, under the equivalence relation mentioned above.

In 1971, Shapiro [Sh] has clarified relation between semisimple pseudo-Hermitian
symmetric spaces and elliptic (adjoint) orbits, which is as follows: For every al-
most effective, semisimple pseudo-Hermitian symmetric space L/ R, there exists an
elliptic element 7' € [ = Lie(L) such that R is the centralizer C1(T') of T in L.
Hence, it follows that any almost effective semisimple pseudo-Hermitian symmetric
space L/R is an elliptic orbit Ad(L)T = L/CL(T). Note that every elliptic orbit
is not always a pseudo-Hermitian symmetric space—for example, G52)/U(2) is an
elliptic orbit but it can not be a pseudo-Hermitian symmetric space (see Example
4.1.3). Therefore, an adjoint orbit through a special elliptic element is a pseudo-
Hermitian symmetric space. Expressing respect to Shapiro, we want to call the
following special elliptic element S an Spr-element: Let [ be a real semisimple Lie
algebra, and let S be a semisimple element of [. Then, [ is decomposed as

[ = C[(S) S [S, []

In the setting, we call the semisimple element S € [ an Spr-element, if ad; S|;g is a
complex structure on the vector space [S,[]. By the definition of Spr-element, the
following five items are deduced (see Remark 2.1.2, Lemma 2.1.6, Remark 2.1.7-(1)
and Lemma 3.1.1):

e Any Spr-element S € [ is a non-zero elliptic element.

e The canonical central element of v relative to ([, t) is an Spr-element of [,
for each semisimple pseudo-Hermitian symmetric Lie algebra ([, ¢).

e An inner automorphism p := exp wad; S of [ is involutive and its +1 (resp.
—1)-eigenspace accords with ¢/(S) (resp. [S, []).

e The pair (I,¢/(S)) is the pseudo-Hermitian symmetric Lie algebra by the
involution p, and S is the canonical central element of ¢(S) relative to
(L er(5))-

e Let L be a connected semisimple Lie group with Lie algebra [. For each
almost effective pseudo-Hermitian symmetric space L/R, there exists an
Spr-element S € [such that L/R coincides with the adjoint orbit Ad(L)S =
L/CL(S). Conversely, the adjoint orbit Ad(L)S’ = L/C(S") through any
Spr-element S’ € [ is a pseudo-Hermitian symmetric space.

Here in the above items, we assume the element S to be an Spr-element of a real
semisimple Lie algebra [, without the statement. These items suggest that the
classification of simple pseudo-Hermitian symmetric Lie algebras under Berger’s
equivalence relation corresponds to a classification of Spr-elements of each real
simple Lie algebra under some equivalence relation.

The main purpose of this paper is to deduce Theorem 5.6.10, which is the clas-
sification of Spr-elements of each real form g of all complex simple Lie algebras
under the following equivalence relation:
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Our equivalence relation. Let S; and S, be two Spr-elements of
g. We say that S is equivalent to Sy, if there exists an automorphism
¢ of g satisfying ¢(S7) = Sy or ¢(S;) = —Ss.

Let us comment on a correspondence between our equivalence relation and Berger’s
equivalence one. Fix a real form g of a complex simple Lie algebra, denote by
Spry the set of Spr-elements of g, and denote by Inv(g)?” the set of involu-
tions o of g such that (g,0) is a pseudo-Hermitian symmetric Lie algebra. Let
Spre/({£1} x Aut(g)) and Inv(g)??/ Aut(g) be the quotient set of Spry by our
equivalence relation and of Inv(g)?" by Berger’s equivalence relation, respectively.
Then, the following mapping Fy is a bijection of Spry/({£1} x Aut(g)) onto
Inv(g)P" / Aut(g) (see Theorem 3.2.1):

Fy @ Sprg/({£1} x Aut(g)) — Inv(g)*?/ Aut(g) (bijective)
[S] —  [expmadyS].

Consequently, the classification of Spr-elements under our equivalence relation is on
a parity with that of simple irreducible pseudo-Hermitian symmetric Lie algebras
under Berger’s equivalence relation. Hence, two Theorems 3.2.1 and 5.6.10 enable
us to achieve the classification of simple irreducible pseudo-Hermitian symmetric
Lie algebras without Berger’s classification (see Corollary 5.6.11). Here, a simple
pseudo-Hermitian symmetric Lie algebra (g, v) is irreducible (resp. reducible) if and
only if g€ is simple (resp. g* is not simple) (cf. Shapiro [Sh, pp. 532]).

Remark that Wolf [Wo| has achieved the classification of Hermitian symmetric
spaces without E. Cartan’s classification of Riemannian symmetric spaces, and
his results in [Wo] enable us to complete the classification of not only Hermitian
symmetric Lie algebras but also simple reducible pseudo-Hermitian symmetric Lie
algebras without Berger’s classification. Consequently, this paper and Wolf’s paper
[Wo] enable us to completely determine all simple pseudo-Hermitian symmetric Lie
algebras without Berger’s classification.

This paper consists of six sections, and an outline of each section is as follows:

§2 Preliminaries.

In this section, we recall the notion of elliptic element, the canonical
central element, and so forth; and we introduce Murakami’s setting utilized
in [Mul] and [Mu3].

§3 Semisimple pseudo-Hermitian symmetric spaces and Spr-elements.

This section is devoted to investigating relation between semisimple
pseudo-Hermitian symmetric Lie algebras (or symmetric spaces) and Spr-
elements of real semisimple Lie algebras.

§4 Necessary and sufficient conditions for an elliptic element to be an Spr-
element.

In this section, we provide necessary and sufficient conditions for an el-
liptic element to be an Spr-element. Consequences obtained in this section
will play an important role in Section 5.

§5 The classification of Spr-elements of each simple Lie algebra.
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In this section, we achieve the classification of Spr-elements of each real
form of all complex simple Lie algebras under our equivalence relation (cf.
Theorem 5.6.10).

86 A classification of simple irreducible pseudo-Hermitian symmetric spaces.

Finally in this section, we define an equivalence relation on the set of
simple irreducible pseudo-Hermitian symmetric spaces (G/R, %, J, g), where
¥ is an involution of G such that (Gx)y C R C Gy, (see page 112 for (Gx)o
and Gy). Moreover, we give a correspondence between the equivalence
relation on the set of (G/R, Y, J,g) and that on the set of Spr-elements of
g = Lie(G) (cf. Theorem 6.2.1).

Acknowledgment. Many thanks are due to Professor Yoshihiro Ohnita and Professor
Tomonori Noda for their encouragement. The author gets valuable comments and
advice from Professor Soji Kaneyuki and accomplishes this work by virtue of them,
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2. PRELIMINARIES

This section consists of four subsections. In Subsection 2.1, we give definitions
used in this paper, and we demonstrate Lemma 2.1.6. In Subsection 2.2, we intro-
duce Murakami’s setting utilized in [Mul] and [Mu3]. Subsection 2.3 is a review
of elementary facts about root theory. Lastly in Subsection 2.4, we enumerate
notation utilized in this paper.

2.1. Definitions. In this subsection, we recall the notion of elliptic element, the
canonical central element, and so on. Moreover, we study properties of the canon-
ical central elements (see Lemma 2.1.6).

Definition 2.1.1 (Kobayashi [Kt, pp. 5]). Let [ be a real semisimple Lie algebra.
An element X € [is called semisimple, if ad; X is a semisimple endomorphism of [.
A semisimple element T € [ is said to be elliptic, if the eigenvalues of ad;T" are all
purely imaginary. Let L be a connected Lie group with Lie algebra [. The adjoint
orbit Ad(L)T through an elliptic element T € [ is said to be an elliptic orbit.

Remark 2.1.2. It is possible to restate the definition of Spr-element as follows
(see Section 1 for the definition of Spr-element): Let [ be a real semisimple Lie
algebra. A semisimple element S € [is an Spr-element if and only if S # 0 and the
eigenvalue of ad; S is £ or zero. Hence, an Spr-element of [ is a non-zero elliptic
element, and the set of Spr-elements of [ is invariant under the action of {£1} and
Aut(I).

Definition 2.1.3 (Berger [Be, pp. 94]). Let ([,0) be a semisimple symmetric Lie
algebra, and let [ = t@®q be its canonical decomposition, where v := {R € [|o(R) =
R} and q :={Q € | 0(Q) = —Q}. Then, the symmetric Lie algebra (I, o) or (I, t)
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is called pseudo-Hermitian, if there exist an ad; t-invariant complex structure I on g
and an ad; r-invariant pseudo-Hermitian form (with respect to I) on q. Remark that
a symmetric Lie algebra (I, 09) is pseudo-Hermitian in case of being ext-isomorphic
to a pseudo-Hermitian symmetric Lie algebra (I, 07).

Definition 2.1.4 (Shapiro [Sh, pp. 533]). Let ([,t) be a semisimple pseudo-
Hermitian symmetric Lie algebra, and let [ = vt @ q be its canonical decomposition.
Then a central element Z of ¢ (i.e., an element Z which belongs to the center of t)
is called the canonical central element of v relative to ([, v), if ad; Z|, is a complex
structure on q. Remark that the canonical central element is defined under exis-
tence of a semisimple pseudo-Hermitian symmetric Lie algebra, so that there is an
essential difference between the canonical central elements and Spr-elements.

Remark 2.1.5 (Shapiro [Sh, pp. 534]). Shapiro’s result assures the following:

(I) For any almost effective semisimple pseudo-Hermitian symmetric space L/R,
there exists the canonical central element Z of ¢ relative to ([,t) such that (a)
R = C(Z) and (b) ad, Z induces the complex structure J, where [ = Lie(L) and
t = Lie(R).

(I') For any effective semisimple pseudo-Hermitian symmetric Lie algebra (1, t),
there exists the canonical central element Z of ¢ relative to (I, t).

Now, we will investigate properties of the canonical central elements.

Lemma 2.1.6. Let (I,0) be a semisimple pseudo-Hermitian symmetric Lie algebra,

let [ = v q be its canonical decomposition (where v := {R € [|o(R) = R},

q:={Q €]|o(Q) =—-Q}), and let Z be the canonical central element of v relative
o (I,x). Then, the following three items hold:

(1) Z is a semisimple element of [.

(2) v=a(Z) and q = [Z,1].

(3) 0 = expmad; Z, where expmad(Z is the inner automorphism of | deter-
mined by an element - Z € |.

Therefore by (1) and (2), the canonical central element Z is an Spr-element of [.
Proof. (1) The first item has been already demonstrated by Shapiro (ref. pp. 531,
line 22 on [Sh]).

(2) Let us prove that the second item holds. It is immediate from (1) that [ is
decomposed as follows:

(2.1.1) (= «(2)® |2, 1]

(see Notation (n6) in Subsection 2.4, for ¢;(Z)). Since Z belongs to the center of
t, one perceives that

(2.1.2) v C o(2).

The restriction of ad; Z to q is a linear isomorphism of q by Definition 2.1.4; and
thus

qC [Z,1].
This, together with (2.1.1), (2.1.2) and [ = v @ q, deduces the second item.
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(3) We aim to show the last item. Since ad; Z|; is a complex structure on ¢, one
confirms that (ad; Z)?Q = —Q for any @ € q; and so

exprad; Z(Q) = Z ! (rad 2)"(Q)

[
>0
=) — 2m' (mad Z2)*™(Q) + Z j(mad; Z)? Q)

m>0
2n+1

= (- Q+ ) (-1 27+1) [Z, Q]

m>0 n>0
= C(;S7T -Q +sinT - [Z,Q)]
- Q.
On the other hand, it follows from (2.1.2) that
exprad; Z(R) =R

for every element R € v. These, combined with [ = v & ¢, allow us to see that
expmad; Z is an involution of [, and that ¢ = expmad;Z. So, the last item has
been shown. Hence, we have proved Lemma 2.1.6. 0]

Remark 2.1.7. (1) Remark 2.1.5-(I) and Lemma 2.1.6 imply the following: Let L/R
be an almost effective, semisimple pseudo-Hermitian symmetric space defined by an
involutive automorphism ¥ of L. Then, there exists an Spr-element S € [ = Lie(L)
satisfying three conditions
(a) B = Cr(S);
(b) ad(S induces the complex structure J—that is, .J is an invariant complex
structure Js; on L/CL(S) given by

(Jo)o(dm (X)) = dr(adc S(X))  for X €[S, 1] = To(L/CL(S)),

where 7 denotes the projection of L onto L/C1,(S) and T,(L/C1(S)) denotes
the tangent space of L/Cp(S) at the origin o (see Kobayashi and Nomizu
[Ks-No, pp. 216-217] for J);

(¢) ¥ = Aexpns, Where Ay rs is the inner automorphism of L determined by
an element exp7S € L.

(2) Remark 2.1.5-(I') and Lemma 2.1.6 imply that for any effective semisimple
pseudo-Hermitian symmetric Lie algebra ([, o), there exists an Spr-element S € [
satisfying 0 = expmad S.

2.2. Mlurakami’s setting. Our consideration to the group Aut(l) of automor-
phisms of a real semisimple Lie algebra [, root theory for a maximal compact
subalgebra € of [, and so forth will depend on the results of Murakami [Mul] and
[Mu3]. For the reason, we are going to introduce Murakami’s setting utilized in
[Mul] and [Mu3].

Let [, be a compact real form of a complex semisimple Lie algebra [, and let 0
be an involutive automorphism of [,. Then, [, is decomposed as the direct sum of
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the two eigenspaces € and p of # in [,;
(2.2.1) [, =t@p.

Here ¢ and p are defined by

t:={K e [,|0(K) = K},
(2.2.2) { p:={Pcl,|0P)=—-P}

In the setting, we give a real form [ of [ by setting
(2.2.3) [:=t®ip.

Remark that [is a real semisimple Lie algebra, [ = €®ip is a Cartan decomposition,
t (=[N1,) is a maximal compact subalgebra of [, and [, = €@ p is the compact
dual of [. Furthermore, remark that each real semisimple Lie algebra can be, up to
isomorphic, given by the above fashion (ref. Theorem 2.1 in Wallach [Wa, pp. 5]).

Remark 2.2.1. Henceforth in this paper, we suppose that each real semisimple Lie
algebra [ is given by the above fashion (2.2.1), (2.2.2) and (2.2.3).

Let [ = € &® ip be a real form of a complex semisimple Lie algebra [, and let
[, = €® p be the compact dual of [. Following Murakami’s setting [Mul, pp. 105],

we identify the group Aut(l) of automorphisms of [ with {¢ € Aut(l) | ¢(l) C [},
and identify Aut(l,) with {¢ € Aut(l)|¢(l,) C l,}. This identification allows us
to assume that # is an involution of not only [, but [ as well. Then, it is a Cartan

involution of [ = € & ip.

Remark 2.2.2. In this paper, we suppose that

Aut(l) = {¢ € Aut(l) | () C I} and Aut(L,) = {¢ € Aut(l) | p(L,) C L.}
We refer to the result of Murakami, and finish this subsection.

Proposition 2.2.3 (Murakami [Mul, pp. 106]). In the setting on Subsection 2.2;
for an automorphism ¢ of I, = €@ p, the following three conditions (i), (ii) and
(iii) are mutually equivalent:

(i) pob =000, (ii)¢e Aut(l)nAut(l,), (iii) (€) C L.
Here, | is related to L, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of 6.

2.3. Elementary facts about root theory. This subsection is a review of el-
ementary facts about root theory, and consists of two paragraphs. In Paragraph
2.3.1, we state relation between root theory for a complex semisimple Lie algebra
[ and that for its compact real form [,. In Paragraph 2.3.2, we review root theory
for a maximal compact subalgebra ¢ (= [N[,) of [. In addition, we recall the result
of Murakami [Mul] (see Proposition 2.3.4).
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2.3.1. Root theory for | and for 1. Let [ be a complex semisimple Lie algebra, let
b be a Cartan subalgebra of [, and let A(I, h) denote the set of non-zero roots of |
with respect to h. Then, there exists a Weyl basis {X, |a € A(,h)} of [ such that
for all o, B € A(1, b)

[XonX—a] = H,, [Ha Xa] = CY(H) - X, for H € [7

(Xo, Xg|=0 ifa+pf#0anda+p3¢ A(Nl h);

[Xo, X5] = Nag - Xorp ifa+ e AL D),
where the real constants N, g satisfy N, 3 =—N_, _p (cf. Helgason [He, Theorem
5.5, pp. 176]). Here for a € A(1, h), one defines the element H, € b by By(H, H,) =

o(H) for all H € h. By using this Weyl basis, we give a compact real form [, of [
as follows:

(2.3.1) L=ibe ® @D spang{Xs— X_o} ®spang{i(Xo+ X_o)}
aeA(lh)

(ref. the proof of Theorem 6.3 in Helgason [He, pp. 181]), where hr is a real vector
subspace of h determined by

b := spang {Ha | € A(1, D)}

(2.3.2) - Lh
(: {Hebhla(H)eR forall a € A([,h)})-

Remark 2.3.1. (i) ibg is a maximal abelian subalgebra of [,. (ii) Decomposition
(2.3.1) is the root-space decomposition of the compact real form I, of I with respect
to ihg. In this case, the root system for (I,,ibr) coincides with that for (I, )
multiplied by —i, namely

A([u,iﬁR) = { — i ‘ a € A(Nl, 6)}

(cf. Toda and Mimura [To-Mi, Chapter 5]). (iii) In this paper, we fix a linear order
in A(l,,ibg) as follows: —iov € A(l,, ihg) is a positive root if so is a € A(L, h).

Theorem 5.1 in Helgason [He, pp. 421] and its proof enable us to demonstrate
the following:

Proposition 2.3.2 (Helgason [He, pp. 421—422’)]). In the setting on Paragraph
2.3.1; let ¢ be a real, linear isomorphism of ibg. Suppose that the transposed
mapping of ¢ satisfies

"D (A(L D)) = AL b),
where ¢ denotes the complex linear extension of ¢ to h. Then, there exists an
automorphism ¢ of | which satisfies three conditions

(1) ¢([u) C [’u.; (11) ¢|“~]R _ l
(iii) ¢(Xia,) = Xutg-1(a,) for all b e{1l,...,r}.

Moreover, ¢ is involutive if so is ¢'. Here, {ap};_, denotes the set of simple roots

in A1, h).
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2.3.2. Root theory for € (= [N 1,), and automorphisms of 1. Let [ be a complex
semisimple Lie algebra, let f be a Cartan subalgebra of [, let [, be the compact
real form of [ given by a Weyl basis { X, | € A(1,B)} of [ and (2.3.1), and let 6

be an involutive automorphism of [ satisfying three conditions

where I, ;) is the set of simple roots in A(1, b). Denote by ¢ the +1-eigenspace

of # in [,—that is, ¢ = {X + 6(X) | X € [,}. Then, ¢ is described as follows (read
Murakami [Mu3, pp. 300)):

(2.3.3) E=¢nibg @ .~ spang {X, — X , +0(X, — X )}
yeA1 (L, h: 0)UAa(T, b: 0)
@ spanp {i(X, + X_,) +i0(X, + X_,)}.

Here, 2Ay(1, 6 : 0) and As(1, b : 0) are defined by
+0)

= {8 € A1) |'0(5) = B and §(X5) = Xp},
:0) = {€ € A(LD) ['0(6) # €}

Remark 2.3.3. (i) At page 300 on [Mu3], Murakami only treats the case where @ is
of outer type. However, we take both the case where 6 is of outer type and inner
type into consideration. (ii) £Nihg is a maximal abelian subalgebra of €, because it
follows from *6(IT A ) = A 5) that 0 leaves fixed a regular element of [ contained
in b (ref. Murakami [Mu2, Proposition 1, pp. 106]). (iii) Decomposition (2.3.3) is
the root-space decomposition of € with respect to EﬂiﬁR. The set of non-zero roots
of € with respect to €N by is as follows:

A(Ea N ZER)

= {1l =~ (000 | 7 € AL H:0) U205 0))

(read Murakami [Mu3, pp. 300] again; recall our Remark 2.3.1-(ii)). (iv) In this
paper, we fix a linear order in A(E, €Nihg) as follows: —1Y|¢nip, € Ak, eNibg) is a
positive root if v is a positive root in A(I, §). Remark that this linear order is the
same one used in [Mu3, pp. 300].

Now, let p denote the —1-eigenspace of # in [,, and let [ be the real form of 1
determined by (2.2.3) [ = € @ ip. Then, Theorem 3 in Murakami [Mul] and its
proof allow us to assert the following:

Proposition 2.3.4 (Murakami [Mu~1, pp. 118-121)). In the setting on Paragraph
2.3.2; let 1 be an automorphism of | which stabilizes [, = €@ p. Suppose that it
satisfies the following two conditions:

(a) ¥(ibr) C ibr, and 1) o6 =00 on ibg;
(b) (A1 (1,5 : 0)) = A (L, 6).
Then, there exists an element H € hg such that 1 o expad;iH € Aut(l) N Aut(L,).
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2.4. Notation. Throughout this paper, we utilize the following notation:
(n1) Ad: the adjoint representation of a Lie group.
(n2) Ad(D)X: the adjoint orbit of a Lie group D
through an element X € Lie(D).

(n3) C ( ): the centralizer of X in a Lie group D, for an element X € Lie(D).
(n4) B,: the Killing form of a Lie algebra a.
(n5) ad,: the adjoint representation of a Lie algebra a.
(n6) ¢ ( ): the centralizer of X in a Lie algebra a, for an element X € a.
(n7) a;: the center of a Lie algebra a.
(n8) v C the complexification of a real Lie algebra v.
(n9) m @ n: the direct sum of vector spaces m and n.
(n10) |A the restriction of a mapping f to a set A.
(n11) 64p: Kronecker’s delta.
(n12) i the imaginary unit, namely i = v/—1.

If [ is a complex semisimple Lie algebra and if b is a Cartan subalgebra of I, then
we specially utilize the following notation:

(n13) A(f,ﬁ): the set of non-zero roots of [ with respect to b.
(n14) A*(I,h): the set of positive roots in A([ h).
(n15) M) the set of simple roots in AL D).

Let [ be a real semisimple Lie algebra with Cartan decomposition (2.2.3) [ = ¢@ip.
Then, we utilize the following notation:

(n16) t": an n-dimensional abelian subalgebra of [ which is contained in €.

3. SEMISIMPLE PSEUDO-HERMITIAN SYMMETRIC SPACES AND SpT—ELEMENTS

This section consists of two subsections. Subsection 3.1 is an investigation into
relation between semisimple pseudo-Hermitian symmetric Lie algebras and Spr-
elements of [, for a real semisimple Lie algebra [ (refer to Section 1 for the definition
of Spr-element). In Subsection 3.2, we consider the case where g is a real form of
a complex simple Lie algebra, and we verify that the mapping Fy : Spry/({£1} X
Aut(g)) — Inv(g)*/ Aut(g), [ S]+ [expTady S], is bijective (see Theorem 3.2.1).

3.1. Semisimple case. Our aim in this subsection is to prove Lemma 3.1.1.

Lemma 3.1.1. Let [ be a real semisimple Lie algebra, and let S be an Spr-element
of [. Then, the following three items hold:

(1) An inner automorphism p := expmadS of | is involutive and its +1 (resp.
—1)-eigenspace accords with ¢(S) (resp. [S,1]).

(2) The pair (I, ¢(S)) is the pseudo-Hermitian symmetric Lie algebra by the
involution p, and S is the canonical central element of ¢(S) relative to
(L, et(5))-

(3) Let L be a connected Lie group with Lie algebra 1. The adjoint orbit
Ad(L)S = L/CL(S) is a pseudo-Hermitian symmetric space defined by an
involutive automorphism Aexprs of L, an invariant complex structure Js
and an invariant pseudo-Hermitian metric g, (with respect to J,).
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Here, J, is given in Remark 2.1.7, and gg, is an invariant pseudo-Riemannian met-
ric on L/CL(S) given by gp (X,Y), := Bi(X,Y) for X,Y € [S,1] = To(L/CL(S))
(refer to Kobayashi and Nomizu [Ks-No, pp. 200-201] for gg ).

Proof. (1) Since S is a semisimple element, [ is decomposed as [ = ¢/(S) @ [S, (.
Therefore the proof of Lemma 2.1.6 allows us to have the first item, because
ad; S|ig is a complex structure on [S, [].

(2) It is clear from (1) that (I,¢/(S)) is the symmetric Lie algebra by p, and
that [ = ¢;(S) @[S, [] is its canonical decomposition. Moreover, one perceives that
I := ad; S|js,q is an ad((¢(S))-invariant complex structure on the vector space [S, [],
and that B|fg gx[s,q is an ad(¢/(S))-invariant pseudo-Hermitian form (with respect
to I) on [S,[] (recall Notation (n4) and (n10) in Subsection 2.4, for Bi|is,gx[s,q)-
Therefore, we deduce that the symmetric Lie algebra ([, ¢/(S)) is pseudo-Hermitian
and that S is the canonical central element of ¢;(S) relative to (I, ¢(S5)).

(3) The last item follows from (2) and the result of Shapiro [Sh, Proposition 2.5
and its proof, pp. 533-534]. Consequently, we have shown Lemma 3.1.1. O

Remark 3.1.2. Fix a real simple Lie algebra [, denote by Spr| the set of Spr-elements
of [, and denote by Inv(I)* the set of involutions o of [ such that (I,o) is a pseudo-
Hermitian symmetric Lie algebra. Then, the following mapping F’ is a surjection
of Spr( onto Inv([)P¥:

pH

F': Spri — Inv(l) (surjective)

S — expradS
because of Remark 2.1.7-(2) and Lemma 3.1.1.

3.2. Simple case. We have so far argued about a real semisimple Lie algebra I.
In this subsection, we consider a real simple Lie algebra g whose complexification
is also simple, and we aim to demonstrate Theorem 3.2.1.

Theorem 3.2.1. Let g be a real form of a compler simple Lie algebra.
Then, the following mapping Fy is a bijection of Sprg/({£1} x Aut(g)) onto
Inv(g)?""/ Aut(g) :

Fy : Spry/({#1} x Aut(g)) — Inv(g)""/ Aut(g) (bijective)
[S] —  [expmadg S

Here, Spry/({£1} x Aut(g)) and Inv(g)P" / Aut(g) are the quotient set of Spry by
our equivalence relation and of Inv(g)P™ by Berger’s equivalence relation, respec-
tively (cf. Section 1).

Proof. In the first place, we will confirm that the mapping F} is well-defined. Let
S1 and Sy be two elements of Sprg, and let ¢ be an automorphism of g such that
¢(S1) = Sy or ¢(S1) = —Sy. Then, it is natural that ¢ o expmadyS; o ¢~" =
expmadg ¢(S1) = exprady So = expmadyg(—Ss) since expwady Se is involutive.
Hence, Fj is well-defined.

In the second place, let us verify that the mapping F is injective. Suppose that
there exists an automorphism ¢ of g satisfying 1 oexp mady S10¢ ' = expmady Sy
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(S1,S2 € Spry). Then, Lemma 3.1.1-(1) means that 1(cg(S1)) = ¢4(S2), and so

U(cg(S1);5) = cg(S52);
(recall Notation (n7) in Subsection 2.4, for ¢4(S,);). Corollary 2.3 in Shapiro [Sh,
pp. 532] and our Lemma 3.1.1-(2) imply that ¢4(S,); = spang{S,} (p = 1,2), and
thus ¢ (spang{S;}) = spang{Ss}. Accordingly, there exists a non-zero number
A € R satisfying
w(Sl) - )\ . 52.

We obtain A = %1, since both adg(S;) = Aady Sz and ady Sy are complex struc-
tures on [1)(S1), 8] = [Se,g]. For the reasons, it follows that ¢(S;) = +S5. This
deduces that the mapping F is injective. It is immediate from Remark 3.1.2 that

the mapping F} is surjective. Consequently, we have completed the proof of The-
orem 3.2.1. 0

4. NECESSARY AND SUFFICIENT CONDITIONS FOR AN ELLIPTIC ELEMENT
TO BE AN Spr-ELEMENT

This section is organized as follows: In Subsection 4.1, we provide a necessary
and sufficient condition for an elliptic element to be an Spr-element (see Lemma
4.1.1). Subsection 4.2 is devoted to giving conditions which an Spr-element should
satisfy (see Lemmas 4.2.1 through 4.2.4).

Remark 4.0.2. Throughout this section, a compact real form [, = ¢ & p of [, an
involutive automorphism 6 of [, a real form [ = €@ 1p of [, the set of non-zero roots
of € with respect to €N ihgr, and so forth obey the setting on Subsection 2.3.

4.1. A necessary and sufficient condition. In this subsection, we will first

explain that any Spr-element S € [ = €@ ip can be mapped into a fixed, Weyl

chamber 20, of £, and we will afterwards prove Lemma 4.1.1. .
Let TIaqe enip) = {7Vl Jj=1 be the set of simple roots in A(E, €N ihr)

(ref. Remark 2.3.3), and let 20, denote the positive Weyl chamber with respect

0 I (¢, ervity) = {—i7j|miﬁR}§':1;

(4.1.1) W, = {T € eNibg | =i (T) > 0,- -, —iv(T) > 0}.

Now, let us show the following (4.1.2):

(4.1.2) For any Spr-element S of a semisimple Lie algebra [ = € @ ip,
there exists an inner automorphism ¢ of [ satisfying ¢(S) € 2.

Since S is elliptic (cf. Remark 2.1.2), there exists a maximal compact subalgebra &
of ['such that S € . Thus, Theorem 7.2 in Helgason [He, pp. 183] implies that there
exists an inner automorphism ¢; of [ which maps ¢ onto € and hence ¢;(5) € &.
Furthermore, there exists an element K € € such that expade K(¢1(5)) € 2
because € is a compact Lie algebra. Accordingly, we define an inner automorphism
¢ of [ by ¢ := expad; K o ¢, and we conclude (4.1.2).

On account of (4.1.2) we will search a Weyl chamber 20; of £ for Spr-elements,
in the next section. In order to easily search, we are going to provide a condition
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for an element T € 2, to be an Spr-element. Let us recall Remark 4.0.2, and
prove the following:

Lemma 4.1.1. For any non-zero element T € W, (cf. (4.1.1)), the following three
conditions are mutually equivalent:

a) T is an Spr-element of [ = £ & ip;

b) T is an Spr-element of I, = ¢ ® p; o

c) B(T) = +i for each root € A(L,h) \ Ar(L,h).

Here, Ar(1,h) == {¢ € A(LD) [(T) = 0}.

Proof. a) <+ ¢): We will prove that two conditions a) and c¢) are equivalent to each
other. Since T belongs to 20 (C €N ibhr), one perceives that the element T is a
semisimple element of [ = ¢®ip. Therefore, two conditions a) and ¢) are equivalent
to each other if the condition c) is equivalent to the following condition:

a') ad;T'| ;.7 is a complex structure on the vector space [T, 1],

because it follows from [ = [€ that ad; T'|7 j is a complex structure on [T, 1] if and
only if ad; T'|(r, is a complex structure on [T []. For the reason, let us confirm that
two conditions a’) and c¢) are equivalent to each other, from now on. In order to
do so, we want to rewrite the root-space decomposition of [ with respect to 6 as
follows:

b oo @ spanciXa}

[

aeA(l,h)
=h @ @ spanc{X¢} @ @ spanc{Xg}

—am) e @ shanc{Xs),

where X,, o € A(I, b), are given in Paragraph 2.3.1. This enables us to obtain

(4.1.3) T,]= €  spanc{Xs}

BeA(,h\AT(L,b)

because [T, Xg] = B(T) - X5 # 0 for all 8 € A(I,h) \ Ar(l,h) and the semisimple
element T splits [ into ¢;(T) @[T, I]. Since (4.1.3) and since (ad; T)*(X3) = (3(T))?-
X, we conclude that ad; T,  is a complex structure on [T, 1] if and only if 3(T) =
+i for all 3 € A(I,h) \ Ar(l,h). Consequently, two conditions a’) and c) are
equivalent to each other.

b) <> ¢): By arguments similar to the above ones, we can conclude that two
conditions b) and c) are equivalent to each other, because of [ = [C. Accordingly,
we have completed the proof of Lemma 4.1.1. O

By use of Lemma 4.1.1, we can get Proposition 4.1.2.
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Proposition 4.1.2. The set of Spr-elements of a real semisimple Lie algebra | is
an empty set, in the case where [ is one of the following:

EVIII: 28(8)7 EIX: 28(724)3 FI f4(4), FII: f4(,20), G: 92(2).

Proof. First, let us consider the case where [ = gy). Suppose that go() contains an
Spr-element S. Then by (4.1.2) and Lemma 4.1.1, one deduces that the compact
dual g of gy2) contains an Spr-element S’. Therefore, Lemma 3.1.1-(2) implies
that (go, ¢4, (5")) is a Hermitian symmetric Lie algebra of compact type. However,
that is inconsistent with the result of Wolf [Wo]. Consequently, gy contains no
Spr-elements. In a similar way, we can confirm that the other Lie algebras also
contain no Spr-elements. Thus, this proposition has been proved. O

Example 4.1.3. Let a Lie group G be one of the Eg(g), Eg(_24), F4(4), F4(_20)
and Gy). Remark 3.1.2 and Proposition 4.1.2 allow us to see that there exist
no pseudo-Hermitian symmetric spaces on which G acts transitively. Hence, there
exists an elliptic orbit which can not be a pseudo-Hermitian symmetric space—for
example, Gy2)/U(2) is an elliptic orbit (cf. [Bm, Proposition 5.5]) but it can not
be a pseudo-Hermitian symmetric space.

4.2. tis a direct sum of two simple ideals and the non-trivial center. Let
us recall Remark 4.0.2. In general, a maximal compact subalgebra € of [ = € & ip
is a direct sum of compact simple ideals and the center. In the first half of this
subsection, we assume € to be the direct sum of two compact simple ideals €, &
and the center & # {0};
E=t DL DE,.

In this setting, we will provide a condition which an Spr-element S € 2J, should
satisfy (cf. Lemma 4.2.1).

For the simple root system Il enip) = {—%jlenize ti=1 (given in Subsection
4.1), we assume that {—ively5. ooy and {—ivilgs, Hosrr are the set of simple
roots in A(k, €, Nibg) and in A(&y, & Nihgr) respectively. Then for each p = 1,2,
we denote by —ip, the highest root in A(t,, €, N iF)R), and we describe them as

(4.2.1) —ipy = —i(m1'71+m2"72+"'+m8'73)|€ﬂiﬁuv
—ipy = —i(Mst1 - V1 + Msra - Vs + o+ M ) lriie

where m, is a positive integer for each a € {1,...,t}. Note that for p = 1,2, there
exists a root p, € A(l, b) satisfying —ip, = —ipy|y5, (cf. Remark 2.3.3-(iii)).

4.2.1. Case £ =€ @ & @ €. Now, let us verify Lemma 4.2.1.

Lemma 4.2.1. Let S be an Spr-element of a semisimple Lie algebra | = €@ ip such
that S € Wy (cf. (4.1.1)). Suppose that € is the direct sum of two simple ideals €,
s and the non-trivial center €,. Then one of the following four cases only occurs:
(A-1) —ipe(S) = 0, and there exists an integer k € {1,...,s} such that my = 1
and —iv(S) = dkp for any 1 < b < s.
(A-2) —ipi(S) =0, and there exists an integer | € {s+1,...,t} such that m; =1
and —iv.(S) = 91 for any s+1 < ¢ <t.



THE CLASSIFICATION OF PSEUDO-HERMITIAN SYMMETRIC SPACES 27

(A-3) There exist integers k € {1,...,s} and |l € {s+1,...,t} such that my =
my =1 and —iv,(S) = g0+ 01 for any 1 < a < t.
(A-4) S is a non-zero, central element of € =& @ &, @ ¢,.
Here —ipy = —i 22:1 Mk Vil @NA —ifly = —i ZLHI M1 Vil i, @TE the highest
root in A(8y, 8 Nibr) and in A8, & Nibhr), respectively (cf. (4.2.1)).
Proof. 1t is natural that one of the following four cases only occurs:
(A-1') —ipa (S) # 0 and —ips(S) =0, (A-2') —ipi(S) = 0 and —ips(S) # 0,
(A-3') —ipa (S) # 0 and —ips(S) # 0, (A-4') —ipi (S) = —ipa(S) = 0.

Let us consider Case (A-1") —iui(S) # 0 and —iue(S) = 0, first. Naturally, it
follows from S € 20, and (4.1.1) that

(4.2.2) —iv(S) > 0,---, —ivs(S) > 0.

Hence we obtain —ip;(S) > 0 because of (4.2.1) and —ipy(S) # 0. There exists
a root i € A(I,h) such that —ipy = — i |y, Since S € We and S is an Spr-
element of [, Lemma 4.1.1 allows us to have u{(S) = +i or 0. Consequently, it
follows from —ip, (S) > 0 and —ipy = —ip |5, that

—ip (S) = 1.

This, together with (4.2.1) and (4.2.2), concludes that there exists an integer k €
{1,..., s} satisfying —iv,(S) > 0. So, we have

by using Lemma 4.1.1 again. From —ipuy(S) = —ivg(S) = 1, (4.2.1) and (4.2.2),
it follows that my = 1 and —ivy(S) =0 for every d € {1,...,k — 1, k+1,..., s}
For the reasons, one perceives that there exists an integer k € {1,..., s} satisfying
my = 1 and —iy,(S) = p for any 1 < b < s.

By arguments similar to those above, we can deduce that in Case (A-2) there
exists an integer [ € {s+ 1,...,t} satisfying m; = 1 and —iv.(S) = J;. for any
s+ 1 < ¢ < t, and that in Case (A-3') there exist integers k£ € {1,...,s} and
[ € {s+1,...,t} satisfying mj = m; = 1 and —iv,(S) = ka + 0. for any
1<a<t.

Let us consider Case (A-4") —ipy(S) = —ipa(S) = 0, lastly. Since S € 20, and
(4.2.1), we have —iv,(S) = 0 for each 1 < a < t. This shows that —iy(S) = 0
for every root —iv|y;5. € AL €N ibg), because {=17j ey, =1 is the set of simple
roots in A(€, €N ibg). Accordingly, S is a central element of ¢. Thus, we have got
the conclusion. O

4.2.2. Case ¢ =t @ ty. The following comes from Lemma 4.2.1:

Lemma 4.2.2. Let S be an Spr-element of a semisimple Lie algebra | = € & ip
such that S € W (cf. (4.1.1)). Suppose that € is the direct sum of two simple ideals
€ and €. Then one of the following three cases only occurs:
(B-1) —iua(S) = 0, and there exists an integer k € {1,...,s} such that my = 1
and —ivp(S) = dkp for any 1 < b < s.
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(B-2) —iuy(S) =0, and there exists an integerl € {s+1,...,t} such that m; =1
and —iv.(S) = i for any s+1 < ¢ < t.
(B-3) There exist integers k € {1,...,s} and | € {s+1,...,t} such that my =
my =1 and —iv,(S) = g0+ 610 for any 1 < a < t.
Here —ij = —i Y 5y M Yilgngy, and —ipy = —i Zf:sﬂ M1 Vil i, @Te the highest
root in /(&8 Nibr) and in A(by, & Nibg), respectively (cf. (4.2.1)).

4.2.3. Case £ =€, @ ¢,. Recollect Remark 4.0.2. For the sake of Section 5, we also
consider the case where ¢ is the direct sum of a compact simple ideal ¢, and the
center & # {0}.

We denote by —ip the highest root in A (€, €N ihgr), and write it as follows:
(4.2.3) —ip=—i(ny -+ ne Y2 V) i
where n, is a positive integer for each 1 < a <t and {—i7;|y5, }izy is the set of
simple roots in A(&, €N ihg) (given in Subsection 4.1). In the setting, the proof of
Lemma 4.2.1 enables us to deduce Lemma 4.2.3.

Lemma 4.2.3. Let S be an Spr-element of a semisimple Lie algebra | = € & ip
such that S € W (cf. (4.1.1)). Suppose that € is the direct sum of a simple ideal
£, and the non-trivial center €. Then one of the following two cases only occurs:

(C-1) There exists an integer j € {1,...,t} such that n; =1 and —iv,(S) = d;a
forany 1 <a <t
(C-2) S is a non-zero, central element of € = & @ .

Here, {—=1Yjlnin, Jj=1 15 the simple root system of €, and n; (1 < j < t) is a
coefficient of the highest root —ip € /(€ €N ibg) (cf. (4.2.3)).

4.2.4. Case € =¢,. By Lemma 4.2.3, one has the following:

Lemma 4.2.4. Let S be an Spr-element of a semisimple Lie algebra [ = € & ip
such that S € Wy (cf. (4.1.1)). If € is simple, then the following case only occurs:

(D) There exists an integer j € {1,...,t} such that nj =1 and —iv,(S) = 0,4
forany 1 <a<t.

Here, {—ifyj|w,~m}§:1 is the simple root system of ¢, and n; (1 < j < t) is a
coefficient of the highest root —ip € /(€ €N ibg) (cf. (4.2.3)).
By use of Lemma 4.2.4, we will prove Proposition 4.2.5.

Proposition 4.2.5. The set of Spr-elements of EIV: eg_q6) is an empty set.

Proof. Tt is known that f4 is a maximal compact subalgebra of ¢s(_a6) (cf. Helgason
[He, Table V, pp. 518]) and that a coefficient of the highest root p for f, is 2, 3 or
4 (cf. Bourbaki [Br, Plate VIII, pp. 287]). Hence, there exist no coefficients of y
whose values are 1. Accordingly, Lemma 4.2.4 assures that the set of Spr-elements
of eg_26) is empty. O

Finally we will state the following remark, and finish this section.
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Remark 4.2.6. Let us comment on two Lemmas 4.2.1-(A-4) and 4.2.3-(C-2) in the
case where [© is simple. Let g = €@ ip be a real form of a complex simple Lie
algebra, and let S be an Spr-element of g. If the center € of £ is non-trivial and
if S belongs to €, then the element S is the H-element of a Hermitian symmetric
Lie algebra (g, &) because & = ¢4(5) follows from irreducibility of (g, &) (see Satake
[Sa, pp. 54] for the definition of H-element). Consequently, an Spr-element S in
Case (A-4) or (C-2) is the H-element of (I, €) when [© is simple.

5. THE CLASSIFICATION OF Spr-ELEMENTS OF EACH SIMPLE LIE ALGEBRA

Our purpose in this section is to classify Spr-elements of each real form of all
complex simple Lie algebras under our equivalence relation (defined in Section 1).
This section consists of six subsections, and each of the six subsections is devoted
to classifying Spr-elements of each real form of a complex simple Lie algebra. We
finally collect the results obtained in every subsection (cf. Theorem 5.6.10), and
we achieve the classification of simple irreducible pseudo-Hermitian symmetric Lie
algebras without Berger’s classification (cf. Corollary 5.6.11).

5.1. Type A; (I > 1). In this subsection, we deal with each real form of the
complex simple Lie algebra a; = sl(l + 1,C). First, let us introduce our setting.
Let b be a Cartan subalgebra of a, let {a,}._, be the set of simple roots in A(ay, h)
whose Dynkin diagram is as follows:

ap (g a1 Qg

(cf. Plate T in Bourbaki [Br, pp. 265]), and let g, be the compact real form of
a; given by A(ay,h) and (2.3.1). In addition, we define an element Z, € § (1 <
a < 1) by au(Zy) = dap for all b € {1,...,1}, namely {Z,}!_, is the dual basis of
Up ) = {a,}l_,. In the setting, we are going to classify Spr-elements of each

real form of a; = sl(l + 1, C).

Notation 5.1.1. In Subsection 5.1, we utilize the following notation:

e a,=sl(l+1,C).
d HA(a,,ﬁ) = {O‘a}zzr Qo a—1

e g,: the compact real form of a; given by A(a,h) and (2.3.1).
o {Z,}._,: the dual basis of At = {ag}_,.

5.1.1. Case Al sl(2k + 1,R) : [ = 2k and k > 1. In this paragraph, we aim to
classify Spr-elements of s[(2k + 1, R).

In the first place, we will construct an involutive automorphism 6; of as, =
s[(2k + 1, C) such that (I) it satisfies the three conditions in Paragraph 2.3.2;

(c1) 01(gu) C gu, (c2) 01(h) C b, (c3) 01T A (aye,5)) = Ta(as, )

and (IT) sl(2k + 1, R) is related to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3)
by means of 6. It is obvious from ay,(Zy) = 84, that {Z,}% | is a real basis of hr
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(see (2.3.2) for br). Hence, {iZ,}?*, is a real basis of ihg. So, we can define an
involutive, linear isomorphism ¢ of ihg = spang{iZ,}?*, by

(5.1.1) 01(iZ,) == iZop1-a for 1l <a <2k.

From «,(Z,) = d,p and (5.1.1), it follows that 0} .(c,) = @opi1-, for all 1 <
a < 2k, where ¢ denotes the complex linear extension of #; to . Therefore, we
conclude that

teic(A(%k, 6)) = A(a, 6)

because A™(az, h) = {D, < o, @ |1 < p <1 < 2k+1} (cf. Bourbaki [Br, pp. 265]).
Then, Proposition 2.3.2 implies that there exists an involutive automorphism 6;
of ayr = sl(2k + 1,C) satisfying the three conditions (c1), (¢2) and (c3). Here,
the third condition (c3) *01(Ilx(y,, 7)) = a(ay,, 5 has followed from 6:|; = 6}
and "¢ (a,) = opt1—q. Notice that 6 is the same involution as 6, utilized in

Murakami [Mu3, pp. 305, type AI].

‘01 | ! V)
O_..._<>_...
Qo Qok+1—a 41

Let us describe the set of simple roots in A (€, €Nibg), where £ := {K€gu|0(K)=
K}. By (¢3), (5.1.1) and Remark 2.3.3-(ii), one perceives that €Nihg is a maximal
abelian subalgebra of € and it is as follows:

(5.1.2) tNibg = spanp{i(Z. + Zops1-o) }5_,.

The result of Murakami [Mu3, pp. 305, type AI] enables us to deduce that
{—icre|gni, -, is the set of simple roots in A(g, €N ibr) (ref. Remark 2.3.3-(iii),
-(iv)), and that the Dynkin diagram of 11, yrps) = {—ictc|yni, Yo 1s as follows:

t=s0(2k+1): 01—02——0502
—1Gy — 10 —1Gy 1 —1i0y
where —id, = —iac|w5R for 1 < ¢ < k. Moreover, his result implies that the

highest root —ip in A€, €N ihg) is
(513) —i/L = —i(Oq + 2&2 + 20[3 + -+ 2ak)|mi,~m

and that sl(2k + 1,R) is the real form g of ay, = sl(2k + 1,C) given by (2.2.3)
g = t @ ip, where p denotes the —1-eigenspace of 6; in g, (C dax). Now, let
us describe the dual basis of IT g g,y i terms of the dual basis {Z,}%%, of

M (e, i) = {ag}2k . Tts description will be utilized in the second place. Let
{T.}t_,, T, € €N ibg, be the dual basis of I,y gy = {—ilynyiy, ooy Then by

ao(Z)y) = dap and (5.1.2), we can describe the element 7. as follows:

(514) TC = Z(ZC + ZQk-I-l—c) for 1 S Cc S k.
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In the second place, we will search Spr-elements of g = s[(2k + 1, R). Denote by
2, the positive Weyl chamber with respect to TT g 4y = {—i0te|gsiy, Yoot
mé = {T € EmZF)R| - ZCVI(T’) > 07' te 7_iak(T) > O}

On account of (4.1.2), we aim to search this Weyl chamber 20; of € for Spr-elements
of g. First, let us provide a necessary condition for an element 7' € 20; to be an
Spr-element of g. Suppose that an element T € 20} is an Spr-element of g. Then by
(5.1.3) and Lemma 4.2.4, we obtain —ia,.(T) = 0, for each 1 < ¢ < k. Accordingly,
we have T' = Ty because {T,}}_; is the dual basis of II, g ) = {—00elgniisg oot
Hence, it follows from (5.1.4) that

(5.1.5) T =i(Z, + Zap).

Consequently, (5.1.5) is a necessary condition for an element T € 20} to be an
Spr-element of g = sl(2k + 1,R). However, it is not the sufficient condition.
Indeed, the element (5.1.5) T" = i(Z; + Zy) can not be an Spr-element of g,
because there exists a root = Zzil a, € Alag, h) \ Ar(ax, b) and it follows
from o,(Zy) = 64 that B(T) = S°2F oy (i(Z1 + Zar)) = 2i # +i. This shows that
the element T = (7, + Za;.) € W, can not be an Spr-element of g = sl(2k + 1, R)
from Lemma 4.1.1. For the reasons, we get the following:

Proposition 5.1.2. The set of Spr-elements of Al: sl(2k + 1,R), k > 1, is an
empty set.

5.1.2. Case Al sl(2k,R) : | = 2k — 1 and k > 2. This paragraph deals with the
classification of Spr-elements of s[(2k,R) under our equivalence relation (defined
in Section 1). Our result in this paragraph is Proposition 5.1.4.

We want to define an involutive automorphism 6, of g, such that s[(2k,R) is
related to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of 5. In order
to do so, we first construct an involutive automorphism 63 of as, 1 = sl(2k, C)
which satisfies three conditions

(c1) O5(gu) C gus (c2) B3(h) C B, (c3) s(Maray 5) = Taany i)

By use of 63, we will define an involutive automorphism 6, afterward. Since
{Z,}?*7' (Z, € p) is the dual basis of Upay 15 = { 2k—1 " one deduces that

a=1

{iZ,}%*71 is a real basis of ihg (see (2.3.2) for hr). Define an involutive, linear

a=1 =
isomorphism 6} of ibg = spang{iZ,}2*7" by
(5.1.6) 0,(iZ,) == iZop_o forl<a<2k—1.

Then since a,(Zy) = 044, we have 05 () = o for all 1 < a < 2k — 1, where
05 denotes the complex linear extension of 65 to h. Therefore, it follows that

telg(c(A(anfla 6)) = A(a%fl; 6)

because A (agk—1,b) = {D_ <, aq|1 < p <r <2k} (cf. Bourbaki [Br, pp. 265]).
Hence, Proposition 2.3.2 enables us to obtain an involutive automorphism 63 of
aor1 = sl(2k,C) satisfying conditions (i) 05(g.) C gu, (ii) 0s),;. = 05 and (iii)

ibr
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03(Xia,) = Xitgy(an)- From a,(Z,) = 04y, 03|ifm = 05 and (5.1.6), it follows that
105(vy) = op_q for every 1 < a < 2k — 1, so that t93(HA(a2k,1,ﬁ)) = A (ay 1.5
Hence, we have constructed an involutive automorphism 65 of as_; satisfying the
three conditions (c1), (¢2) and (c3). Note that this involution 5 is the same as 6,
given in Murakami [Mu3, pp. 305, type AII].

aq Qg A1

I

Qop—1 2k—q Ok
Now, let us define an automorphism 6, of as, 1 = sl(2k, C) by
(5.1.7) By := 03 0o expmad 17y.

A2k —1

Notice that the restriction of #, to ihR accords with 03|iﬁR = 6}, and the auto-
morphism #, satisfies three conditions (c1) 65(gy) C gu, (¢2) 62(h) C b and (c3)
02(Maway 1.5) = Uaqay_,.5)- Further, notice that 6y is the same as the invo-
lution #; in Murakami [Mu3, pp. 305, type AI]. Let & denote the +1-eigenspace
of 6 in g,. The result of Murakami [Mu3, pp. 305, type AlI] states that
{—icalyng,, —i(ak—1 + Ozk)|w,~]R}§;i is the set of simple roots in A(E, €N ihg) (ref.
Remark 2.3.3-(iii), -(iv)) and its Dynkin diagram is as follows:

1 ..
2 —l0k—1
t = s0(2k): ol o2 ... 1
Cidh —ide  —idga~o0 —i(dp_1 + dx)
where —id, = _mc|emfm for 1 < ¢ < k; besides, his result implies that sl(2k, R)

is the real form (2.2.3) g = €@ ip of ag— = sl(2k,C). Here, p denotes the —1-
eigenspace of f,. Remark that the highest root —ip in A(, €N ihg) is as follows:

(5.1.8) —ip=—i(on + 205 + -+ 20 o+ 1 + (1 + r)) i, iF k> 3.
If k = 2, then ¢ is the direct sum of two simple ideals € := su(2) and &, := su(2).
In case of k = 2, we assume {—io |5} and {—i(a1 + ag)ly;5. } to be the set of

simple root in A(€;, ¢ N if)R) and A(E, € N if)R) respectively. Then, the highest
root —ipy € A(E, 8 N th) and —ips € A(fy, 8N th) are as follows:

. =i,
—ipy = —i(on + ag) |y, i k=2

From now on, we are going to describe the dual basis of LA (¢, enipg)- The description
will be needed later. Let {T.}%_,, T. € €N ibg, be the dual basis of IT, AE, tnitg) =
{—zad|mlhR, —i(g_1 + ak)|mth}d 1» namely —ioy(7,) = dq,. (1 <d <k —1) and
—i(ag_1 + ag)(T.) = 0. We want to describe this basis {T,.}*_, in terms of the
dual basis {Z,}2*7 of 11, = {a,} 2571, Tt is immediate from 02,5, = 03 and
(5.1.6) that

A(azg—1,b)

EN ii]R = spanR{i(Zd + ZQk_d), ZZk}S:
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Accordingly, since a,(Zy) = 6ap, —iq(T,) = 04, and —i(ag_1 + ag)(T.) = g, One
can describe the element T, (1 < ¢ < k) as follows:

T.e=i(Ze+ Zop_o) forl<e<k-—2,
(5110) Tk:—l == i(Zk_l - Zk + Zk+1),
Ty = iZy.

Now, let us search Spr-elements of g = s[(2k, R). Denote by 207 the positive Weyl

chamber with respect t0 IL (¢ pripa) = {—10lemies — (k-1 + ) [eniig 4

W2 ={T € tnibg| —ioy(T) >0,---, —iay_1(T) >0, —i(ar_1 + a;)(T) > 0}.

Taking (4.1.2) into consideration, we will search this Weyl chamber 207 of ¢ for
Spr-elements of g = sl(2k,R). First, let us consider the case of k£ > 3, and provide
a necessary condition for an element 7' € 207 to be an Spr-element of g. Suppose
that an element 7" € 207 is an Spr-element of g. Then, Lemma 4.2.4, combined
with (5.1.8), implies that T = Ty, T}, or Ty, because {T,}*_, is the dual basis of
A e, enipe) = {—0@aleripg> — 0 (k-1 + Ozk)|w,~m}§;i. Therefore by (5.1.10), one has

(5111) T = Z(Zl —+ ngfl), Z.(Zkfl — Zk + Zk+1) or ZZk

This (5.1.11) is a necessary condition for an element 7' € 202 to be an Spr-element
of g = sl(2k,R). We will confirm whether (5.1.11) is the sufficient condition
or not. There exists a root f = 221;1 ag € Alagg_1,h), since A (ag_1,h) =
{2 p<qer @ |1 < p <1 < 2k} (vef. Bourbaki [Br, pp. 265]). Accordingly, the ele-
ment T = i(Z,+ Zop_1) € 207 can not be an Spr-element of g because a,(Zy) = g
and 3(T) = 231:11 aq(i(Zy + Za—1)) = 2i # £i (see Lemma 4.1.1). The other el-
ements T = i(Zy_1 — Zr + Z41) and T = iZ}, satisfy the condition ¢) in Lemma
4.1.1. Consequently, Lemma 4.1.1 assures that both T'= i(Z;_1 — Z + Z,1) and
T = iZy are Spr-elements of g = sl(2k,R). Thus, in case of k£ > 3, the condition
“T'=1i(Zy_1— Zr+ Zr1) or T = i7" is a necessary and sufficient condition for an
element T € 27 to be an Spr-element of g = s[(2k, R). Next, let us consider the
case of k = 2. The arguments stated below are similar. Suppose that an element
T € 207 is an Spr-element of g. Then, Lemma 4.2.2, together with (5.1.9), means
that the element T equals T, Ty or Ty + Ty, because {T},T»} is the dual basis of
A e enine) = {00 lering> — (1 +@2) gy, - Therefore, T' = i(Z1 — Zo + Z3), iZ or
i(Z1+ Z3) (see (5.1.10)). Since T is an Spr-element of g, it must satisfy 3(T) = +i
for any root 5 € A(as, ) \ Ar(as, b) (cf. Lemma 4.1.1); and hence it follows from
a(Zp) = 04 that the Spr-element T is either i(Z, — Zy + Z3) or iZ,. Conversely,
suppose that an element 7" is either i(Z; — Zy + Z3) or iZ,. Then, it belongs to 207
and satisfies the condition c) in Lemma 4.1.1. So, the element 7" is an Spr-element
of g, due to Lemma 4.1.1. Accordingly, in case of k& = 2, an element T € 207 is
an Spr-element of g if and only if it is either i(Z; — Zs + Z3) or iZ,. Summarizing
above statements, we confirm that Spry NWe = {i(Zy—1 — Zk + Zy+1), 21 }. So, it
comes from (4.1.2) that

(5.1.12) Spra/({£1} x Aut(g)) = { [((Ze_r — Zk + Zsr) |, [iZ4] }-
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The following Lemma 5.1.3 enables us to see that the above Spr-element i(Z ; —
Zk + Zky1) is equivalent to iZy (see Section 1 for the definition of equivalent):

Lemma 5.1.3. In the setting on Paragraph 5.1.2; there exists an automorphism ¢

of agk—1 = sl(2k, C) such that ¢(g) C g and
6(iZy) = iZoy—p  for 1 <p <2k —1 with p #k,
d)(ZZk) = i(Zk_l - Zk + Zk+1),

where g = sl(2k,R) and {Z,}**" is the dual basis of 2k 1

= {aa a=1 -
Proof. Let us construct such an automorphism ¢ of ag;_;. Deﬁne an involutive,
linear isomorphism ¢’ of ihr = spang{iZ,}?*7' as follows:

¢'(iZ,) == iZay.—, forl <p<2k—1withp #Ek,

d)I(ZZk) = i(Zk_l - Zk + Zk+1)-

ﬂ2lc 1,

(5.1.13)

Then, the complex linear extension ¢ of ¢’ to h satisfies
bop(ay) =agp g for1<¢g<k—-2andk+2<qg<2k-1,
"Pp(on—1) = o + apqa,
td)g[j(ak) = — 0O,
"o(onyr) = oy + oy,
because of a,(Z,) = dap- So, the Dynkin diagram of {*¢f () 125" is as follows:

Bak—1 Brt1 B Pr— b
where (3, :='¢r(ay) for 1 < a < 2k — 1. This implies that

t¢€C(A(a2k—1, 6)) = A(ag—1, 6)

since the Dynkin diagram of {*¢}(c,)}2*7" is the same as that of Ay i) =

{og} 257" (cf. Murakami [Mu3, Lemma 1, pp. 295]). Hence by Proposition 2.3.2, one
gets an involutive automorphism ¢ of as,—1 = sl(2k, C) satisfying (i) ¢(gy.) C gu, (ii)
¢lig, = @' and (iil) ¢(Xia,) = Xit5(a,)- Consequently by virtue of d>|Zh = ¢' and
(5.1.13), the rest of proof is to demonstrate that the involution ¢ of a,_; satisfies
the two conditions (a) and (b) in Proposition 2.3.4. Indeed, if ¢ satisfies the two
conditions, then there exists an element H € by such that (¢oexpad,,, ,iH)(g) =
g (by Proposition 2.3.4). Since exp ad 1H =id on 6, one has

A2k —1

(¢ O exp adﬂzk 1t )|th ¢|th

Defining ¢ by ¢ := ¢ o expad,,_, iH,"' we can get the conclusion. So, the rest of
proof is to demonstrate that ¢ satisfies the two conditions (a) and (b) in Proposition
2.3.4. Let us show that, from now on. Since fy[;5. = 05,5, = 05 and (5.1.6), and

since ¢; = ¢’ and (5.1.13), we perceive that 6, 0 ¢ = ¢ 06, on ihr. Thus, the

IThis ¢ is an outer automorphism of sl(2k, R).
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involution ¢ of ag,_; satisfies the condition (a) in Proposition 2.3.4. We want to
show that the involution ¢ also satisfies the condition (b) in Proposition 2.3.4. By

the definition (5.1.7) of 65, we confirm that A (a1, b : 62) is an empty set (refer
to (2.3.4) for Ay(ag,_1, b : 6s)). Thus, it is natural that

tq_s(A1(02k—1,6 : 92)) = A1(51%—1,6 : 92),

namely ¢ satisfies the condition (b). Accordingly, the involution ¢ of ag_; satisfies
the two conditions (a), (b) in Proposition 2.3.4. For the reasons, we have verified
Lemma 5.1.3. O

Lemma 5.1.3 and (5.1.12) allow us to lead the following:

(5.1.14) Sprg/({£1} x Aut(g)) = { [iZ,] }.
From Lemma 3.1.1-(1) and -(2), it follows that (g, ¢4(iZx)) is the pseudo-Hermitian
symmetric Lie algebra by an involution p := expmadgiZ;. It is known that

¢y(1Zk) = sl(k,C) @ t' (cf. [Bm, Theorem 6.16]). That, together with (5.1.14),
shows Proposition 5.1.4.

Proposition 5.1.4. Under our equivalence relation, Spr-elements of Al: g =
sl(2k,R), k > 2, are classified as follows:

Spre/({£1} x Aut(g)) = { [iZk] }-

Besides, (g,sl(k,C) @ t') is the pseudo-Hermitian symmetric Lie algebra by an

involution p = expmadgiZ,. Here, {Z, Z’:ll s the dual basis of HA(azk_l,ﬁ) =
2k—1

{aa a=1 *

5.1.3. Case AIl su*(2k) : | = 2k — 1 and k > 2. In this paragraph, we classify
Spr-elements of su*(2k) under our equivalence relation (see Proposition 5.1.5).

We use the involutive automorphism 65 of ay, ; = sl(2k,C) obtained in the
previous paragraph. We again remark that this involution f3 is the same as 0,
given in Murakami [Mu3, pp. 305, type AII]. Let € denote the +1-eigenspace of 63
in g, (see Notation 5.1.1 for g,). Then, it follows from 03],;; = 03 and (5.1.6)
that

(5.1.15) ¢ N ibg = spang{i(Zg + Zok_a), iZ; i1

Due to Murakami’s result [Mu3, pp. 305, type AII], one knows that {—iac|w5R}'§:1
is the set of simple roots in A(g, €N iBR) and its Dynkin diagram is as follows:

t=sp(k): A, S
—10 —1ic —1q 1 —10y,
where —id, := —iac|w,~m for 1 < ¢ < k (ref. Remark 2.3.3). Moreover, by virtue of

his result, one also sees that that su*(2k) is the real form (2.2.3) g = €@ ip of az
(where p := {P € g, |03(P) = —P}) and that the highest root —iy € A(€, €N ibg)
is as follows:

(5.1.16) —ip = —i(200 + 202 + - - + 200 1+ ) g, -



36 N. BOUMUKI

First, let us describe the dual basis of I 5 ¢ 45, in terms of {Z25 1 Let {T.}-_,,

a=1
T. € €N ibg, be the dual basis of LA e, nitg) = {—ictc|gni, Yoy Then by using
ao(Z)) = dap and (5.1.15), we obtain

(5.1.17)

Td = Z(Zd + ng,d) for 1 S d S k— 1,
Ty = 1 4.

Next, we will provide a necessary and sufficient condition for an element T € 20}
to be an Spr-element of g = su*(2k). Here, 20; is the positive Weyl chamber with

respect t0 IL ¢ ¢ripy) = {_iac|emiﬁR}]§:1§
W ={T cenibg| —iay(T) >0, , —iay_1(T) >0, —iog(T) > 0}.

Suppose that an element 7' € 207 is an Spr-element of g. In this case, Lemma 4.2.4
and (5.1.16) enable us to have —ia.(T") = . for each ¢ € {1,...,k}. Therefore,
we obtain T' = T}, because {T,}_; is the dual basis of I, gipey = {—00clgnjips o -
Hence, it is obvious from (5.1.17) that

(5.1.18) T =iZy.

This (5.1.18) is a necessary condition for an element 7' € 207 to be an Spr-element
of g = su*(2k). On the other hand, (5.1.18) is also the sufficient condition, be-
cause it follows from «a,(Z,) = d.p that S(T) = p(iZy) = =+i for every root
B € A(a%,l,ﬁ) \ AT(an,l,fN)) (cf. Lemma 4.1.1). Consequently, (5.1.18) is a
necessary and sufficient condition for an element T' € 237 to be an Spr-element of

g = su*(2k). Accordingly by (4.1.2), we conclude that

(5.1.19) Sprg/({£1} x Aut(g)) = { [iZ,] }.

Lemma 3.1.1-(1) and -(2) imply that (g, ¢5(¢Z))) is the pseudo-Hermitian symmetric
Lie algebra by an involution p := exp m adgiZ;. In addition, Theorem 6.16 in [Bm]|
allows us to have ¢4(iZ)) = sl(k, C)@®t'. Consequently since (5.1.19), we can assert
the following:

Proposition 5.1.5. Under our equivalence relation, Spr-elements of All: g =
su*(2k), k > 2, are classified as follows:

Spre/({£1} x Aut(g)) = { [iZ:] }.

Besides, (g,sl(k,C) @ t') is the pseudo-Hermitian symmetric Lie algebra by an

involution p = expmadyiZy. Here, {Z,}2% ' is the dual basis of TAaerh) =
2k—1

{aa a=1 *

5.1.4. Case AIII su(j,l +1 —j): j = 1. In this paragraph, we will classify Spr-
elements of su(1,[) (see Proposition 5.1.8).

First, we will give an involutive automorphism 6, of g, such that su(1,1) is related
to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of 6. Let us define
an inner automorphism 64 of a; = sl(l + 1, C) as follows:

(5.1.20) 6, :=expmady iZ;.
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Then, it follows from ¢Z; € g, and 04|,~] = id that the automorphism satisfies the
three conditions in Paragraph 2.3.2; (c1) 04(gu) C gu, (c2) 04(h) C b and (c3)
t94(HA(a,,6)) = Il 5 (o, 5)- Murakami’s result [Mu3, pp. 297, type AIlI] says that the
automorphism 6, is involutive, the simple root system of ¢ := {K € g, | 04(K) = K}
is {—ia.}._, (ref. Remark 2.3.3), the Dynkin diagram of A i) = {—ia.}_, is

t=su(l) @t x 01——01—01
—lvg  —log_1—ioy

and su(1,[) is the real form (2.2.3) g = €@ ip of a;, where p 1= {P € g, |4(P) =
—P}. Remark that the highest root —ip € A(8,ihg) is as follows:
(5.1.21) —ip=—i(ag +az+---+ q).
Now, let us search a Weyl chamber 20§ for Spr-elements of g = su(1,1), where 20;
is given by
Wi = {T € ibg| —iay(T) >0, —ias(T) > 0,-- -, —iay(T) > 0}.
Lemma 5.1.6. With the above notation; an element T € 20y is an Spr-element of
g = su(1,1) if and only if it is one of the following:
iZ, for2<e<l, i(-Z1+Z,) for2<c<lI, +iZ.
Proof. Suppose that an element 7' € 20; is an Spr-element of g. Since a,(Zy) = S
and T, ;5. = {—ia.}!_,, one deduces that —iy(iZ,) = 0 for all roots —iy €
A(t,ibg), and hence the element 77, is a central element of €. The supposition and
Lemma 4.2.3, combined with (5.1.21), assure that
(-)T=i(A-Zy+Z.)for2<c<Il or (-2) T=i\Z,

where ) is a real number (A # 0 in Case (¢’-2)), because T € ibr = spanp{iZ,}._,
and a,(Zy) = 64p. Let us determine the value of the above \. Since T € 20; is
an Spr-element, Lemma 4.1.1 implies that the element must satisfy 5(T") = +i for
every root 3 € A(a;, h)\ Ar(a;, b). Hence, the value of ) is as follows: A = —1 or 0
in Case (¢-1), and A = £1 in Case (¢/-2), because of o, (Zy) = 04 and At (ay, h) =
{2 p<qer gl < p <71 <1 +1} (ref. Bourbaki [Br, pp. 265]). Therefore, if an
element 7' € 2§ is an Spr-element, then it is one of the following:

(c-1.1) iZ. for 2 < e <1, (¢-1.2) i(—Z1 + Z.) for 2 < ¢ <, (c-2) £iZ;.

Conversely, suppose that an element 7" is one of the above elements. Then, it
belongs to 2y, and satisfies 3(T") = +i for all roots 8 € A(a;, h) \ A (as, b).
Accordingly, the element 7" is an Spr-element of g = su(1,l) (cf. Lemma 4.1.1).
For the reasons, we have completed the proof of Lemma 5.1.6. 0]

By virtue of (4.1.2) and Lemma 5.1.6, we have

(5.1.22)  Sprg/({£1} x Aut(g)) = { {gﬁ], [i(=Z1 + Z,,)],

where g = su(1,/). The following lemma means that the above Spr-element iZ. is
equivalent to i(—Z1 + Zj12-c).

2§61§la
2§02§l ’
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Lemma 5.1.7. In the above setting; there exists an involutive automorphism ¢ of
g = su(1,l) such that

¢(ZZI) = _izla
O(iZ:) =i(=Z1+ Zi1o-c) for 2<c <.

Proof. Define an involutive, linear isomorphism ¢’ of iy = spang{iZ,}'_, by
"iZy) := —iZ
(5123) { ¢(Z 1) 147,

Then, the complex linear extension ¢ of ¢’ to h satisfies

{ tQSgC(Oél):—(Oél—FOéQ—F"'—FOQ),

5.1.24
( ) tﬁb(c(ac) =qpa for2<e<li

because of «,(Z,) = 6,5. Therefore, the Dynkin diagram of {!¢{.(a,)},_; is

B }(
oo ...
B B B3 B
where (3, :='¢(a,) for 1 < a <. So, it follows that

t¢€C(A(ala 6)) = A(ala 6)
(cf. Lemma 1 in Murakami [Mu3, pp. 295]). Consequently, Proposition 2.3.2 enables
us to get an involutive automorphism ¢ of a; such that (i) ¢(g.) C gu, (i) ¢l;;, = ¢'
and (iii) ¢(Xta,) = Xitg(a.). Therefore, the rest of proof is to verify that the
involution ¢ is an automorphism of g = su(1,1), because of ¢[;; = ¢’ and (5.1.23).
Since ¢, is involutive and (5.1.20), and since ¢|;, = ¢’ and (5.1.23), we are able to
obtain
poby=exprmady ¢(iZ1) 0 ¢ =expmady(—iZy) o ¢ =040 ¢.

This, together with ¢(g,) C g., shows that the involution ¢ is an automorphism
of g = su(1,1) (see Proposition 2.2.3).2 Thus, we have proved Lemma 5.1.7. O

Lemma 5.1.7 and (5.1.22) imply that
(5.1.25) Sprg/({£1} x Aut(g)) = { [i(=21 + Zo)], [iZ1] |2<c <1},
where g = su(1,[). About the above Spr-elements, it is known that
(i(=Z1+ Z.)) =su(c— 1) @su(l,l+1—c)t,
¢(i7)) = su(l) & t'
(cf. Theorem 6.16 in [Bm]). From this, we deduce that for any 2 < ¢, <1,

(5.1.26)

i(—Z1 + Z.) is equivalent to i(—Z; + Z.) if and only if ¢ = ¢'.

This ¢ is an outer automorphism of su(1,1).
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Besides, it follows from ¢ <[ and (5.1.26) that
i(—Z1 + Z.) is not equivalent to iZ;.
For the reasons, Spr-elements of g = su(1,1) are classified as follows:
Sprg/({£1} x Aut(g)) = { [i(-Z1 + Z,)|, [iZ1] [2<c <1}

Lemma 3.1.1-(1) and -(2), together with (5.1.26), yields that (g, su(c—1)®su(1,l+
1—c)@t!) and (g, su(l) dt') are the pseudo-Hermitian symmetric Lie algebra by an
involution p; := expmadgi(—7; + Z.) and p, := exp wadg iZ;, respectively. Hence,
we conclude the following:

Proposition 5.1.8. Under our equivalence relation, Spr-elements of Alll: g =
su(7,l+1—7), j =1, are classified as follows:

Spre/({£1} x Aut(g)) = { [i(-Z1 + Z.)], [iZ:] |2 <c<I}.
Besides, (1) (g,su(c—1)@su(l,l+1—c)®t') and (2) (g,su(l) ®t') are the pseudo-
Hermitian symmetric Lie algebra by an involution py = expmadgi(—2Z1 + Z.) and
p2 = expradgiZy, respectively. Here, {Z,}._, is the dual basis of Tpw, ) =
{aa}oms-
5.1.5. Case AIIT su(j,l+1—j): 2 < j <Il—1. In this paragraph, we achieve the
classification of Spr-elements of su(j,/ 4+ 1 — j) (see Proposition 5.1.12).

Let us give an involutive automorphism 65 of g, such that su(j,l + 1 — j) is

related to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of 5. Define
an inner automorphism 65 of a; = sl(l + 1, C) by
(5.1.27) 05 := exp mad,, i7;.
Since iZ; € g, and 05]; = id, it satisfies the conditions in Paragraph 2.3.2; (c1)
05(8u) C Bu, (c2) O5(h) C b and (c3) *O5(ITp(y, 5) = Ma(q, 5 Furthermore, Mu-
rakami’s result [Mu3, pp. 297, type AIII] implies that the automorphism 05 is
involutive, {—iaf}};ll U{—iaz},_;,, is the simple root system ITA (¢, ifg)- 1ts Dynkin
diagram is

t=su(j)dsu(l+1—j) @ th ol Lol bl
—10 —ij_1  —i04q —10y

and su(j,l + 1 — 7) is the real form (2.2.3) g = €@ ip of a; = sl(l + 1,C), where
t:={K €g,|0;(K)=K} and p:={P € g,|05(P) = —P}. Notice that £ is the
direct sum of two simple ideals &, €& and the center €, = t';
E=t 06 DL,

where ¢ and € denote su(j) and su(l + 1 — j) respectively. Now, we assume
{—iaf}};ll (resp.~{—iag}lg:j+1) to be the set of simple roots inNA(EI,{?I N ibgr)
(resp. A(EQLEQ Nibr)). Then, the highest root —ip; in A(8y, € Nibr) and —iuy in
A\(by, 83 N ibR) are as follows:

—Zﬂg = —i(aj+1 + Oéj_|_2 + -t al).
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Let us prove Lemma 5.1.9.

Lemma 5.1.9. With the assumptions and notation in Paragraph 5.1.5; an element
T € 25 is an Spr-element of g = su(j,l + 1 — j) if and only if it is one of the
following:

iZy, (Zy = Zj), iZjihs

i(=Z;+ Zjn), (Zy—Z;+ Zjvn), +iZ;,
where 1 < f < j—1and1 < h <1[—j. Here 20} is the positive Weyl chamber
with respect to TLx g 5y = {—iaf}j;ll U{—iag}l_ji1;

- ZOq(T) 2 0, e ,—z'aj_l(T) Z 0,
>0(

P={Tcib
2, { © — i (T) >0, -+, —iay(T)

Proof. Since ihg = spang{iZ,}._,, any element T' € 207 can be written as follows:
T:i()\l'Zl+)\2'ZQ+"'+)\l'Zl), A €ER

Suppose that an element T = 22:1 Ao+ 1Z, € 207 is an Spr-element of g. Then,
Lemma 4.2.1, together with (5.1.28) and a,(Z,) = 45, means that one of the
following four cases only occurs:

(a’—l) T = Z(Zf + )‘j . Zj); (a’—2) T = Z()\] : Zj + Zj+h);
(a’—3) T = Z(Zf + )‘j . Zj + Zj+h); (a’—4) T = Z)\] . Zj,

where 1 < f < j—1and 1 < h <[ —j. Here, —iy(iZ;) = 0 for any root
—iv € A(t,ibg), because ay(Zy) = 64y and A e it) = {—iaf}i;ll U {—iay} i1
Therefore, if an element T € 207 is an Spr-element of g = su(j,l + 1 — j), then
it is one of the elements in (5.1.29). Let us determine the value of A; in (5.1.29).
By Lemma 4.1.1, the Spr-element T" € 207 must satisfy (7)) = =+i for each root
B € Alag, )\ Ar(ay, ). Hence, \; = 0 or —1 in two Cases (a’-1) and (a’-2), \; = —1
in Case (a’-3), and \; = +1 in Case (a'-4) because ay(Zy) = 6,5 and A*(a;, h) =
{> p<qer @11 < p <71 <1+ 1} (ref. Bourbaki [Br, pp. 265]). Accordingly, if an
element T € 207 is an Spr-element of g = su(j,l + 1 — j), then it is one of the
following:

(5.1.29)

(a-1) iZy, i(Zy — Z5);  (a-2) iZjn, ((=Zj + Zjyn);

(a—3) Z(Zf - Zj + Zj+h); (a—4) + ZZ]

Conversely, if an element 7" is one of the elements in (5.1.30), then 207 > T" # 0
and [(T") = +i for every root 8 € A(a;,h) \ Ar(a;, b); and hence the element T”

is an Spr-element of g = su(j,l + 1 — j) (ref. Lemma 4.1.1). Accordingly, Lemma
5.1.9 has been shown. 0

(5.1.30)

By (4.1.2) and Lemma 5.1.9, we perceive that
(5.1.31) Sprg/({£1} x Aut(g))

[Z:Zfl]7 [i(Zf2_Zj)]7 1§fp§j_1.a
= [Z.Zj-i-hl ]v [Z(_Zj + Zj-l-h?)]v 1< hp <l=J ¢,
[Z(Zf3_Zj+Zj+h3)]a [ZZ]'] I1<p<3
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where g = su(j,l +1 — j). From now on, let us demonstrate that the above
Spr-element iZ;, iZ;,y, and i(Z; — Z; + Zj4) are equivalent to i(Z;_; — Z;),
i(=Z; + Ziy1-p) and i(Z;_y — Zj + Zj41_p), respectively.
Lemma 5.1.10. In the setting on Paragraph 5.1.5; there exists an involutive au-
tomorphism ¢ of g = su(j,l + 1 — j) satisfying

(iZ;) = —iZ;,

¢(iZj+h) = i(—Zj + Zl-l—l—h) fO’f‘ 1 S h S [ — j
Here {Z,}. _| is the dual basis of DA (e, = {ag} .

l

w—1, one can define an involutive, linear isomorphism

Proof. Since ibg = spang{iZ,}
' of ibr as follows:

@bI(ZZf) = i(Zj_f — Z]) for 1 S f S j — 1,
(5.1.32) W(iZ;) = —iZ;,

wl(iZj+h) = i(—Zj + Zl+17h) for 1 S h S [ — ]

Then, it is immediate from «,(Z,) = 0, that

“Welap) =ajp  for 1< f<j—1,
(5.1.33) tq/)(’c(aj) =—(g+as+-+q),
e (en) = qugion for1<h<1-—y,

where 1. denotes the complex linear extension of ¢’ to f. Hence, the Dynkin
diagram of {4} ()} _, is as follows:

Bj

- —0 o—---

B B By Bit1
where 3, := " (a,) for 1 < a < 1. Therefore, it follows that

twtl(l(A(ala 6)) = A(ala 6)
because the Dynkin diagram of {‘4(c)}._, is the same as that of Dna,p) =

{ag}t_, (ref. Murakami [Mu3, Lemma 1, pp. 295]). Consequently, Proposition
2.3.2 enables us to obtain an involutive automorphism ¢ of a; = sl(l + 1, C) such
that (i) ¥(gu) C gu, (ii) w|i,~]R =1’ and (iii) ¥(X4a,) = Xity(a.). This involution
¢ is an automorphism of g = su(j,/ +1— j). Indeed, since ¢|;; = 9" and (5.1.32),
and since f5 is involutive and (5.1.27), we have

obs =1 oexprady iZ; =expmady Y(iZ;) 0p =05 0.

Therefore, Proposition 2.2.3 means that ¢ is an automorphism of g.> So, Lemma
5.1.10 comes from t|;; =" and (5.1.32). O

3This ¢ is an outer automorphism of su(j,l+1—7).
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Lemma 5.1.10 and (5.1.31) state that

(5.1.34) Spry/({£1} x Aut(g))

[i(Zfl_Zj)]a [i(_Zj+Zj+h1)]a 1§f1§]—1,1§h1§l—],
= [i(Zf2 - Zj + Zj+h2)]a 1< f2 < [(j - 2)/2] +1, )
[iZ;] 1<hy<l—j

where g = su(j,/ + 1 — j). Now, we are going to investigate whether the above
Spr-elements are mutually equivalent or not.

Lemma 5.1.11. In the above setting; two Spr-elements T = i(Z; — Z; + Z; 1)
and T' = i((Zp — Zj + Zj1w) of g are equivalent to each other if and only if the
following Case (i) or (ii) holds:

(i) f=f and h=1.

(i) f=h',h=f andl+1=2j.
Here, L< f,f'<[(j=2)/2]+Land L < h,h' <[(l—j—1)/2] +1.

Proof. Theorem 6.16 in [Bm] implies that
(5135) Cg(i(Zf — Zj + Zj+h)) = su(f, h) EBsu(j — f, [+1 —j — h) @ tl.

Suppose that the Spr-element T' = i(Z; — Z; + Z;},) is equivalent to T" = i(Zy —
Z;+ Zjyp). Then, it is immediate from (5.1.35) that

su(f,h)@su(j— f,l+1—7—h)=su(f,h)YDsu(j — f,l+1—7j—h).
Therefore, the following Case (1) or (2) occurs:
(1) 5u(f7h) :5u(flah,) and SU(]—f,l—Fl—]—h) :5u(j_flal+1_]_h’l)
(2) 5u(f7h) :5u(j_flal+1_j_h’l) and 5u(j_fal+1 _]_h) :5u(f,7h’l)'
This shows that the following Case (i), (ii), (iii) or (iv) holds:

(i) f=fand h="H.

(i) f=h,h=fand [+ 1=2j.

(ii) f=j—fandh=14+1—j—h

(iv) f=l+1—j—h , h=j—f and [ +1=2j.

The above two Cases (iii) and (iv) are contained in Case (i), because 1 < f, f' <
[(j—2)/2]+1and 1 < h,h <[(l—j—1)/2]+ 1. Hence, each of the Cases (i) and
(ii) holds when T'=i(Z; — Z; + Z;43) is equivalent to T" = i(Zp — Z; + Zj1p).

From now on, we will suppose that each of the Cases (i) and (ii) holds, and
we will demonstrate that in each case, the Spr-element T' = i(Zy — Z; + Z;44) is
equivalent to T = Z(Zf/ — Zj + Zj—l—h’)'

Case (i) f = f' and h = h': Suppose that Case (i) holds. Then, it is clear that
Z(Zf - Zj + Zj+h) = i(Zf/ — Zj + Zj—l—h’); and hence T = Z(Zf - Zj + Zj+h) is
equivalent to T = i(Zy — Z; + Zj1w).

Case (ii) f = A/, h = f" and [ + 1 = 2j: Suppose that Case (ii) holds. Let
us show that there exists an automorphism ¢ of g = su(j,l + 1 — j) = su(j, j)

satisfying ¢(T) = T". Since ibr = spang{iZ,}.', one can define an involutive
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linear isomorphism ¢' of ihr by
O'(iZs) =i(—Z;+ Zjs) for 1 <s < j—1,
(5.1.36) §(i7;) = —iZ;,
W (iZj4e) =i(Zy — Zj) for 1 <t <j—1.
Then, it follows from «,(Z,) = d,, that

bp(as) = ajpgs for 1 < s < j—1,
(5137) t¢c(a]) = (a1 +op+ -+ agj,l),
td)(c( ) = tforlgtéj—l,

where ¢, denotes the complex linear extension of ¢’ to h. The Dynkin diagram of
{*¢t(0a) 1225 s as follows:

Bi
.. _O O_ ..
B+ Baj-1 b Bj-1
where (3, :='¢(c,) for each 1 < a < 2j — 1. This yields that
td’(c (A(a2j—17 6)) = A(Ul2j—1, 6)
because the Dynkin diagram of {!¢(c,)}>"," is the same as that of My 5) =

{0} (cf. Lemma 1 in Murakami [Mu3, pp. 295]). Consequently, Proposition
2.3.2 assures that there exists an involutive automorphism ¢ of as;_; = sl(2j, C)
which satisfies ¢(gu) C gu, @15, = ¢ and ¢(Xia,) = Xitg(a,). We want to confirm
that the involution ¢ is an automorphism of g. It follows from ¢|an = ¢’ and
(5.1.36) that ¢(iZ;) = —iZ;. Therefore, we obtain

pobs =poexpmads, ,iZ; =exprads,,  ¢(iZ;)0op="0500

because 65 is involutive and (5.1.27). Thus, Proposition 2.2.3 means that ¢ is
an automorphism of g = su(j, j).* Since ¢|;; = ¢' and (5.1.36), the supposition
“f=n,h=f and [+ 1 = 25" implies that

O(i(Zs — Zj+ Zjn)) = i(Zjrp — Zj + Zn) = i(Zjow — Zj + Zyr).

Consequently, if f = h', h = f' and [ +1 = 2j, then the Spr-element T' =
i(Zy — Zj+ Zj1p) is equivalent to T" = i(Zp — Z; + Zj4p) via ¢. For the reasons,
we have completed the proof of Lemma 5.1.11. O

Let us continue to investigate whether the Spr-elements in (5.1.34) are mutually
equivalent or not. It is known that

ce(i(Zy — Zj)) = su(j — f) @ su(f) ®su(l + 1~ f) ® ¢,
ce(i(=Z; + Zjin)) = su(h) @ su(j) ®su(l +1—j —h) @ ¢,
ce(i(Zf — Zj + Zjin)) = sul(f) @ su(j — ) @ su(h) @ su(l+1—j—h) o ¥,

4This ¢ is an outer automorphism of su(j, 7).
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«(iZ;) =su(j)@su(l +1—-j) @t

(see Theorem 6.16 in [Bm]). Comparing the centers of the above centralizers, we are
able to confirm that forany 1 < f; <j—1,1<h; <Il—75,1< fo<[(j—2)/2]+1
and 1< hy <[ —j

both i(Z;, — Z;) and i(—Z; + Z;44,) are
(5.1.38) not equivalent to i(Zy, — Z; + Zj1p,) and iZ;;

i(Zy, — Zj + Zj1p,) is not equivalent to 1Z;.

It is also known that
¢(i(Zs — 7)) =su(j — f) @su(l +1 -3, f) @ t',
¢(i(=Zj + Zj1n)) = su(h) @ su(l+1—j —h,j) @t

(see Theorem 6.16 in [Bm] again). Hence, for 1 < f, f' < j—1land 1 < h,h' <1—j,
one deduces that

(5.130) 1 (1= Z) s cquivalent to i(Zy — Z) if and only if f = f',
1. i(—Z; + Zj1p) is equivalent to i(—Z; + Z;4p) if and only if h = A/

and that
i(Z; — Z;) is not equivalent to i(—Z; + Z;1p),

1.4
(5.1.40) except for the case where j — f = h and 25 =1+ 1.

Let us verify that the Spr-element i(Z; — Z;) is equivalent to i(—Z; + Z;_y) in
case of “l +1 = 2j5,” where 1 < f < j—1. In order to do so, we will show that the
involution A3 of as;_; = s[(27, C) is an automorphism of g = su(j, I+1—75) = su(j, 5),
where 03 was constructed in Paragraph 5.1.2. Since 0s; = 05 and (5.1.6), one
obtains 03(iZ,) = iZsj_, for any 1 < a < 2j — 1; and hence 65(iZ;) = iZ;.
Therefore, it comes from (5.1.27) that

93 0] 05 = 03 e} eXpﬂ'a‘dan71 ZZJ = exXpm adu2j71 93(223) 0] 03 = 05 e} 93.

In Paragraph 5.1.2, it is shown that 63(g,) C g,. Consequently, Proposition 2.2.3
allows us to see that the involution 3 of as; 1 is an automorphism of g = su(j, 5).”
It is natural that 05(i(Z; — Z;)) = i(Zy;_y — Z;), so that in case of [ + 1 = 27, the
Spr-element i(Z; — Z;) is equivalent to i(Zyj_; — Z;) via #3. For the reasons, one
concludes that
i(Zy — Z;) is equivalent to i(—Z; + Zj1p)

in the case where j — f = h and 25 =1+ 1.

By use of (5.1.34) and (5.1.38)—(5.1.41), we will prove Proposition 5.1.12.

(5.1.41)

Proposition 5.1.12. Under our equivalence relation, Spr-elements of AIll: g =
su(j,l+1—7),2<j<I1-1, are classified as follows:

Sprg/({£1} x Aut(g))

SThis f3 becomes an outer automorphism of su(7, j).
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( %iEZfl—Zj)],)] 1< fi<j—1,
i(—Z; 4+ Zin,) ], 1<h <Il—j . .
[i(Z), -2, + Zyon) ], | 1< fo< [G 22 +1,  H1H1#20
[i{(Z, — Z))], 1< fi<j—1,
[i(Zg, = Zi+ Zi) | | 1< o <[ - 2)/2+ 1, 5 ifl+1=2j.
L L [i45] fo<hy<j—fo

Besides, (1) (g,su(j—f)@su(l+1—j, f)ot), (2) (g, su(h)@su(l+1—j—h, j)&t'),
(3) (g,su(f,h)®su(j—f,l+1—j—h)®t") and (4) (g,su(j) Dsu(l+1—j)dt") are
the pseudo-Hermitian symmetric Lie algebra by an involution p; = expmadgi(Z—
Z;), po = expradgi(—Z; + Zjp), ps = expradgi(Z; — Z; + Zjip) and py =
exp 7 adg iZ;, respectively. Here, {Z,}._, is the dual basis of DA (e, = {ag} ;.

Proof. By (5.1.34), (5.1.38)—(5.1.41) and Lemma 5.1.11, we conclude the first half
of statements on this proposition. Thus, we are going to show the latter half of
the statements. Since i(Z; — Z;) is an Spr-element of g = su(j,l +1 — j), Lemma
3.1.1-(1) and -(2) assure that (g, ¢g(i(Zf—Z;))) is the pseudo-Hermitian symmetric
Lie algebra by an involution p; := expmadgi(Z; — Z;). In addition, it is known
that cg(i(Z; — Z;)) = su(j — f) @ su(l+1—j, f) @ t' (ref. [Bm, Theorem 6.16]).
Therefore, it follows that (g, su(j — f)@su(l+1—7, f)®t) is the pseudo-Hermitian
symmetric Lie algebra by p; = expmadyi(Z; — Z;). By arguments similar to those
mentioned above, we confirm that (2) (g,su(h) ® su(l +1— 5 — h,j) & t'), (3)
(g, 5u(f, h)@su(j— f,1+1—j—h) &) and (4) (g, su(j) Ssu(l+1—j) &t are the
pseudo-Hermitian symmetric Lie algebra by an involution p, := expmadgi(—Z2; +

Zjsn), ps = exprmadgi(Z; — Z; + Zj4p) and py := expmadgiZ;, respectively.

Consequently, Proposition 5.1.12 has been proved. O
Collecting the results obtained in Subsection 5.1, we get the following:
Table 1.
Al
1 g sl(2k+1,R): k>1
Spre/({£1} x Aut(g)) None
2 g sl(2k,R): k> 2
Spre/({+1} X Aut(g)) [iZ);]
¢y(1Z) sl(k,C) @ t!
ATl
3 g su*(2k): k> 2
Spre/({+1} X Aut(g)) [iZ);]
¢y(1Z) sl(k,C) @ t!
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ATIT
4-1 g su(j,l+1—4):1>1,j=1
Spro/({£1} x Aut(e)) | [i(=Z + Z)], [i%4] 5 <b<1—j
¢g(i(=Z; + Zj1s)) su(b) ®su(l+1—75—0,7) dt
¢g(iZ;) su(j)dsu(l+1—j) ot
4-2 g su(j,l+1—j):1>3,2<j<l-1

Spro/({£1} x Aut(g)) | [i(Za — Z;) |, [i((—=Z; + Zjs) ],

[i(Ze — Zj + Zj1a) ], [i2;],
1<a<j—-1,1<b<1—y,
1<e<[(j—2)/2]+1,

1<d<Il—y:
i1+ 12
[i(Za = Z3) ], [i(Ze = Z; + Zj1a) ], [175],
1 S a S ] - ]-7
1<e<[(j—2)/2]+1,
c<d<j—c
i1 =2j
¢s(1(Zs — Z;)) su(j —a) ®su(l+1—ja)dt
¢o(i(—Z; + Zj1s)) su(b) @su(l+1—75—0b,7) ot
Cg(i(ZC — Zj + Z]’+d)) 5u(c, d) ) su(j —C, [ + 1 —j — d) D tl
¢s(¢Z;) su(j)dsu(l+1—j ot

5.2. Type B; (I > 2). In this subsection, we aim to classify Spr-elements of each
real form of the complex simple Lie algebra b; = s0(2/+1, C). First, let us introduce
our setting. Let h be a Cartan subalgebra of b;, and let A(by, 6) be the set of non-
zero roots of b; with respect to §. We fix a linear order in A(by, b), and assume
that the Dynkin diagram of T, 5 = {4}, is as follows:

bl:01—02—---—02$02
a1 Qg Q1 O

(ref. Bourbaki [Br, pp. 267, Plate II}). Then, we denote by g, the compact real form
of b; which is given by A(by, ) and (2.3.1), and we denote by {Z,}._, (Z, € b) the
dual basis of I, 5y = {a,}t_,. In the above setting, we will classify Spr-elements
of each real form of b, = s0(2] + 1, C).

Notation 5.2.1. In Subsection 5.2, we utilize the following notation:

e b, =s0(20+1,C).
* HA(bz,ﬁ) = {aa 2:1- Q1 Qo Q-1 o
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e g,: the compact real form of b; given by A(b;, ) and (2.3.1).
o {Z,}},—y: the dual basis of I, , ) = {aa}l—:-

5.2.1. Case BI s0(24,2l —2j + 1) : j = 1. Our aim in this paragraph is to classify
Spr-elements of so(2,2] — 1) (see Proposition 5.2.3).

Let us define an involutive automorphism 6, of g, such that so(2,2/—1) is related
to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of ;. Define an inner
automorphism 6; of b, = so(2[ + 1,C) by

(5.2.1) 6, :=expmady, i2;.
Then, it follows from iZ; € g, and 6;[; = id that (c1) 61(g.) C gu, (c2) 61(h) C b,
and (¢3) 01 (154, 5)) = a5y Murakami’s result [Mu3, pp. 297, type BI] enables

us to see that the automorphism 6, is involutive, the simple root system of £ is
{—ia.}!_,, the Dynkin diagram of A e, i) = {—ia.}l_, is

tE=s02l - 1)t x 01—02——0502
—irg —ivg  —ia_q —loy

(cf. Remark 2.3.3), and s0(2,2] — 1) is the real form (2.2.3) g = €® ip of b;, where
t:={K € g,]|0(K) = K} and p := {P € g,|0.(P) = —P}. In addition, the
highest root —ip € A(8,ibg) is

(522) —i/L = —i(OZQ + 26!3 + 20[4 + -+ 20[1).

From now on, we will verify the following:

Lemma 5.2.2. In the above setting; an element T € 2} is an Spr-element of
g =50(2,2l — 1) if and only if it is one of the following:

i(—Z1 + Zy), +i7,.
Here, 20; is the positive Weyl chamber with respect to HA(?,iﬁR) = {—ia.} _;
W = {T € ibg | —iaa(T) >0, —iaz(T) >0, , —iay(T) > 0}.
Proof. Since ibg = spang{iZ,}._,, we can describe an element T' € 20} as
T=iM-Zi+Xo-Zo+--+XN-2Z), MNER
Suppose that an element T = Zl o - 17, € 2} is an Spr-element of g =

a=1""a

$0(2,20 — 1). Then, Lemma 4.2.3 implies that one of the following two cases only
occurs:

(523) (Cl—l) T = Z()\l . Zl + ZQ), (C,—2) T = Z)\l . Zl,

since g (Zy) = 04 and (5.2.2). Here, —iv(iZ;) = 0 for every root —iy € A(t,ihg)
because of ag(Z;) = dap and I g 5.0 = {—ia.}!_,. Accordingly, either Case (c’-1)
or (¢’-2) occurs when T' € 20; is an Spr-element of g. Let us determine the value
of A\; in (5.2.3). Lemma 4.1.1 means that the Spr-element 7" € 2J; must satisfy
B(T) = =i for any root 3 € A(by, h) \ Ar(by, h). Therefore, we conclude that
A1 = —1 in Case (¢/-1), and \; = £1 in Case (c¢/-2), because a,(Z,) = 0, and

AT (b, b) is as follows:
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(5.2.4) A*(by, )

:{Zap,zaq,zaq+2za, 1§a§l,1§b<c§l}

a<p<l b<g<c b<g<c c<r<l
(see Plate II in Bourbaki [Br, pp. 267]). Thus, the Spr-element T' € 20; is one of
the following:
(5.2.5) (1) (=2, + Z),  (c-2) +iZ;.

Conversely, if an element 7" is one of the elements in (5.2.5), then it follows that
T' # 0 and B(T") = =i for any root 5 € A(by, h) \ Ag(by,h); and therefore the
element 7" is an Spr-element of g = s0(2,2/—1) (cf. Lemma 4.1.1). For the reasons,
we have verified Lemma 5.2.2. U

Now, we will prove Proposition 5.2.3.

Proposition 5.2.3. Under our equivalence relation, Spr-elements of Bl: g =
50(27,2l — 2j + 1), j = 1, are classified as follows:

Sprg/({£1} x Aut(g)) = { [i(=Z1 + Z2)], [iZ1] }.
Besides, (1) (g,50(2,2[—3)®t') and (2) (g,50(201—1)Dt") are the pseudo-Hermitian
symmetric Lie algebra by an involution p; = expmadgi(—2Zy + Z3) and py =
expmadgy 17y, respectively. Here, {Z,}! | is the dual basis of A e,5) = {ag} ;.

Proof. By (4.1.2) and Lemma 5.2.2, we comprehend

Spre/({£1} x Aut(g)) = { [i(=Z1 + 22)], [iZ1] }-

Lemma 3.1.1-(1) and -(2) imply that the pair (g, ¢y(i(—Z; + Z2))) and (g, ¢g(i2Z1))
are the pseudo-Hermitian symmetric Lie algebra by an involution p; :=
expmadgi(—Z; + Z) and py 1= expmadyiZ;, respectively. By Theorem 6.16 in
[Bm], we see that

(5.2.6) (i(=Z1+ 7)) = 50(2,2l = 3) & t', ¢4(i7)) =502 — 1) B t.

This (5.2.6) shows that (g,s0(2,20 — 3) @ t') and (g,s0(20 — 1) & t') are the
pseudo-Hermitian symmetric Lie algebra by py = expmadgi(—Z; + Z;) and
p2 = expmadgiZ;, respectively. Besides, this (5.2.6) also shows that the Spr-
elements i(—Z; + Z5) and iZ; can not be equivalent to each other. Consequently,
we have proved Proposition 5.2.3. 0

5.2.2. Case Bl s0(2j,2l —2j 4+ 1) : j = 2. This paragraph is devoted to classifying
Spr-elements of so(4, 2] — 3) (cf. Proposition 5.2.5).

First, we will give an involutive automorphism 6, of g, such that so(4,2] — 3) is
related to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of ;. Define
an inner automorphism 6, of b; by

(5.2.7) 0y := exp mady, i 25.

Then, it follows from iZ; € g, and 6,[; = id that (c1) 02(g.) C gu, (c2) O2(h) C
b and (c3) 02(TTp 5, 5)) = a5 that is, 6 satisfies the three conditions in
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Paragraph 2.3.2. By Murakami’s result [Mu3, pp. 297, type BI], one knows that
the automorphism 6, is involutive, {—ia;, —iv, —iay };_; is the simple root system
of ¢ := {K € g, |6:(K) = K} (ref. Remark 2.3.3) and the Dynkin diagram is as
follows:

¢ . —ivol 1 2 2 92

=su(2) ®su(2) Gso(20 —3): " 0 00— —0==0
—i 01 —tag —iay  —ioy_y —iq

Here, —iv denotes the lowest root i(ay + 23 , ) € A(gu,ibg) (ref. Remark
2.3.1). Besides, one also knows that so0(4, 2] — 3) is the real form (2.2.3) g = ¢® ip
of b, where p := {P € g, |02(P) = —P}. Now, ¢ is the direct sum of three simple
ideals € := su(2), & := su(2) and € := so(2l — 3), where €3 = {0} in case of
[ = 2. We assume that {—ia; }, {—iv} and {—ia,}L_, are the set of simple roots in
A8y, 8, NibR), Ak, t2Nibg) and A(Es, &3Nibg), respectively. Then for p = 1,2, 3,
the highest root —iju, € A(€,, €, Nibg) is as follows:

—ipy = —iay,
(5.2.8) —ipy = —iv,
—ipg = —i(az + 2a4 + 205 + - - - + 20¢y).

Denote by 202 a Weyl chamber with respect to A e i) = {—iay, —iv, —iog } _s;
W2 = {T € ibg| —iay(T) >0, —iv(T) > 0, —iag(T) >0,--- ,—icy(T) > 0}.
We will search this Weyl chamber for Spr-elements of g = so(4, 2l — 3). First, let
us describe the dual basis {T,}},_; of I, 5.y = {—icu, —iv, —iag}j_; in terms of
{Z,} _. Let T, be an element of ihg determined by —ia (To) = 01,0, —iv(Ty) = 02,4
and —iay(T,) = 0ko (3 < k <1). Then, since T, € ihg = spang{iZ,}._,, and since
o(Zy) = 6ap and —iv = i(ay + 23, a.), we obtain

Ty =i(Z, — %Zg),
(5.2.9) Ty, = —127,,

2

From now on, we are going to search the chamber 202 for Spr-elements of g.

Lemma 5.2.4. In the above setting; an element T € 20?7 is an Spr-element of
g = s0(4,20 — 3) if and only if it is either i(—Zy + Z3) or i(Zy — Zy) when | > 3,
and it is i(Z) — Zy) when | = 2.

Proof. In the first place, we consider the case of [ > 3. Suppose that an element
T € 2} is an Spr-element of g. By arguments similar to those on the proof of
Lemma 4.2.1, we comprehend that the element 7" satisfies one of the following seven
conditions:

(1) = ip(T) =1, —ipa(T) = 0, —ip3(T) = 0;
(2) —im(T) =0,—ips(T) =1, —ips(T) = 0;
(3) —im(T)=0 (7) (1) =1
(4) (T) =1 (T) (T) = 0;
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(5) — i (T) =1, —ipz(T) = 0, —ip3(T) = 1;
(6) —im(T) =1, —ipa(T) = 1, —ips(T) = 1;
(7) — i (T) = 0, —ipz(T) = 1, —ip3(T) = 1.

Hence, it follows from (5.2.8) that the element T' € 207 is one of the following seven
elements:

(1) Tla (2) T27 (3) T37
4) i+ Ty, (5) Th+Ts, (6) 1)+ Ty +1Ts,
(7) T + T,

where we note that {T,}!_, is the dual basis of A i) = {1001, —iv, —iog .
By use of (5.2.9), one can rewrite the above seven elements as follows:

(1) i(Z1 — 57%),  (2) — 52, (3) i(—=2Z2 + Z3),

(4) i(Z, — Zs), (5) i(Zy — 2Zy+ Z3), (6) i(Zy — 27>+ Zs),

(7) i(—%Zg + Z3).
Since T belongs to 207 and is an Spr-element, it must satisfy 3(7T) = +i for any

root 8 € A(by, h)\Ar(by, b) (cf. Lemma 4.1.1). Therefore, the Spr-element T' € 257
is one of the following two elements:

(3) i(—=Z2 + Z3), (4) i(Z — Z,)
because of a,(Zy) = dap and (5.2.4). Conversely, if an element 7" is one of the above
two elements, then it satisfies 3(T") = +i for each root 3 € A(b;, h) \ Ar (b, b);
and hence Lemma 4.1.1 means that the element 7" is an Spr-element of g. For the
reasons, we have got the conclusion in case of [ > 3.

In the second place, let us consider the case of [ = 2. In this case, £ is the
direct sum of two simple ideals £, = su(2) and €, = su(2), and one sees that
A8y ibr) = TIA @ 5, = {—fiou,i(1 + 202) }. Moreover, —iay (resp. i(a + 2a)) is
the highest root in A (&, € Nibg) (resp. A(ky, & Nibg)). Therefore, if an element

T € 202 is an Spr-element of g = s0(4, 1), then Lemma 4.2.2 implies that it is one
of the following:

(b-1) i(Zy — +75), (b-2) =+ 75, (b-3) i(Zy — Z)
because {1(Z1 —(1/2)Z5), —(i/2)- Z»} is the dual basis of I1 , ¢ ;5.) = {—iau, i(a1 +
2a2) }. So, the arguments stated above allow us to conclude that in case of [ = 2, an

element T' € 207 is an Spr-element of g if and only if it is i(Z; — Z3). Accordingly,
we have completed the proof of Lemma 5.2.4. O

Now, let us demonstrate Proposition 5.2.5.

Proposition 5.2.5. Under our equivalence relation, Spr-elements of Bl: g =
50(27,20l — 2j + 1), j =2, are classified as follows:
_ % = %)), [i(-Z2+ Z5)] } if 3 <1,
Sprg/({£1} x Aut(g)) = { {[i(Z = Z2)] } if2=1.
Besides, (1) (g,50(2,2 — 3) @ t') and (2) (g,50(4,2l — 5) ® t') are the pseudo-
Hermitian symmetric Lie algebra by an involution py = expmadyi(Z, — Z3) and
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Py = expﬂad%i(—Zg + Z3), respectively. Here, {Z,}._, is the dual basis of
a5y = {@ato=1-

Proof. Lemma 5.2.4 and (4.1.2) assure that

Sprg/({£1} x Aut(g)) = { % BE% B ZH’}M_ZQ +72)] } ig = ﬁf

Theorem 6.16 in [Bm| implies that
¢(i(Z1 — Z3)) = 50(2,20 — 3) & t',
c(i(=Zy + Z3)) = s0(4,2l — 5) @ t'.

This enables us to confirm that the Spr-element i(Z; — Z5) is not equivalent to
i(—Zy+ Z3), and that (g, s0(2,20—3) Dt') and (g, s0(4, 2] —5) B t') are the pseudo-
Hermitian symmetric Lie algebra by an involution p; := expmadgi(Z; — Z») and
p2 = exp madg i(—Zy+Z3), respectively (see Lemma 3.1.1). Therefore, Proposition
5.2.5 has been deduced. O

5.2.3. Case Bl s0(24,2l —2j + 1) : 3 < j <. In this paragraph, we assert Propo-
sition 5.2.7, which is the classification of Spr-elements of s0(27, 2] — 25 + 1) under
our equivalence relation.

First, let us define an involutive automorphism 65 of g, such that so(2j,2/—2j+1)
is related to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of #3. Define
an inner automorphism 63 of b; = s0(2l + 1, C) by

05 := exp mady, iZ;.

Then, we have (c1) 03(gu) C gu, (c2) 03(h) C b and (¢3) “O3(Ixe,.5) = Hae,.h)
because iZ; € g, and 03]; = id. The result of Murakami [Mu3, pp. 297, type BI|
implies that the automorphism 3 is involutive. Besides, his result also implies that
{—ia, Y U{—iv}U {—ia;}i_;., is the set of simple roots in A(E, ibg), its Dynkin
diagram is

t=s50(27) ®so(2l —2j+1):

v ol
w 2 2 1 1 2 2 2
1] Tl —l0j_o —lOG 1 10y~ 10 —10Y

and s0(2j, 2l —2j+1) is the real form of b, = s0(2/+1, C) given by (2.2.3) g = €¢®ip.
Here, we denote by —iv the lowest root i(a; +2 Y\, ) € A(gu, ibg) (ref. Remark
2.3.1), and we denote by € (resp. p) the +1 (resp. —1)-eigenspace of 63 in g,. Now,
t is the direct sum of two simple ideals & := s0(27) and & := s0(2/ —2j + 1), where
we note that €&, = {0} in case of j = [. Let us assume {—ia,}’_{ U {—iv} (resp.
{—ia,}{_;,,) to be the simple root system of & (resp. €;). Then, the highest root
—ipy € Ak, 8N if)R) and —ipy € A(f, 8N if)R) are as follows:

(5.2.10) { —ipn = —iar + 23] 5 + a1 +v),

. . l
—ipty = —i(ajp1 + 2 Zw:j-i—? ).
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Let 207 denote the positive Weyl chamber with respect to I, 5. = {—ia,})2 U
{—iv}u {_iat}wlt:jﬂ;

- iCYj+1(T) > 0, ey, —ZOQ(T) 2 0

Qng: {TGZF}R

— iy (T) > 0,- -+, —ia; (T) > 0, —iv(T) > o,}

Let us provide a necessary and sufficient condition for an element 7" € 20} to be an
Spr-element of g = s0(27,2[—2j+1). In order to do so, we are going to describe the
dual basis of IT 5 ;i) i.n terms of {Z,}!_,. Let {T,}._,, T, € ibg, be the dual basNis
of x e ipe) = {— i V2T U {—iv} U {—ia M _jy1—that is, T, is an element of ihg
which satisfies —ia(1,) = 54 (1 < s < j—1), —iv(Ty) = 0,4, and —icy (T, ) =040
(j+1 <t <1). Then, it follows from «,(Z,) = 6a,b and —iv = i(a; + 2 Zc:z a.)
that
T =i(Z) - 5Z),
Hfor2<u<j-—1,

<
I
=
|-§N
N

(5.2.11)

<
N
<

T,=i(—Z;+ Z;) for j+1 <t <.

Now, let us provide a necessary and sufficient condition for an element 7' € 203 to
be an Spr-element of g.

Lemma 5.2.6. With the above assumptions; an element T € 20% is an Spr-element
of g = 80(27,2l — 25 + 1) if and only if it is either i(Z;—y — Z;) or i(—Z; + Z;11)
when j <1 —1, and it is i(Z;_y — Z;) when j =1.
Proof. First, let us consider the case of j <[—1. Suppose that an element T' € 27}
is an Spr-element. Then, Lemma 4.2.2 and (5.2.10) mean that the Spr-element T
is one of the following:

(b’-1.1) 17, (b'-1.2) T}y, (b'-1.3) T3,

(b,_2) T’j+17

(b,—?).l) 11 + Tj_|_1, (b,—3.2) Tj_l + Tj+1, (bl—3.3) T' + Tj+1
because {T,}._, is the dual basis of A i) = 1— i MU {—iv} U {—iay}_ i1
By means of (5.2.11), we can rewrite the above description as follows:

(b-1.1) i(Z, — 5 Z;), (b-1.2) i(Z;_1 — Z;), (b-1.3) — £Z,
(b-2) i(=7Z; + ZJH)
(b-3.1) i(Z) — 27+ Zj11), (b-3.2) i(Zj1 — 2Z; + Zj 1),

(b-3.3) (=5 Z; o ZJ+1)

Any Spr-element T € 0% must satisfy B(T) = =i for each root B € A(by, )\
Ar(b, ) (cf. Lemma 4.1.1). Consequently, since a,(Z,) = 6, and (5.2.4), we
deduce that the Spr-element T € 20} is either (b-1.2) i(Z;_; — Z;) or (b-2) i(—Z; +
Z;+1). Conversely, suppose that an element 7" is either i(Z;_y — Z;) or i(—Z; +
Zj+1). Then, it follows from «,(Z,) = 4 and (5.2.4) that 5(7”) = +i for all roots
B € A(b,b) \ Ag(by,h). Hence, Lemma 4.1.1 assures that the element 77 is an
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Spr-element of g = s0(27,2] — 2j + 1). Therefore, we have completed the proof of
Lemma 5.2.6 in case of j <[ — 1.

From now on, let us consider the case of j = [. In this case, it follows that
by = s0(20 — 25 + 1) = {0}, so that € = ¢ = s0(2[) is a simple Lie algebra and the
highest root —ip € A(E, ibg) is as follows: —ip = —i(ay + 235 + g 1 + V).
So, Lemma 4.2.4 implies that if an element 7" € 20? is an Spr-element, then it
satisfies one of the following three conditions:

1) —ioq (T) =1, —iay(T) =0for 2<d <[l -1, and —iv(T) = 0;
2) —ia.(T)=0for1 <e<l—2, —iay 1(T) =1, and —iv(T) = 0;
3) —tap(T)=0for 1 < f <l—1,and —iv(T) =1,

and therefore, it follows from «,(Z,) = 0,4 and —iv = i(a; + 2 ZizZ a.) that the
element T is equal to i(Z, — (1/2) - Z)), i(Z,—y — Z;) or —(i/2) - Z,. By arguments
stated first, we conclude that in case of j = [, an element T' € 203 is an Spr-element
of g if and only if it is i(Z;_; — Z;). For the reasons, we have got the conclusion. [

By use of Lemma 5.2.6, we will demonstrate Proposition 5.2.7.

Proposition 5.2.7. Under our equivalence relation, Spr-elements of Bl: g =
$0(27,2l — 25 + 1), 3 < j <, are classified as follows:

(Zjo = Zy)), [i(=Z;+ Zj0)] } ifj<i-1

S +1) % Aut _ {[Z(]l i) b J J+ I )
(1) < auie) = { HZ = 20 A
Besides, (1) (g,50(2j —2,21—2j+1)®t") and (2) (g,50(25,20—2j —1)Dt') are the
pseudo-Hermitian symmetric Lie algebra by an involution py = expmady i(Z;_1 —
Z;) and py = expmadgi(—Z; + Z;11), respectively. Here, {Z,}._, is the dual basis
of a5 = {aa}oes-

Proof. By (4.1.2) and Lemma 5.2.6, one confirms that

(Z;ia—2Z)), [i(-Z;+Z;51)] } ifj<l-1
Spry/({£1} x Aut(g)) = | tLilZi—=Z)], A =0T
prof((21) < auie) = { D= Db e
Lemma 3.1.1-(1) and -(2) allow us to see that the pair (g, ¢g(¢(Z;—1 — Z;))) and
(9,¢5(i(—Z;+ Z;11))) are the pseudo-Hermitian symmetric Lie algebra by an invo-
lution p; :=expmadyi(Z;_1 — Z;) and py := expmadgi(—Z; + Z;41), respectively.
Moreover, Theorem 6.16 in [Bm| implies that

¢(i(Z; 1 — Z;)) =s0(2) — 2,2l — 25 + 1) @ t',

¢o(i(—Z; + Zj1)) = 50(2,20 = 2j — 1) @ t".

Therefore, (g,50(2j — 2,21 — 25 + 1) & t') and (g,50(25,2 — 25 — 1) & t') are
the pseudo-Hermitian symmetric Lie algebra by p; = expmadyi(Z;—1 — Z;) and
p2 = expmadyi(—Z; + Zj41), respectively. From (5.2.12), it is natural that the

Spr-elements i(Z;_y — Z;) and i(—Z; + Z;;1) are not equivalent to each other.
Consequently, we have proved Proposition 5.2.7. 0

(5.2.12)
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The results obtained in Subsection 5.2 are as follows (see three Propositions
5.2.3, 5.2.5 and 5.2.7):

Table I1.
BI
5 g 60(2,20 —2j +1): [>2,1<j<I
Sprg/({£1} x Aut(g)) [i(Zj-1 = Z;)], [i(=Z; + Zj141) ]

where Zy =0: if 1 <57 <[ -1
[i(Zj—1— Z))): ifj =1
¢o(i(Z;_1 — Z;)) 50(2j — 2,21 — 2j + 1) @ t!
¢g(i(—Z; + Zj41)) 50(27,20 —2j — 1) d t!

5.3. Type C; (I > 3). This subsection is devoted to classifying Spr-elements of
each real form of~the complex simple Lie algebra ¢; = sp(l,C). Let us introduce
our setting. Let h be a Cartan subalgebra of ¢;, let {a,}._, be the set of simple

roots in A(c;, h) whose Dynkin diagram is as follows:

o Qg a1 o
(ref. Plate III in Bourbaki [Br, pp. 269]), and let g, be the compact real form of
¢; given by A(c;, b) and (2.3.1). We denote by {Z,}._, (Z, € b) the dual basis of
Ty = {a,}t_,. In the setting, let us classify Spr-elements of each real form of
¢, = sp(l, C) under our equivalence relation.

Notation 5.3.1. In Subsection 5.3, we utilize the following notation:

e ¢, =sp(l,C).
* HA(Q,G) - {%}Zzl- Q1 Qp Q1

e g,: the compact real form of ¢; given by A(c;, h) and (2.3.1).
o {Z,}h—y: the dual basis of I, 7 = {@a}h

5.3.1. Case CI sp(l,R). In this paragraph, we will classify Spr-elements of
sp(l, R)—that is, we will assert Proposition 5.3.4.

First, let us define an involutive automorphism 6, of g, such that sp(l,R) is
related to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of ;. We
define an inner automorphism 6, of ¢, = sp(l, C) by

(5.3.1) 6, :=expmad,, iZ.

Then, it follows from iZ; € g, and 0, [; = id that it satisfies (c1) 01(gu) C gu, (c2)
6.(h) C b and (c3) 01(ITx (,5)) = M a(q,5)- It is known that the automorphism 6,
of ¢, is involutive (cf. Murakami [Mu3, pp. 297, type CI]). In addition, it is also
known that {—iag}Z} is the set of simple roots in A(€,ihg), the Dynkin diagram

of T i) = {—i0tatqy is
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Ezsu(l)eatl:ol—ol—---—ol X

—l0; —1Q —1l0y_q
and sp(l,R) is the real form (2.2.3) g = €@ ip of ¢; (see Murakami [Mu3, pp. 297,
type CI] again). Here, & := {K € g, [01(K) = K} and p :={P € g, |01(P) = —P}.
Remark that the highest root —ip € A(¥,ibhg) is as follows:
(5.3.2) —ip=—i(lag +as+ -+ o).

Next, we will verify the following:

Lemma 5.3.2. In the above setting; an element T € 2} is an Spr-element of
g = sp(l,R) if and only if it is one of the following:

i(Zg— 7)) for 1 <d<Il-1, +i7;.

Here, 20; is the positive Weyl chamber with respect to HA(?,iﬁR) = {—iad}fi;ll;

W ={T € ibg| —ioy(T) >0, —ic(T) > 0,--- , —icy_1(T) > 0}.
Proof. Any element T' € 20} can be written as follows:

T=iM-Zv+Xo-Zo+---+N-2Z1), M€ER
because ihg = spang{iZ,}._,. Suppose that an element T =S _ \,-iZ, € 2} is
an Spr-element. Since a,(Z,) = 0,5 and A e, ibm) = {—iad}fi;ll, we perceive that
—iv(iZ;) = 0 for any root —iy € A(€,ihg). Therefore, the supposition and Lemma
4.2.3 enable us to deduce that one of the following two cases only occurs:
(V)T =iZg+N-2Z)for1 <d<Il—-1, (-2)T =i\ -2

because (5.3.2) and a,(Z)) = 0,p. Let us determine the value of ); in each of the

Cases (c’-1) and (¢’-2). The positive root system At (¢, b) is

(5.3.3) At(c, D)

:{ Z ay, Z afp +2 Z g + ay, 2 Z ap + o 1§b<c§l,1§a§l}
b<f<c b<f<c c<g<l a<h<l

(cf. Bourbaki [Br, pp. 269, Plate 1I1]°). Any Spr-element T € 20} has to satisfy
B(T) = i for every root 3 € A(c;, b) \ Ar(e, b) (see Lemma 4.1.1). Therefore, it
follows from (5.3.3) that A\, = —1 in Case (¢-1), and \; = +1 in Case (¢/-2). For
the reasons, we conclude that an element T € 20; is one of the following:

(c-1)i(Zg— 7)) for 1 <d<l-1, (c2) +iZ
when it is an Spr-element of g = sp(l,R). Conversely, suppose that an element
T' is either i(Z; — Z;) or £iZ;,. Then, it follows from «,(Z,) = 6,5 and (5.3.3)
that B(T") = +i for each root 8 € A(e, h) \ A (e, h); and so the element 77 is

an Spr-element of g = sp(l,R) (cf. Lemma 4.1.1). Consequently, Lemma 5.3.2 has
been shown. O

6Erratum: pp. 269, line 10 on [Br], read “2¢; = 2}, ., o, ar+a;” instead of “2¢; = ), ar+

b2

Q.



56 N. BOUMUKI

Let us investigate whether the Spr-element i(Z; — 7;) in Lemma 5.3.2 is equiv-
alent to i(Zy — Z;) or not.

Lemma 5.3.3. With the above assumptions; two Spr-elements T = i(Zy— Z}) and
T' =i(Zy — Z;) of g = sp(l,R) are equivalent to each other if and only if Case (i)
d=d or(ii)d=1—d holds. Here, 1 <d,d <1[—1.

Proof. 1t is known that
Cg(i(Zd — Zl)) = 5u(d, [ — d) ©® tl

(ref. Theorem 6.16 in [Bm]). Hence, if the element T' = i(Z; — Z;) is equivalent to
T = i(Zy — 7)), then it follows that su(d,l — d) = su(d',l — d'). Therefore, one
sees that Case (i) d = d' or (ii) d = — d' holds when T = i(Z; — Z;) is equivalent
to T = i(Zd/ — Zl)

Now, let us confirm that the converse also true. If Case (i) d = d’ holds, then
i(Za— 2Z)) = i(Zy — Z)); and so T = i(Z; — Z)) is equivalent to T" = i(Zy — Z)).
Henceforth, we devote ourselves to confirming that the Spr-element T = i(Z; — Z))
is equivalent to 7" = i(Zy — Z;) in Case (ii) d = [—d'. For the confirmation, we will
construct an automorphism ¢ of g = sp(l, R) such that p(i(Z4—2))) = i(Z_a—Z)).
Let us define an involutive linear isomorphism ¢’ of iF)R = spang{iZ,}!_, by

(5.3.4) { O(iZq) =i Z1—a—22;) for 1 <d <1—1,

(,OI(ZZl) = —iZl.

Then since ay,(Zp) = d4p, One obtains

(5.3.5)

bol(ag) =g for 1 <d <l-1,
foi(on) = —(2 X0 o + n),

where ¢f. denotes the complex linear extension of ¢’ to h. From (5.3.5), we com-
prehend that the Dynkin diagram of {*¢[(a,)},_; is as follows:

Y N )

where £, := "¢l (a,) for 1 < a <. This shows that

t@fc(ﬁ(cl, 6)) = A(g, 6)

because the Dynkin diagram of {*¢[ ()}, is the same as that of U, =
{a,},_; (cf. Murakami [Mu3, Lemma 1, pp. 295]). Accordingly, there exists an
involutive automorphism ¢ of ¢, = sp(l,C) such that o(g.) C gu, ¥l = ¢’
and ¢(Xia,) = Xitp(a,) (cf. Proposition 2.3.2). Now, let us show that ¢ is an
automorphism of g = sp(l, R). Since ¢|;;. = ¢’ and (5.3.4), one has ¢(iZ;) = —iZ).
Thus from #; being involutive and (5.3.1), it follows that

poly =ypoexpmad, iZ; =exprmad, ¢(iZ;)op =0 0.
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Therefore, ¢ is an automorphism of g (cf. Proposition 2.2.3).” Using ¢, we will
confirm that the Spr-element T' = i(Z; — Z;) is equivalent to 7" = i(Zy — Z;) in
Case (ii) d = [ — d'. Suppose that Case (ii) d = [ — d' holds. Then since ¢[; = ¢’
and (5.3.4), we have
(p(ZZd — Zl) = Z.(Zlfd — QZZ + Zl) = i(Zd’ — Zl)
Hence, T = i(Zy — 7)) is equivalent to T" = i(Zy — Z;) in Case (ii) d = [ — d'.
Therefore, we have completed the proof of Lemma 5.3.3. 0
Now, we will prove Proposition 5.3.4.

Proposition 5.3.4. Under our equivalence relation, Spr-elements of Cl: g =
sp([,R) are classified as follows:

Sprg/({£1} x Aut(g)) = { [i(Zs — Z)], [iZ] |1 <d <[l/2]}.
Besides, (1) (g, su(d, [—d)®t') and (2) (g, su(l)®t') are the pseudo-Hermitian sym-
metric Lie algebra by an involution py = exp wady i(Zy—Z;) and py = expmadyiZ,
respectively. Here, {Z,}\_, is the dual basis of Upe.iy = {a } ;.
Proof. By virtue of (4.1.2) and two Lemmas 5.3.2 and 5.3.3, one concludes that
Spro/({£1} x Aut(g)) = { [i(Zs — Z)], [iZi] |1 <d <[1/2]}.
Lemma 3.1.1-(1) and -(2) imply that (g, ¢5(i(Zs — Z;))) and (g,¢4(iZ;)) are the
pseudo-Hermitian symmetric Lie algebra by an involution p; := exp 7 ady i(Z;— 2))

and py := expmadyiZ;, respectively. On the other hand, Theorem 6.16 in [Bm]
allows us to have

(5.3.6) ¢o(i(Zg — Z7)) = su(d,l — d) @ t', co(iZ) = su(l) ® t".

Consequently, (g, su(d,l—d)®t') and (g, su(l)®dt') are the pseudo-Hermitian sym-
metric Lie algebra by p; = expmadyi(Z4— Z;) and p, = exp 7 ady 1Z;, respectively.
Moreover, it comes from [ > 3, 1 < d < [I/2] and (5.3.6) that the Spr-elements

i(Zy— 7)) and iZ; are not equivalent to each other. Consequently, we have proved
Proposition 5.3.4. 0

5.3.2. Case CIl sp(j,l—7) : 1 < j <[—1. This paragraph is devoted to classifying
Spr-elements of sp(j,l — j) (see Proposition 5.3.6).

Let us define an involutive automorphism 65 of g, such that sp(j,1— j) is related
to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of 6,. Let , be an
inner automorphism of ¢, = sp(l, C) defined by

0o := exp mad,, iZ;.

Since iZ; € g, and 6y[; = id, we have (c1) 62(g.) C gu, (c2) 02(h) C b and (c3)
tHQ(HA(%ﬁ)) = I, (o, 5)- Murakami’s result [Mu3, pp. 297, type CII] states that the
automorphism 6 is involutive. Denote by € and p the +1 and —1-eigenspace of 6y
in g,, respectively. Then, from the result of Murakami [Mu3, pp. 297, type CII], it
also follows that {—ic,}_1 U {—iv} U {—ia;}i_;,, is the simple root system of &,
its Dynkin diagram is

"This ¢ is an outer automorphism of sp(l, R).
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t=sp(j) © sp(l - j):

1 2 2 2 2 2 1
—iw/ —lQ —l0j_o —lOG 1 10y~ 10 —10Y

and sp(j,! — j) is the real form (2.2.3) g = €& ip of ¢;. Here, —iv denotes the
lowest root (2 SV g + o) in A(gy, ibr) (cf. Remark 2.3.1). Now, we assume
{—io, Y _1 U {—iv} (resp. {—ia;}|_;,1) to be the simple root system of & (resp.
€2), where & := sp(j) and €& := sp(l — j). In this case, the highest root —iju; in
A(By, 8 Nibr) and —ipy in A(E, 83 N ihg) are as follows:

(5.3.7)

—Z,Uq = —i(QOél + 2&2 4+ -4 20(1',1 + V),
—ily = —i(204j+1 + 20(j+2 4+ - -+ 20y_1 + Ozl).

We aim to provide a necessary and sufficient condition for an element T' € 207 to
be an Spr-element of g = sp(j,1 — j), where 207 is the positive Weyl chamber with

respect to Il ¢ ;5. = {—ia,}_1 U {—iv} U {—iau}_; 0
—iay(T) >0, - ,4%lajzm—wajzm}

~ 0.---
W ={Tei ’
' { M2\ i (1) > 0, —ic(T) > 0

For the aim, we will describe the dual basis of I1, ;;.) in terms of {Z} _,. Let
{T, M _,, T, € ibg, be the dual basis of A e, ihe) = {—ias}g;iU{—iV}U{—iat}i:jH,
namely 7, is an element of ihr which satisfies —icy, (T,) = 50 (1 < s <j—1),
—iv(T,) = 0,4, and —icy(T,) = 614 (j +1 <t <I). Then, one obtains

T, =i(Zs— Zj) for1 < s <j—1,

Ty = =57Zj,

T.=i(—Zj+Z,) for j+1<u<l—-1,
Ti=i(-%2;+ Z)

(5.3.8)

because of a,(Zy) = d4p and —iv = i(2 251;11 ag + ;). Now, let us provide a
necessary and sufficient condition for an element 7' € 207 to be an Spr-element of
g=15p(j,l —j).

Lemma 5.3.5. In the setting on Paragraph 5.3.2; an element T € 207 is an Spr-
element of g = sp(j,0 — j) if and only if T =i(—Z; + Z)).

Proof. Suppose that an element T € 207 is an Spr-element of g. Then, Lemma
4.2.2 and (5.3.7) mean that one of the following three cases only occurs:

W-1)T=T, (V-2)T=T, (b-3)T=T+T
because {T,}}_, is the dual basis of I, ;5.\ = {—ia V2 U {—iv} U {—io}l_, .

By (5.3.8), the above description can be rewritten as

i
(b-1) T =~ 7,

(b-2) T = i(—%zj +7), (b3) T =i(=2; + 7Z).
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The two elements (b-1) T = —(i/2) - Z; and (b-2) T = i(—(1/2) - Z; + Z;) can
not be Spr-elements. Indeed, there exists a root o; € A(cy, 6), and it follows from
o(Zp) = 04y that aj(T) = —i/2 # +i for T = —(i/2) - Z; and i(—(1/2) - Z; + Z)).
Hence, Lemma 4.1.1 assures that the two elements —(i/2)-Z; and i(—(1/2)-Z;+ Z))
can not be Spr-elements. On the other hand, since a,(Zy) = d,p and (5.3.3),
the other element (b-3) T" = i(—Z; + Z;) satisfies §(T') = +i for each root § €
A(e, B) \ Ap(e, b); so that the element T = i(—Z; + Z;) is an Spr-element of
g = sp(j,1 — j) (ref. Lemma 4.1.1). Therefore, if an element 7" € 20% is an Spr-
element, then T' = i(—Z; + Z;). On the above arguments, the converse has been
confirmed—that is, if T' = i(—Z; + Z;), then it is an Spr-element. For the reasons,
we have demonstrated Lemma 5.3.5. O

Now, we are going to prove the following:

Proposition 5.3.6. Under our equivalence relation, Spr-elements of CII: g =
sp(4,0—j), 1 <j<Il—1, are classified as follows:

Sprg/({£1} x Aut(g)) = { [i(-Z; + Z)] }-
Besides, (g,su(j,l — j) @ t') is the pseudo-Hermitian symmetric Lie algebra by an
involution p = expadyi(—Z; + Z;). Here, {Z,}._, is the dual basis of Oae,p) =
{aatizs-
Proof. Lemma 5.3.5, together with (4.1.2), implies that

Sprg/({£1} x Aut(g)) = { [i(-Z; + Z)] }.
Hence, the first half of statements on this proposition has been shown. Lemma
3.1.1-(1) and -(2) imply that (g,c4(i(—Z; + Z;))) is the pseudo-Hermitian sym-
metric Lie algebra by an involution p := expmadyi(—Z; + Z;). In addition, it is
known that ¢y(i(—Z; + Z))) = su(j,l — j) @ t' (cf. Theorem 6.16 in [Bm]). Ac-
cordingly, (g,su(j,l — j) @ t') is the pseudo-Hermitian symmetric Lie algebra by

p=expmadgi(—Z; + Z;). Thus, we have proved Proposition 5.3.6. O
The following table comes from two Propositions 5.3.4 and 5.3.6:
Table III.
CI
6 g sp(l,R): [ >3
Sprg/({£1} x Aut(g)) [i(Za— Z)], [iZ)], 1 < d < [1/2]
¢s(i(Z4 — 7)) su(d,l —d)ot!
¢s(12) su(l) @ t'
CII
7 g sp(j,l—j): 1>3,1<j<I1-1
Spre/ ({21} x Aut(g)) [i(=2,+ 2)]
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| aliczrz) | su(j,l - j) @ ¢ |

5.4. Type D; (I > 4). Our purpose in this subsection is to classify Spr-elements
of each real form of the complex simple Lie algebra 9, = so0(2[,C). First, we will
introduce our setting. Let h be a Cartan subalgebra of 9;, and let A(9;,h) be the
set of non-zero roots of 9; with respect to h. Denote by {a,}!_, the set of simple

roots in A(9y, h), and assume that the Dynkin diagram of Il 5 = {ag}t_, is as

follows:
1
. 1 9 2 a1
;. O—O0~— -
Qp Qg -l o

(cf. Plate IV in Bourbaki [Br, pp. 271]). Then, we denote by g, the compact real
form of 9; which is given by A(d;, ) and (2.3.1), and we denote by {Z,}._, (Z, € b)
the dual basis of I1,,, ) = {a,}t_,. In the setting, let us classify Spr-elements of
each real form of 9, = so0(21, C).

Notation 5.4.1. In Subsection 5.4, we utilize the following notation:

e 0, =s50(21,C). i
o 11, o= {aat\ ;. a o« o
(21,b) afa=1 1 20

e g,: the compact real form of 9; given by A(9,,h) and (2.3.1).
o {Z.},1: the dual basis of Ty 5 = {a}oey-

5.4.1. Case DI s0(2j + 1,2l —2j — 1) : j = 0. Our aim in this paragraph is to
classify Spr-elements of so(1,2l — 1) (see Proposition 5.4.3).

In the first place, let us construct an involutive automorphism 6; of 9, = so(2l, C)
such that (I) it satisfies the three conditions in Paragraph 2.3.2;

(c1) 61(gu) C Gus (2) 61(h) C b, (c3) "1 (T, 5) = Moy iy

and (IT) so(1,2/—1) is related to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by
means of 6. From Z, € h and Qa(Zy) = Oap, it is natural that ihp = spanp{iZ,}' _,
(recall (2.3.2) for hg). This enables us to define an involutive linear isomorphism
0! of ibg by

0\(iZy) = iZy for 1 <k <[—2,
(541) 9'1(ZZl—1) = iZl,
9’1(ZZZ) = Z'Zl,l.

Then, since a,(Z;) = 4, one obtains

(o) =ap for 1 <k <Il-2,
(542) tﬂll(c(al_l) = O{l,

") =y,
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where 6. denotes the complex linear extension of @, to h. It comes from (5.4.2)
that

tgll(C(A(ala 6)) = A(ola 6)
because At (9, ) is as follows (cf. Bourbaki [Br, pp. 271, Plate IV]®):

(5.4.3) AT(0;,b)

_ Zp§f<qaf, ngfgl_2af+al, 1<p<qg<L1<r<l,
Zs§f<taf+2zt§h<l_1ah+al_1+al 1<s<t<l '

Therefore, there exists an involutive automorphism 6; of 9; such that (i) 6;(g.) C
gu, (ii) Oif;5, = 07 and (iii) 601 (Xsa,) = Xitp (o) (see Proposition 2.3.2). This
involution 0 satisfies the condition (c3) ‘01(Tlx, 5)) = A, 5, since 01l = 0
and (5.4.2). Accordingly, the involution #; of 0, = s0(2l,C) satisfies the three
conditions (c1), (c2) and (c3). Here, we remark that #; is the same involution as
6, in Murakami [Mu3, pp. 305, type DI].

Q-1
t
9, o—o—-- I
Qp Q2 Q-2 o

Let us enumerate the simple root system of €, the highest root in A(€ €N iBR)
and so on, where ¢ denotes the +1-eigenspace of 6; in g,. The result of Murakami
[Mu3, pp. 305, type DI| implies that {—iad|w,~]R}fi’:11 is the simple root system of £
(cf. Remark 2.3.3) and its Dynkin diagram is as follows:
t=1s0(20—1): 01—02——02:@2
—10 —109 —1Q_9 —10q_1
where —idy := —iad|w6R for 1 <d <1 — 1. Moreover, it follows that so(1,2l — 1)
is the real form (2.2.3) g = €@ ip of 9;, where p denotes the —1-eigenspace of ; in

gy Remark that the highest root —ip € A€, €N iBR) is as follows:
(5.4.4) —ip = —i(ay + 20 + 203 + - + 205 1) [ -

In the second place, let us describe the dual basis of Il 4 45, in terms of {Z .

Its description will be useful in the third place. It is immediate from 6;];; = 6,
and (5.4.1) that

ibr

(5.4.5) eNibg = spang {iZy, i(Zi_1 + Z)) Y22,

Now, let {T;}'Z}, Ty € €N ibg, be the dual basis of A e enine) = {—aleniig L
Then by a,(Z,) = dap and (5.4.5), one deduces that

(546) Tk == ZZk for 1 S k S [ — 2, T'lfl == Z.(Zl,1 + Zl)

In the third place, let us prove the following:

8Erratum: pp. 271, line 8 on [Br], read “e; —¢; = > ichejar” instead of “e;—e; =37, 4 s ou”.
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Lemma 5.4.2. In the above setting; an element T € g is an Spr-element of

g =50(1,2l — 1) if and only if T = iZ,. Here, W; is the positive Weyl chamber

. : -1,
with respect to HA(E,Em‘ER) = {—Zad|mz-5R d=1’

Wi ={T etnibr| —ioy(T) >0, —iay(T) >0, , —ioy_1(T) > 0}.

Proof. Suppose that an element 7' € 20; is an Spr-element of g. Then, Lemma
4.2.4 and (5.4.4) allow us to have T = T, because {T;},_} is the dual basis of
A e enine) = 1 1%lenisg ‘"1, So, T = iZ, follows from (5.4.6). Hence, if an
element 7' € 2; is an Spr-element, then one has T' = i7;.

Conversely, suppose that 7" = iZ;. Since a,(Zy) = d,p and (5.4.3), we confirm
that the element T = 77, satisfies 3(T) = i for any root 3 € A0, 5) \ Ar (0, b);
and hence the element T'=iZ; is an Spr-element of g = s0(1,2/ — 1) (see Lemma
4.1.1). Therefore, we have got the conclusion. O

By virtue of (4.1.2) and Lemma 5.4.2, one concludes that

Sprq/({£1} x Aut(g)) = { [iZ1] },
where g = s0(1,2] —1). From Lemma 3.1.1-(1) and -(2), it follows that (g, ¢s(iZ,))
is the pseudo-Hermitian symmetric Lie algebra by an involution p := exp madg1Z;.
Besides, it is known that ¢;(iZ;) = s0(1,2] — 3) @ t* (cf. Theorem 6.16 in [Bm)]).
For the reasons, we conclude the following:

Proposition 5.4.3. Under our equivalence relation, Spr-elements of DI. g =
s0(25 +1,21—2j — 1), j =0, are classified as follows:

Spre/({£1} x Aut(g)) = { [iZ1] }-
Besides, (g,50(1,20—3) @ t) is the pseudo-Hermitian symmetric Lie algebra by an
involution p = expTadgiZy. Here, {Z,}._, is the dual basis of e §) = {aa}t_,.

5.4.2. Case DI s0(2j+1,21—2j—1): 1< j <[1—3. In this paragraph, we devote
ourselves to classifying Spr-elements of so(2j + 1,2] — 25 — 1). The result in this
paragraph is Proposition 5.4.6.

By use of the involution #; in the previous paragraph, we define an automorphism
6, of 9, = s0(2l,C) as follows:
(5.4.7) 0, := 0, oexpmady, i7;.
This 05 is involutive, since it is the same as 6; in Murakami [Mu3, pp. 305, type
DI]. Note that the involution 0> of o, satisfies the three conditions in Paragraph
2.3.2; (c1) 02(gu) C Gus (c2) fa(h) C b and (c3) 02(MT(q, 5)) = Ay, ). Denote by
£ the +1-eigenspace of 0 in g,. Due to the result of Murakami [Mu3, pp. 305, type
DI], one comprehends that {—ia5|w,~]R}1;} U { =0l b U {—iat|m,~]R}i;}+1 is the
set of simple roots in A(g, €N ibg), where n == Eé;lj ap, and its Dynkin diagram
is as follows:

t=s50(27+1)Dso(2l —2j —1):

1 2 2 2 1 2 2 2

—ith  —idy  —iGy i1 —iGj1 —iGyan —i0)_ —idy_y
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where —idy, = —iah|w5R foreach 1 < h<j—1land j+1 < h <[-—1, and
—i1} 1= —inyrs5,- His result also assures that so(2j + 1,2/ —2j — 1) is the real form
of 0, given by (2.2.3) g = ¢® ip, where p := {P € g, | 02(P) = —P}. Now, ¢ is the
direct sum of two simple ideals ¢ := s0(2j + 1) and & := s0(2] — 2j — 1). Then,
let us assume that {—ias|w,~m}g: U{=inlgnip, } (resp. {—iat|w,~m}i;;+1) is the set
of simple roots in A(by, & Nibhr) (resp. A(ky, & Nihgr)). From the assumption, it
follows that the highest root —ipu; € A(f, € N th) and —ips € A\(by, 3N th) are

(5.4.8) { —ipn = —i(on + 209 + 203 + -+ + 2051 + 20) i

—i/LQ = —i(aj+1 + 2aj+2 + 2aj+3 + -4 2al_1)|w,~]R.
We will provide a necessary and sufficient condition for an element 7' € 20 to be an
Spr-element of g = s0(2j + 1,20 —2j — 1), Where 207 is the positive Weyl Chamber
with respect to I, A eNihr) — { Ws|emhR}s  U{= “7|Emrm} u{- Wt|mth}t j+1
> | —ieq(T) >0, ,—ia;_1(T) > 0,—in(T) > 0,
W, = {T CENVDR | i (T) >0, , —icyy(T) > 0 :

In order to do so, we want to describe the dual basis of I g gy, in terms of
{Z.}.—;. The definition (5.4.7) of #, enables us obtain 6|z = 6i; because
exp 7 ady, iZ; = id on h. Thus since 015, = 01 and (5.4.1), any element 1" € tNibr
can be described as follows:

(5.4.9) T=i\M-Zi+ 4+ NaZio+ N1 (Zi2a + 7)), MeER

Let {T,}\2 (T, € €N th) be the dual basis of I ¢y = {— za5|mhR}J s

{- “7|Eﬁzrm} U{ Zat|kmhR}t j+1- Then, by (5.4.9), n = Zi) lgap and a,(Zp) = da,p,
we see that

T, =iZ,for 1 < q <j,
(5.4.10) T.=i(—Zj+ Z,) for j+1<u<l-2,
Ty =i(—Z; + Zi-1 + Zo).

Now, let us provide a necessary and sufficient condition for an element 7' € 202 to
be an Spr-element of g = s0(2j + 1,21 —2j — 1).

Lemma 5.4.4. In the setting on Paragraph 5.4.2; an element T € 207 is an Spr-
element of g = s0(2j+1,20—2j—1) if and only if it is either iZy or i(—Z;+ Z;+1).

Proof. Suppose that an element 7" € 207 is an Spr-element of g. In this case,
Lemma 4.2.2 and (5.4.8) imply that the element T equals 77, TJ+1 or 11 + Tj4q,

because {Td}fi’l1 is the dual basis of IT, g g5, = {— za3|mbR}s 1 U A=, b U
{— Wt|mzr;R}t _j+1- Therefore, it follows from (5.4.10) that one of the following three
cases only occurs:

(bW-1) T =iz, (0-2)T=i(-Z;+ Zs1), (0-3)T =i(Z1 — Z; + Zss1).

There exists aroot =3, ;. ap+2> 0 yanta1+a € A0, h) (ref.
(5.4.3)), and it comes from a,(Z,) = 04y that S(i(Z1 — Z; + Zj41)) = 2i # =i
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Therefore, Lemma 4.1.1 means that the element T = i(Z; — Z; + Z;1,) in Case
(b’-3) is not an Spr-element of g = s0(2j + 1,20 — 2j — 1). The other elements
(b'-1) T = iZy and (b'-2) T = i(—Z; + Zj41) satisfy B(T) = =+i for any root
B e Ay, H)\Ar(0,,h). So, the elements in Case (b'-1) and (b'-2) are Spr-elements
of g =s50(2j + 1,21 —2j — 1) (cf. Lemma 4.1.1). Hence, if an element T € 207 is
an Spr-element, then one of the following two cases only occurs:

(b—].) T - iZl, (b—2) T - Z(—Zj + Zj+1).

On the other hand, in the arguments stated above, it has been already confirmed
that the elements in Case (b-1) and (b-2) are Spr-elements of g. Hence, we have
verified Lemma 5.4.4. OJ

Let us investigate whether the Spr-elements iZ; and i(—Z; + Z;1;) in Lemma
5.4.4 are equivalent to each other or not.

Lemma 5.4.5. In the above setting; the Spr-element Ty = 12, of g is equivalent
toTjy1 =i(—Zj+ Zj1) if and only if 2j+1 = 1. Here, g =s0(2j+1,21—2j —1).

Proof. 1t is known that
¢s(iZ,) =s0(2j — 1,21 -2 — 1) @ t',
¢(i(=Z;+ Zj41)) = s0(2j + 1,20 — 25 — 3) @ t!

(cf. Theorem 6.16 in [Bm]). This asserts that 2j — 1 = 2] — 2j — 3 when the Spr-
element T} = iZ; is equivalent to T;;; = i(—Z; + Z;11). Hence, it follows that
2j +1 =1 if the element T is equivalent to T} ;.

Now, we will verify that the element T} = iZ; is equivalent to 7,1 = i(—Z; +
Zj+1) in case of 25 +1 = [. Suppose that 2j + 1 = [. Let us construct an
automorphism ¢ of g = s0(2j + 1,21 — 25 — 1) = so(2j + 1,25 + 1) satisfying
¢(Ty) = Tj4,. Define an involutive linear isomorphism ¢’ of ihr = spang{iZ, }27"
by

(5.4.11)

¢'(iZs) =i(—Z;+ Zji) for 1 <s < j—1,

(5412) d)I(ZZ]) = Z(_Z] + ZQ] + Z2j+1)7
d)I(ZZu) = Z(Zu_j - Z]‘ + Zgj + ZQj_H) for ] +1 S u S 2] — 1,
&' (iZy,) =17, for n = 25, 25 + 1.

Then we have

t¢€c(as) = Ujts for 1 S S S ] _ 1,
2j—1
(5.4.13) ‘dr(ay) = =L o,
to (o) = oy for j+1<u < 2j—1,
t(lsgc(an) = 2125:_]1 QO + o, for n = 27,25 +1,

by virtue of o, (Zy) = 0,p. Here, ¢f denotes the complex linear extension of ¢ to
h. The Dynkin diagram of {*¢%(aq)}22%" is as follows:

a=1
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%—©< 52j \O
T e e O_ e
Bit1 Baj—2 Poj=10 Baj+1 P Bi-1

where [, :='¢r(c) for 1 < a < 2j + 1. Therefore, ¢ satisfies
"o (A (0g)41, 6)) = A(02j41, )

because the Dynkin diagram of {!¢(cy,)}22" is the same as that of Aoy 1,5) =

{cya}~2]Jr1 (cf. Murakami [Mu3, Lemma 1, pp. 295]). Thus, Proposition 2.3.2 implies
that there exists an involutive automorphism ¢ of 95541 = s0(4j + 2, C) satisfying
three conditions (i) ¢(gu) C gu, (il) ¢l;, = gzé’ and (iii) gb()(}aa) = X, t4(a,)- From
now on, we aim to have an element H € br such that ¢ o expad,,,,, iH is an
automorphism of g = so(2j + 1,25 + 1). For the aim, let us show that ¢ satisfies
the two conditions (a) and (b) in Proposition 2.3.4. From ¢|;;. = ¢’ and (5.4.13), it
is obvious that ‘g(ay) = ajps (1 <5 < j—1), 'd(a;) = — 22] L, tolan) =
(j4+1<u<2j—1),and ‘d(a) = 37 "y + a, (n =27, 2j + 1). On the other

w=y)

hand, the definition (5.4.7) of fy and (5.4.3) state that

Af(a2j+1;6 1 0)
P2§f<QQaf’ ]+1§p2<q2§2]7
Dosi<fats OF T2 chenj O + 2+ agjpr, | 1 <s1 <t <,
ZSng@Q of+2 Zt2§h<2j ap+ogj+ g |[J+H1< s <t <25+1

(see (2.3.4) for Af(0g51,h : 6)). So, the involution ¢ of vy, satisfies the con-
dition (b) in Proposition 2.3.4, namely t@( 102541, b - 92)) = A1 (09541, 0 1 6).
Moreover, since ¢|Zh = ¢’ and (5.4.12), and since Oq;; = 6:]; = 0] and (5.4.1),

one obtains fs o ¢ = ¢ o B on ihg; and therefore the involution ¢ also satisfies the
condition (a) in Proposition 2.3.4. For the reasons, Proposition 2.3.4 enables us
to have an element H € hR such that ¢ o exp ady,,,, tH is an automorphism of g.
Defining ¢ by ¢ := ¢ o exp ady,, , iH,° we deduce that

() = ¢(iZ1) = i(=Zj + Zjp) = Tjin
because ¢[;. = gz§|z-5R = ¢ and (5.4.12). Accordingly, the Spr-element T is equiv-
alent to T4, via ¢. Hence, we have proved Lemma 5.4.5. 0

Now, let us demonstrate Proposition 5.4.6.

Proposition 5.4.6. Under our equivalence relation, Spr-elements of DI. g =
s50(25+1,21—2j —1), 1< j <I-3, are classified as follows:

Spro/({1} x Aut(g)) = { % {gﬂ,}[z’(—zj NCEURE Fohiat

9This ¢ is an outer automorphism of s0(2j + 1,25 + 1).
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Besides, (1) (g,50(2j—1,21—2j—1)®t") and (2) (g,50(25+1,20—2j —3) Dt') are
the pseudo-Hermitian symmetric Lie algebra by an involution py = expmadgiZ;
and py = exprmadgi(—Z; + Zj41), respectively. Here, {Z,}! | is the dual basis of
w5 = {a ozt

Proof. It is immediate from (4.1.2) and two Lemmas 5.4.4 and 5.4.5 that

Spr/ ({41} x Aut(a)) = {% AL (2 20l

Lemma 3.1.1-(1) and -(2) imply that (g,¢4(Z1)) and (g, ¢g(i(—Z; + Zj11))) are
the pseudo-Hermitian symmetric Lie algebra by an involution p; := exp madgiZ;
and p, := expmadyi(—Z; + Z;4+1), respectively. Thus, it follows from (5.4.11) that
(g,50(25 — 1,21 — 25— 1)@ t!) and (g,50(25 + 1,21 — 25 — 3) @ t') are the pseudo-
Hermitian symmetric Lie algebra by p; = expmadyiZ; and p, = expmadgi(—Z; +
Zj+1), respectively. Therefore, Proposition 5.4.6 has been shown. 0

5.4.3. Case DI s0(2j,2l — 2j) : j = 1. In this paragraph, we will achieve the
classification of Spr-elements of s0(2, 2l — 2) (see Proposition 5.4.9).

Let us define an involutive automorphism 65 of g, such that so(2, 2] —2) is related
to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of f5. Let 5 be an
inner automorphism of 9, = s0(2l, C) defined by

(5.4.14) 05 := exp mady, 12,

(recall Notation 5.4.1 for Z; and for later). This 63 is involutive and satisfies the
three conditions in Paragraph 2.3.2; (c1) 03(g.) C gu, (c2) 05(h) C b and (c3)
03(a,5) = a5 (cf: Murakami [Mu3, pp. 297, type DI]). It is shown by
Murakami [Mu3] that {—ic.}._, is the set of simple roots in A(,ibg), its Dynkin
diagram is

12 g ol —ion-
t=s0(2l - 2)th x o—o0"— - —
—toiy —10ig  —l0y_9 1 —iqy

and s0(2,2l — 2) is the real form (2.2.3) g = ¢ @ ip of 9;, where ¢ := {K €
gu|03(K) = K} and p := {P € g, |05(P) = —P}. Remark that the highest root
—ip € A(E,ibr) is as follows:

(5.4.15) —ip=—i(ag +2a3+ -+ 20 2+ 1+ ).
Now, let us prove Lemma 5.4.7.

Lemma 5.4.7. In the above setting; an element T € 203 is an Spr-element of
g = 50(2,20 — 2) if and only if it is one of the following:

(=21 + Zy), iZ 4, (=21 + Z1),
i i(—Z + 7)), +iZ,.

Here, 253 is the positive Weyl chamber with respect to Ak, ite) = {—ia.}_;
W; = {T € ihg| — iox(T) > 0, —icv3(T) > 0,- -+, —ioy(T) > 0}.
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Proof. Suppose that an element 7 € 207 is an Spr-element of g. For any root
—iy € A(E,ibg), one obtains —iv(iZ;) = 0 because of A ime) = {—tce [_, and
@a(Zp) = 04p. Therefore, Lemma 4.2.3, together with (5.4.15), a4(Z;) = 64 and
T € ibr = spang{iZ,}._,, implies that one of the following cases only occurs:

(C,—l.l) T = Z()\ . Z1 + ZQ), (C,—1.2) T = Z()\ . Z1 + Zl—l)a
(-13) T =i(N-Z1v+ Zy), (-2)T=i)-Zy,

where A is a real number (A # 0 in Case (¢’-2)). By the supposition and Lemma
4.1.1, the element T must satisfy 3(T) = i for any root 8 € A(d;,5) \ Ar(ds, b).
So, since (5.4.3) and a,(Zy) = dap, we have A = —1 in Case (¢’-1.1), A =0 or —1
in two Cases (¢’-1.2) and (c¢/-1.3), and A = +1 in Case (¢’-2). Accordingly, if an
element 7' € 207 is an Spr-element, then it is one of the following:

(C—l.l) Z(—Zl —+ Zz), (C—12) Z.Zlfl, Z(—Zl —+ Zlfl),
(0—1.3) iZl, i(—Zl + Zl), (C—2) + ZZI

Conversely, if an element 7" is one of the above elements, then it follows from
(5.4.3) and ,(Z)) = 0,4, that the element 7" satisfies 3(T") = +i for every root
B € A, )\ A (0, h); and hence it is an Spr-element of g (ref. Lemma 4.1.1).
Hence, Lemma 5.4.7 has been proved. 0]

Lemma 5.4.7 and (4.1.2) imply that

(5.4.16) Spry/({£1} x Aut(g))

:{ [i(=Z1+ Z2) ], [i211], [i(=2 +le)]a}
[iz1], [i(—=Z1+ Z1) ], [iZ:] ’

where g = s0(2,2l — 2). From now on, we are going to verify that the above
Spr-element iZ,_; (resp. iZ;) is equivalent to i(—Z; + Z;_;) (resp. i(—Z, + Z;)).

Lemma 5.4.8. There exists an involutive automorphism ¢ of 0; which satisfies
¢(gu) C gu, ¢(g) C g and

p(iZ1) = —iZh,
o(iZy) =i(=221+ Z)  for2<k<Il-2,
o(iZ,) =i(-Z1+ Z,) forn=1-1,1.

Here, g = 50(2,2] — 2), and {Z,}._, is the dual basis of Ma@,p) = {ag ).

Proof. We aim to construct such an automorphism ¢. Let us define an involutive
linear isomorphism ¢’ of ihg = spang{iZ,},_, by

QOI(ZZI) = —iZI,
(5.4.17) OiZy) = i(—22, + Z) for2<k<l—2
O'iZy) :=i(-Z1+ Z,) forn=101-1,1.
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Then, it comes from o, (Z,) = d,, that
t(pfc(al) = —(Ch + 20[2 + -4 2al_2 + oy + al),
"ol(ae) =, for2 <ec<l,

where ¢ denotes the complex linear extension of ¢’ to f. Therefore, the Dynkin
diagram of {!¢f ()}, _, is as follows:

B o\@f N 4@< Bi-1
B Bi—2 ™o B

Here, (3, := '¢(a,) for 1 < a < I. Consequently, the linear involution ¢ of ibg
satisfies
tSogc (A(ala h)) = A(ala h)

(cf. Murakami [Mu3, Lemma 1, pp. 295]). For the reasons, Proposition 2.3.2 as-
sures that there exists an involutive automorphism ¢ of 9; = so0(2[,C) satisfying
three conditions (i) ¢(gu) C gu, (il) ¢l;5, = ¢’ and (iii) ¥(Xia,) = Xity(a,). Fuar-
thermore, since 03 is involutive and (5.4.14), and since (5.4.17) and ¢[; = ¢, we
deduce that

poly=gpoexpmady iZ; =expmady, (—iZ1) o p =630 .
Thus, Proposition 2.2.3 means that the involution ¢ of 0, is an automorphism of
g = 50(2,2] — 2)."° Hence, Lemma 5.4.8 follows from ¢|; = ¢’ and (5.4.17). O
By (5.4.16) and Lemma 5.4.8, one concludes that

(5.4.18) Spry/({1} x Aut(g))
={[i(-Z1 + 2], [i(-Z1 + Zi-1) |, [i(=Z1 + Z)], [iZ1] },

where g = s0(2,20—2). Let us confirm that the above Spr-element i(—7Z; + Z;_4) is
equivalent to i(—Z;+7;). The involution #; in Paragraph 5.4.1 satisfies 6 (g,) C gu,
and satisfies 0,(iZ,) = iZ; since 6]z = 0 and (5.4.1). Accordingly, it follows
from (5.4.14) that 03 o ; = 6, o 03, so that Proposition 2.2.3 means that the
involution ) is an automorphism of g = s0(2,2( — 2)."" In addition, we have
01(i(=Z1 + Z11)) = i(=Z1 + Z;) by virtue of 0,|;; = 0} and (5.4.1). Hence, the
Spr-element i(—Z;+Z,_) is equivalent to i(—Z;+Z;) via 6. Therefore by (5.4.18),
we see that

(5.4.19)  Sprg/({£1} x Aut(g)) ={ [i(—-Z1 + Z2) ], [i(-Z1 + 2Z) ], [iZ:] }.
Now, we will demonstrate Proposition 5.4.9.

Proposition 5.4.9. Under our equivalence relation, Spr-elements of DI: g =
50(27,20 — 2j), j =1, are classified as follows:

Spro/({£1} x Aut(g)) = { [i(=Z1 + Z2)], [i(=Z1+ Z)], [iZ:] }.

10This ¢ is an inner automorphism of s0(2,2l — 2).
UThis 6, becomes an outer automorphism of so0(2, 2l — 2).
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Besides, (1) (g,50(2,2] — 4) ® t'), (2) (g,su(l,l — 1) ® t') and (3) (g,50(20 —
2) @ t') are the pseudo-Hermitian symmetric Lie algebra by an involution p, =
expmadgi(—2Z1 + Z3), po = expradgi(—Z1 + Z;) and ps = expmadyiZy, respec-
tively. Here, {Z,}._, is the dual basis of Ma@,p) = {ag ).

Proof. Tt has been shown that
Sprg/({£1} x Aut(g)) = { [i(=Z1 + Z)], [i(=Z1 + Z)], [iZ:] }

(see (5.4.19)). It is necessary to investigate whether the above Spr-elements are
mutually equivalent or not. By Theorem 6.16 in [Bm], one gets

¢(i(—=Z1 + Z5)) = 50(2,2 — 4) @ t',
(5.4.20) ¢o(i(—=Z1 + 7)) = su(l,l - 1) @ t',
c(iZ,) = s0(20 — 2) B t'.

Therefore since | > 4, the Spr-elements i(—Z; + Z5), i(—Z; + Z;) and iZ; are not
mutually equivalent. So, the first half of statements on this proposition has been
shown. Lemma 3.1.1 and (5.4.20) allow us to deduce the conclusion. O

5.4.4. Case DI s0(27,2l — 2j) : l =4 and j = 2. Our aim in this paragraph is to
achieve the classification of Spr-elements of so(4,4) (cf. Proposition 5.4.12).

Let us give an involutive automorphism 6, of g, such that so(4,4) is related to
g. as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of ;. Define an inner
automorphism 6, of 0, = s0(8, C) by

(5.4.21) 0, = expmady, i1 2.

Since iZ, € g, and 04; = id, one obtains (c1) 04(gu) C gu, (c2) 04(h) C b and (c3)
t94(HA(D4’5)) = A (o,,5), Which means that the automorphism 0, satisfies the three
conditions in Paragraph 2.3.2. The result of Murakami [Mu3, pp. 297, type DI]
implies that 6, is involutive, {—iay, —iv, —ic, —icy} is the set of simple roots in
A(8,ibg), where ¢ := {K € g, |04(K) = K}, and its Dynkin diagram is as follows:

—iv ol ol —1i03
t = su(2) @ su(2) @ su(2) @ su(2): )
—iOél @) Ol —iCY4
where —iv := i(oy + 2a9 + a3 + a4). Furthermore, his result enables us to de-

duce that so(4,4) is the real form (2.2.3) g = ¢ @ ip of 24, where p := {P €
gu | 04(P) = —P}. Now, we want to describe the dual basis {T,}*_, of T A e, itm)
{—iau, —iv, —iag, —iay}, in terms of the dual basis {Z,}a_; of 5, 5) = {@a}azi-

The description will be useful at once. By virtue of T, € ihg = spang{iZ,}*_, and
@a(Zp) = dap, it is easy to see that
{ Tl - Z(ZI - %ZQ)a T2 = _5227

5.4.22 . .
( ) T3 :Z(—%ZQ+Z3), T4 :Z(—%Zg—i—zzl)

By use of (5.4.22), we will prove the following:
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Lemma 5.4.10. With the above assumptions; an element T € 20§ is an Spr-
element of g = s0(4,4) if and only if it is one of the following:

i(—Zy+ Z3+ 7)), i(—Zy+ Zy), i(—Zy + Z3),
W2y — Zo+ Zy), (21— Zy+ Z3), i(Z) — Zo).

Here, 90¢ is a Weyl chamber with respect to A e, i) = {—iay, —iv, —iag, —iay};
Wi = {T € ibg| —ion(T) >0, —iv(T) > 0, —ias(T) > 0, —iay(T) > 0}.
Proof. Notice that € is the direct sum of four simple ideals ¢, := su(2) (1 <a < 4),

and that the highest root —ip, € A(,, &, Nibr) is as follows:

{ —ip = —iay, —ipp = —iv (= i(ay + 200 + az + ay)),

(5.4.23) . . ) )
—illy = —iQy, —ijby = —iQy,

where we assume A(£,, €, N ibg) to be a subset of A(,ihg) (1 < a < 4). Now,
suppose that an element T € 20; is an Spr-element of g. Arguments similar to
those on the proof of Lemma 4.2.1 allow us to confirm that the Spr-element T' € 20;
satisfies one of the following fifteen conditions:

(1) =i (T) =0, —ipa(T) = 0, —ipz(T) = 0, —ipa(T) = 1
(2) —im(T) =0, —ipz(T) =0, —ips(T) = 1, —ipua(T) = 0;
(3) = ia(T) = 0, —ipa(T) = 0, —iss(T) = 1, —ipus(T) = 1
(4) =i (T) =0, —ipa(T) = 1, —ipz(T) = 0, —ipa(T) = 0;
(5) —ipa(T) =0, —ipz(T) = 1, —ips(T) = 0, —ipua(T) = 1;
(6) —ip(T) =0, —ipa(T) =1, —ips(T) = 1, —ipa(T) = 0;
(7) —im(T) =0, —ipa(T) =1, —ips(T) = 1, —ipuy(T) = 1;
(8) —im(T) =1, —ipa(T) = 0, —ip3(T) = 0, —ipua(T) = 0;
(9) — i (T) =1, —ipa(T) = 0, —ip3(T) = 0, —ipa(T) = 1;
(10) —ip(T) =1, —ipa(T) = 0, —ips(T) = 1, —ipa(T) = 05
(11) — i (T) =1, —ipa(T) = 0, —ipus(T) = 1, —iug(T) = 1;
(12) — i (T) = 1, —ipa(T) = 1, —ipg(T) = 0, —1pua(T) = 0;
(13) — i (T) =1, —ipa(T) = 1, —ipus(T) = 0, —iug(T) = 1;
(14) — i (T) =1, —ipa(T) = 1, —ipus(T) = 1, —iug(T) = 0;
(15) — i (T) =1, —ipa(T) =1, —ipus(T) = 1, —ipua(T) = 1.

Then, T becomes one of the following fifteen elements:
(1) Ty = i(—+5 2> + Zy),

(2) Ts = i(—+ 25 + Z3),

(3) Ty + Ty = i(—Zo + Zs + Zy),
(4) T» = __ZQa

(5) T2 + T, =i(—Zy + Zy),
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(6) Ty + T3 = i(—Zy + Z3),

() To+Ts + Ty = i(—2 7 + Zs + Zy),

8) Tv = i(Z1 — 572»),

9) Ty + Ty =i(Z, — Zy + 7)),

(10) Ty + Ty = i(Zy — Zo + Z3),

(1) T+ T3+ Ty =i(Z) — 325+ Zs + Zy),
(12) Th + Ty = i(Z1 — Zs),

() TV + Do+ Ty =i(Z1 — 325+ Zy),

(14) TV + Do+ Ty =i(Z1 — 325+ Z3),

() T+ T+ T3+ Ty =i(Zy — 275+ Zs + Zy)

because (5.4.22), (5.4.23) and {T,}:_, is the dual basis of A e ite)
{—iaq, —iv, —iag, —iay}. Lemma 4.1.1 states that the Spr-element T must sat-
isfy B(T) = +i for every root 8 € A(dy, ) \ Ar(d4, h). Therefore, it follows from
ao(Zpy) = dap and (5.4.3) that the element 7T is one of the following:

B) i(=Zo+Zs+2Z4), (5) i(—Zo+Zy),  (6) i(—Zs+Zs),
) i(Zi— Zo+ Z0), (10) i(Zi— Zo+ Zy), (12) i(Z, — Z»).

Conversely, if an element 7" is one of the above six elements, then it satisfies
B(T") = +i for any root B € A(d4,h) \ Agr(04,h). So, the element 7" is an Spr-
element of g = s0(4,4), due to Lemma 4.1.1. Therefore, we have demonstrated
Lemma 5.4.10. 0

Lemma 5.4.10 and (4.1.2) allow us to lead the following:

(5.4.24) Sprg/({£1} x Aut(g))

:{ [i(=Zy + Z3+ Z4)], [i(—=Z2 + Z4)], [i(—ZZ+Zg)],}
[i(Z1 — Zo+ Z4)], [i(Z1— Za+ Z3)], [i(Z1 — Z5)] ’

where g = s0(4,4). The following lemma implies that the above Spr-elements
i(—Zy + Zy), i(—Zy + Z3) and i(Zy — Z,) are mutually equivalent, and that the
above Spr-elements i(—Zy + Z3 + Z4), i(Z1 — Zo + Z4) and i(Z) — Zy + Z3) are
mutually equivalent.

Lemma 5.4.11. In the above setting; there exists an automorphism ¢ of g =

s0(4,4) such that ¢(iZ1) = iZ3, ¢(iZ2) = iZs, ¢(iZ3) = iZy and ¢(iZy) = iZ;.
Proof. Define a linear isomorphism ¢' of ihg = spang{iZ,}*_, as follows:
(5.4.25) O (iZ,) =iZs, ¢'(iZy) :=1iZy, ¢ (iZ3) = iZs, ¢'(iZ,) :=1iZ.
Then, it is immediate from «,(Z,) = 0, that

"delon) = s, 'dp(an) = a2, 'Pi(as) = an, oclou) = as,
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where ¢ denotes the complex linear extension of ¢' to f. Therefore, the linear
isomorphism ¢’ satisfies

t¢€C(A(O47 6)) = A(047 6)
(see (5.4.3) for A(d4,5)). Hence, Proposition 2.3.2 enables us to obtain an auto-
morphism ¢ of 9, = s0(8,C) such that (i) ¢(gu) C gu, (ii) ¢[;5, = ¢ and (iii)
¢(Xiaa) - X:I:tqﬁ*l(aa)-

a3
‘o
%
o (/ Qly
N,

From (5.4.21) and (5.4.25), one gets
poby=¢oexpmady, iZy = expmady, ¢(iZs) 0 p =0, 0 ¢.

Thus, Proposition 2.2.3 implies that ¢ is an automorphism of g = so(4,4).'? There-
fore, Lemma 5.4.11 comes from ¢|;; = ¢’ and (5.4.25). O

By Lemma 5.4.11 and (5.4.24), one deduces that for g = so(4,4)
(5.4.26) Spre/({£1} x Aut(g)) = { [i(=Z2+ Z5) ], [i(Z1 — Zo+ Z3)] }.

Now, let us show that the above Spr-element i(—Zs 4+ Z3) is equivalent to i(Z; —
Zy+ Z3). The involution ¢ in Lemma 5.4.8 (I = 4) satisfies p(iZy) = i(—22Z, + Z5)
and ¢(iZ3) = i(—Z1+Z3), so that p(i(—Zy+ Z3)) = i(Z, — Z2+ Z3). Consequently,
if the involution ¢ is an automorphism of g, then the Spr-element i(—Z + Z3) is
equivalent to i(Z, — Zy + Z3) via . So, we devote ourselves to confirming that the
involution ¢ is an automorphism of g = s0(4,4). Since p(iZ,) = i(—2Z, + Z,) and
(5.4.21), one perceives that

pob,=gpoexpmady, iZy = expmady, i(—2Z) + Z3) o p.

Since exp 7 ad,, 17, (= 03) is involutive (ref. Paragraph 5.4.3), one can deduce that
exp mady, i(—27;) = id on 9, = s0(8,C). Accordingly, it follows from [Z;, Z5] = 0
that expmady, i(—27Z) + Z3) = expmad,, iZy = 04, so that p o6, = 64 0 ¢. This,
together with ¢(g,) C g, asserts that the involution ¢ in Lemma 5.4.8 is an
automorphism of g = s0(4,4) (see Proposition 2.2.3).'* By (5.4.26) and the above
arguments, we conclude that

Spre/({£1} x Aut(g)) = { [i(=22 + Z3)] },

where g = s0(4,4). Lemma 3.1.1 enables us to see that (g,c4(i(—Z2 + Z3))) is
the pseudo-Hermitian symmetric Lie algebra by an involutive automorphism p :=
exp madg i(—Z>+Z3). Theorem 6.16 in [Bm]| states that ¢,(i(—Z2+23)) = s0(2,4)®
t'. Hence, (g,50(2,4) @ t') is the pseudo-Hermitian symmetric Lie algebra by
p =expmadgi(—Zy+ Z3). For the reasons, we have got the following:

2This ¢ is an outer automorphism of s0(4,4).
13This ¢ becomes an outer automorphism of so(4, 4).
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Proposition 5.4.12. Under our equivalence relation, Spr-elements of DI: g =
50(27,20 — 2j), l = 4 and j = 2, are classified as follows:

Sprg/({£1} x Aut(g)) = { [i(=Z2+ Z5)] }-
Besides, (g,50(2,4) ® t') is the pseudo-Hermitian symmetric Lie algebra by an
involution p = expwady i(—Zy+ Z3). Here, {Z,}a_, is the dual basis of A on,h) =
{aatazi-
5.4.5. Case DI s0(27,21 —2j) : 1 > 5 and j = 2. In this paragraph, we will classify
Spr-elements of so(4, 2] — 4) (see Proposition 5.4.14).
First, we are going to give an involutive automorphism 65 of g, such that

s0(4,2] —4) is related to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means
of f5. Define an inner automorphism 65 of 0; by

(5.4.27) 05 := expmady, 1 25.

Then, it satisfies (c1) 05(gu) C gus (c2) 85(h) C b and (¢3) ‘055, 5) = a5
since iZ; € g, and 05[; = id. By Murakami’s result [Mu3, pp. 297, type DIJ,
one knows that the automorphism 5 is involutive, the simple root system of € is
{—iay, —iv, —iog }t 5 and the Dynkin diagram of A e i) = {10, —iv, —i ks
is as follows:

. 1 1 9 ) 1 —iO[l_l
t=su(2) ®su(2) dso(2l —4): VT o oF . —
—i101 —itag —ioy —10y 5~ 1 —iqy

Here, t:= {K € g,|05(K) = K} and —iv := i(oy +2 Y g +y_1 +ay). Besides,
one also knows that so(4, 2] — 4) is the real form of 9; given by (2.2.3) g = ¢ D ip,
where p denotes the —1-eigenspace of 05 in g,. Now, € is the direct sum of three
simple ideals €, €& and €3, where & := su(2), & := su(2) and & := so(2] — 4).
We assume that {—ic;}, {—iv} and {—ia.}._; are the set of simple roots in
Ak, 8 ﬂiBR), A\ (s, EgﬂiﬁR) and A(€3, &5 ﬂiﬁR), respectively. Then for p = 1,2, 3,

the highest root —iu, € A(€,, €, Nihr) is as follows:

_ZMI = _iala
(5.4.28) —ipy = —iv,

—ipg = —i(az +2a4 + -+ 20y 9+ y1 + ).
Now, let T, (1 < a <) be an element of ihg defined by —iay (To) = 01,4, —iv(Ty,) =
0o0 and —iag(T,) = 0pa (3 < k < [)—that is, {T,}\_, is the dual basis of
HA(&Z.ER) = {—iay, —iv, —iag }L_,. Since a,(Zy) = dup, T € ibg = spang{iZ,},_,
and —iv = i(ay +2 22;22 Qg+ a; 1+ ), the element T, can be written as follows:
T1 — Z(Zl - %ZQ),
T2 = _%ZQ;
Th:i(—ZQ—f—Zh) fOf3§h§l—2,
Thn=i(—5Z>+ 2Z,) forn=1-1,1
By use of (5.4.29), we will deduce the following lemma:

(5.4.29)



74 N. BOUMUKI

Lemma 5.4.13. In the above setting; an element T € Wy is an Spr-element of
g = s0(4,20 — 4) if and only if it is one of the following:

i(—Zy + Z3), i(=Zy+ 71 1), i(—Za+ 7)),
(21— Zo+ 71 1), (Z1—Za+ 7)), i(Z) — Zs).

Here, 2} is a Weyl chamber with respect to T ;5. = {—ian, —iv, —iap i _s;
W = (T € il | — ion (T) > 0, —in(T) > 0, —iog(T) > 0, —ie(T) > 0}.

Proof. Suppose that an element 7' € 207 is an Spr-element of g. Then, arguments
similar to those on the proof of Lemma 4.2.1 enable us to confirm that it satisfies
one of the following seven conditions:

(A) —im(T) =0, —ipe(T) = 0, —ips(T) = 1;
(B) — i (T) =0, —ipo(T) = 1, —ips(T) = 0;
(C) —im(T) =0, —ipe(T) =1, —ips(T) = 1;
(D) —ipa(T) =1, —ipo(T) = 0, —ips(T) = 0;
(E) —im(T) =1, —ipus(T) =0, —ius(T) = 1;
(F) —ipa(T) =1, —ipa(T) = 1, —ips(T) = 0
(G) —im(T)=1,—iux(T) =1, —ius(T) = 1.

Therefore, since (5.4.28), (5.4.29) and {T,},_, is the dual basis of Ip e ibn) =
{—iay, —iv, —iay },_s, the Spr-element T is one of the following fifteen elements:
2) T =i(—%522 + Zz 1),

3)Tl—i( Z2—|—Zl),

E1) T+ T3 = z(21 375+ Zs),

E2) Ty + T 1 =i(Z — Zy + Zp 1),

E3) 1+ T, =i(Z — Zo + Z));

F) T+ Ty =i(Z — Zs);

Gl TN+ T+ Ts=i(Z — 27y + Z3),
G2)Th+Th+ T, 1_z(Zl——ZZJer 1)
G3) T+ T+ T =i(Z, — 22, + 7).
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The Spr-element T has to satisfy 3(T') = =i for every root 5 € A(d;,5)\ Ar(d;, b)
(cf. Lemma 4.1.1). So, it follows from ,(Zy) = d4, and (5.4.3) that the element 7'
is one of the following six elements:

(A1) i(—Zs + Zy), (C.2) i(=Zs + Zi_1),  (C.3) i(—Zs + 7)),
(B.2) i(Z) — Zo + Zis), (B3)i(Z) — Zo+ Z0), (F)i(Z) — Z»).

Conversely, if an element 7" is one of the above six elements, then it belongs to 20}
and satisfies the condition ¢) in Lemma 4.1.1. By Lemma 4.1.1, the element 7" is
an Spr-element of g. Therefore, we have proved Lemma 5.4.13. OJ

Lemma 5.4.13, combined with (4.1.2), yields that

(5.4.30) Sprg/({£1} x Aut(g))

_ { [i(—=Z2+ Z3)], [i(—=Z2+ Z1_1)], [z'(—Z2+Zl)],}
[i(Z1 — Zo+ Z11) ], [i(Zh — Za+ Z) ], [i(Z1 — Z3) ] ’

where g = s0(4,2] — 4). From now on, we will demonstrate that the above Spr-
element i(—Zy + Z;_1) (resp. i(Z1 — Zy + Z;_1)) is equivalent to i(—Z5 + Z;) (resp.
i(Zy — Zy + 7;)). Using the involution #; in Paragraph 5.4.1, one can obtain
0,(i(—Zo+ 2, 1)) = i(—Za+ 7)) and 01 (i(Z1 — Zo+ Z; 1)) = i(Z1 — Za+ 7)) because
of (5.4.1) and 6,|; = 0;. Hence, it suffices to confirm that the involution 6, of 9,
is an automorphism of g = so(4, 2] — 4). The involution ¢ satisfies 0,(iZy) = iZs,
so that it follows from (5.4.27) that

91 e} 95 = eXpﬂ'a,le 91(222) e} 91 = 95 o) 91.

Accordingly, Proposition 2.2.3 assures that the involution f; is an automorphism
of g.'* Here, we recall that 0, (g,) C g. (see Paragraph 5.4.1). For the reasons, the
Spr-element i(—Zy + Z; 1) (resp. i(Z1 — Zs + Z; 1)) is equivalent to i(—Zs + 7))
(resp. i(Zy — Zy + 7)) via 6. Hence, by (5.4.30) we deduce that

1) s/ < au) = { B2 AL A

Let us show that the above Spr-element i(—Zy+ 7;) is equivalent to i(Z, — Zo+ 7).
The involution ¢ in Lemma 5.4.8 satisfies p(i(—Z2+ Z;)) = i(Z1 — Z2+ Z;). Hence,
if ¢ is an automorphism of g = s0(4,2] — 4), then the element i(—Zy + Z;) is
equivalent to i(Z; — Zy + Z;) via ¢. Therefore, we are going to verify that the
involution ¢ is an automorphism of g. Since ¢(iZy) = i(—2Z, + Z5) and (5.4.27),
one has

pols =expmady, p(iZy) o =expmady, i(—2Z1 + Z3) o .

In Paragraph 5.4.3, we saw that an inner automorphism exp 7 ady, 12, (= 63) was
involutive. From that, one deduces exp 7 ady, i(—2Z;) = id. Hence, it follows from
[Z1, Z5] = 0 that expmady, i(—2Z, + Z3) = expmady, iZy = 65. Accordingly, the
involution ¢ in Lemma 5.4.8 is commutative with f5; and thus Proposition 2.2.3

14This 6, is an outer automorphism of so(4, 2] — 4).
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implies that the involution ¢ is an automorphism of g = s0(4, 2/ — 4).'> Therefore,
the Spr-element i(—Zy + Z;) is equivalent to i(Z; — Zy + Z;) via @, and it follows
from (5.4.31) that

Sprg/({£1} x Aut(g))
={li(-%+ Z5)], [i(=22+ 2)], [i(Z1 — Z2)] }.

Now, we will prove Proposition 5.4.14.

(5.4.32)

Proposition 5.4.14. Under our equivalence relation, Spr-elements of DI: g =
50(27,20 — 2j), | > 5 and j = 2, are classified as follows:

Spre/({£1} x Aut(g)) = { [i(=Z2 + Z3) ], [i(=Z2+ Z)], [i(Z1 — Z2)] }-

Besides, (1) (g,50(4,20 — 6) & t!), (2) (g,5u(2,] —2) ® t') and (3) (g,s0(2,2] —
4) @ t') are the pseudo-Hermitian symmetric Lie algebra by an involution p, =
expmadgi(—Zy + Z3), po = expmadgi(—2Zy + Z;) and ps = exprmadgi(Z1 — Z3),
respectively. Here, {Z,}' _, is the dual basis of Ma@,p) = {ag ).

Proof. 1t is shown that

Spre/({£1} x Aut(g)) = { [i(=Z2 + Z5)], [i(=Z2+ Z) ], [i(Z1 — Z2)] }
(see (5.4.32)). About the above Spr-elements, it is known that

cg(i(=Zy + Z3)) = 50(4,2] — 6) & t',
(5.4.33) (i(=Zy+ 7)) = su(2,l — 2) d t',
¢o(i(Z) — Zy)) = 50(2,2l —4) & t'
]

(cf. Theorem 6.16 in [Bm]). Therefore since [ > 5, three Spr-elements i(—Z + Z3),
i(—Zy + 7)) and i(Zy — Z,) are not mutually equ1valent. Besides, by (5.4.33)
and Lemma 3.1.1, we confirm that (g,s0(4,20 — 6) & t'), (g,su(2,l — 2) & t')
and (g,50(2,2] — 4) @ t') are the pseudo-Hermitian symmetric Lie algebra by
an involution p; = expmadgi(—Zy + Z3), p2» = expmadgi(—Zy + Z;) and
ps = exprmadgi(Z; — Zy), respectively. Thus, we have got the conclusion. 0]

5.4.6. Case DI s0(27,2]l —2j) : 3 < j <1—3. Our purpose in this paragraph is to
classify Spr-elements of s0(27, 2] — 2j) (cf. Proposition 5.4.18).

First, let us define an involutive automorphism 65 of g, such that so(27, 2] — 2j)
is related to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of 65. We
define an inner automorphism 6 of 9, = s0(2[, C) by

(5.4.34) 05 := exp mady, i Z;.

Then, it follows from iZ; € g, and Os|; = id that (c1) 6(gu) C gu, (c2) 05(h) C b
and (¢3) "05(11, 7)) = Ay, 5)- The result of Murakami [Mu3, pp. 297, type DI]
means that fg is an involutive automorphism of 0;. Besides, his result also assures
that {—ic, /2] U {—iv} U {—ioy}._;,, is the set of simple roots in A(E,ibg), its
Dynkin diagram is

15This ¢ is an outer automorphism of so(4, 2] — 4).
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t = s0(2j) @ so(2] — 2j):

. 1 1 .
—iv —ioy_,
2 2 1 1 2 2

—iay L —i0j =101~ —i0jye =10l —jq,

and s0(27,20 — 2j) is the real form of 9, given by (2.2.3) g = € @ ip, where ¢ :=
{K € g,|0s(K) = K} and p:={P € g,|0s(P) = —P}. Here, —iv denotes the
lowest root i(ay +2 Zd L ag+ a1+ a;) € Ay, ibr) (see Remark 2.3.1). Now, let
us assume {—io, M1 U {—iv} (vesp. {—icy}_ i11) to be the set of simple roots of
¢, == 50(27) (resp. & := s0(20 —25)). Then, the highest root —ip; € A(ty, & Nibg)
and —ipy € A(ky, €N iF)R) are as follows:

(5.4.35) —Z:/h —i(ay +22u 2au+oz] 1+ V),
—l = (aﬁ—l +2 Z 4o Oy T Q1 + o).

Next, we will describe the dual basis of Il g ;5,) in terms of the dual basis {Z} _,

of IT 5, 5)- Define an element T, € ibr = spang{iZ,}\._, by setting —icv,(T,) = 6,4
(1< s<]—1) iv(Ty) = 0, and —icy(T,) = 014 (j +1 <t <1). Then, the
elements T, (1 < a g [) are as follows:

(T =i(Z1 - 52)),
T, =1i(Z, j) for2<p<j-—1,
(5.4.36) {T= %4,
T,=i(—-Z;+ 2, forj+1<q<Il-2,
| Th=i(—%Zj+2Z,) forn=1-1,1,

because of a,(Z,) = 45 and —iv = ;’(al +2 22;22 g+ ;1 + ay). This (5.4.36) is
the dual basis of IT, ¢ ;5. = {—ia YU {-iv} U {—ia,}{_; - By use of (5.4.36),
we are going to prove Lemma 5.4.15.

Lemma 5.4.15. With the above assumptions; an element T € 208 is an Spr-
element of g = s0(2j, 2l — 27) if and only if it is one of the following:

i(Zjo1 = 2Z5), (=2 + Zjn), (21— Zj + Z1),
(W —Zj+ 7)), (—Zj+Z1), (—Z;+ 7).

Here, {Z,}! _, is the dual basis of {aa}fl 1» and 208 is the positive Weyl
chamber with respect to TL g .0 = { zas STu{—ivy U {—ia} FIE
. —1a(T) >0, ,—ta;_(T) > 0, —(T) > 0,
9t = 17 c ib .1()_ 3-1() (T) |
— i (T) >0, ,—iey(T) > 0

Proof. Suppose that an element T € 20% is an Spr-element of g. Since (5.4.35) and
{T,}\ _, is the dual basis of A e ihe) = {—i0s IZTu{-iv} U {—ia;}i_;,, Lemma
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4.2.2 implies that the element T' is one of the following fifteen elements:

(b’-1.1) 11, (b'-1.2) T;_y, (b'-1.3) T3,
(b -2. 1) J+1 (b -2. 2) 1 - 1) (b -2. 3) Tlv
(b 31)T1+T]+1, (b 32)T1—|—Tl 15 (b 33)T1+Tl,
(b'-3.4) T;—y + Tjy1, (b'-3.5) Tj—y + 11—y, (b'-3.6) T;_y + 17,
(b,37)T—|—T]+1, (b 38)T+Tl 1, (bl39)T+Tl
By use of (5.4.36), let us rewrite the above elements as
(b 1. ].) Z( 2 ) (b—12) i(Zj_l - Zj), (b—13) - %Zj,
(b-2.1) i(— ZJ + ZJH) (b-2.2) i(—+Z; + Zi_1), (b-2.3) i(—+Z; + 7)),
(b-3.1) i(Z1 — 3Z; 4+ Zj11), (b-3.2) i(Zy — Zj + Zi_y),
(b-3.3) i(Z, — Z; + Z)),
(b 3. 4) Z( 2Z + Z]+1) (b—35) Z.(Zj,1 — %ZJ + Zlfl),
(b-3.6) i(Z; Z +7),
(b-3.7) i(— s Z + ZJH) (b-3.8) i(—=Z; + Z;_1), (b-3.9)i(-Z; + Z)).

Due to Lemma 4.1.1, the Spr-element T must satisfy B(T) = =i for all roots
B e A0, b))\ Ar(d,h). Therefore, it follows from (5.4.3) and @,(Z,) = d4, that
the element 7' is one of the following:

(b-1.2) i(Zj,l — Zj), (b-2.1) i(—Zj + Zj+1),
(b-3.2) i(Z; — Zj + Z11), (b-3.3)i(Z; — Zj + ),
(b-3.8) i(—Z; + Zi1),  (b-3.9) i(—Z; + 7).

Conversely, suppose that an element 7" is one of the above elements. Then, by
virtue of (5.4.3) and o, (Zy) = 4, one has B(T") = i for any root 5 € A(v;,h) \
Ar(0,,h). So, the element 7" is an Spr-element of g (cf. Lemma 4.1.1). For the
reasons, we have completed the proof of Lemma 5.4.15. 0]

Lemma 5.4.15 and (4.1.2) allow us to lead the following:

(5.4.37) Sprg/({£1} x Aut(g))

_ { [i(Zj—1—Z;)),  [i(=Z;+ Zj)], [i(Z0 = Z; + Z-) ], }
[i(Z1 = Z;+ 2], [i(=Z; + Zi-0)], [i(=Z;+ Z))] ’

where g = s0(27,2] — 2j). From now on, let us aim to show that the above Spr-
element i(Z, —Z;+ Z;_1) (vesp. i(—Z;+ Z;_1)) is equivalent to i(Z, — Z;+ Z;) (resp.
i(—Z; + Z1)). Recall that the involution #; in Paragraph 5.4.1 satisfies 6, (g,) C gu
and 0y;;. = 01. Since 0;|;; = 0} and (5.4.1), one obtains ¢, (i(Z1 — Z; + Z;—1)) =
i(Z—Zj+ 7)) and 0, (i((—Zj+Zi_1)) = i(—Z;+ 7). Hence, our aim is accomplished,
if the involution 6, is an automorphism of g = s0(2j, 2l — 2j). By using 0:[; = 0}
and (5.4.1) again, we have 0,(iZ;) = iZ; (because 3 < j < [ — 3). Thus from
(5.4.34), it is obvious that #; o 65 = g o 6;. This, together with Proposition 2.2.3,
shows that the involution 6, is an automorphism of g = s0(2j, 2l — 25).'® For the

6This A, becomes an outer automorphism of so(2j, 21 — 27).
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reasons, it follows from (5.4.37) that

_JliZia =251, [i(=Z;+ Zja)],
(5.4.38)  Sprg/({£1} x Aut(g)) = { (7 = 2,4+ 20, [i(=Z+ )] }
Let us show that the above Spr-element i(Z; — Z;+ Z)) is equivalent to i(—2Z;+Z;).
The involution ¢ in Lemma 5.4.8 satisfies p(i(Z) — Z;+ Z;)) = i(—Z; + Z;) because
3 < j <1—3. Consequently, if the involution ¢ is an automorphism of g, then the
Spr-element i(Z, — Z; + Z;) is equivalent to i(—Z; + Z;) via ¢. Hence, we devote
ourselves to confirming that the involution ¢ is an automorphism of g = so0(27, 2] —
2j). Since ¢ satisfies p(iZ;) = i(—2Z, + Z;), and since (5.4.34) 65 = exp 7 ad,, 17},
we comprehend

pols=poexpmady, iZ; =expmady, i(—27Z) + Z;) o .

Since exp 7 ady, 1Z; (= 63) is involutive (ref. Paragraph 5.4.3), one can deduce that
exp mady, ((—27;) =id on 9; = s0(2[, C). Accordingly, it follows from [Z;, Z;] =0
that expmad,, i(—27; + Z;) = expmady, iZ; = 0, so that ¢ 0 s = 5 0 ¢. This
asserts that the involution ¢ in Lemma 5.4.8 is an automorphism of g = s0(27, 2] —
27) (see Proposition 2.2.3).'” By (5.4.38) and the above arguments, we have

(5.439)  Sprg/({1} x Aut(g)) = { BE{J-Z—;;Z-))]], [i(~Z; + Z;1) ], }

where g = s0(2j, 2l — 2j). Henceforth, let us investigate whether the Spr-elements
in (5.4.39) are equivalent to each other or not. In the first place, we will show
Lemma 5.4.16.

Lemma 5.4.16. In the above setting; the Spr-element i(—Z; + Z;) of g is not
equivalent to i(Z;_y — Z;) and i(—Z; + Zj41).

Proof. Suppose that the Spr-element i(—2;47;) of g is equivalent to either i(Z;_; —

Z;) or i(—Z; + Zj11). It is known that

¢o(i(=Z; + Z1)) = su(j, — j) © t',
(5.4.40) ¢(i(Z;_1 — Z;)) = s0(2] — 2,21 — 2j) @ t',
¢o(i(—Zj + Zj41)) = 50(2j,20 = 2] —2) @ t!

(cf. Theorem 6.16 in [Bm]). Hence, the supposition makes us lead j = 2 and
[ = 4, which contradicts the hypothesis 3 < j <[ — 3. Therefore, the Spr-element
i(—Z; + Z;) of g is not equivalent to i(Z;_y — Z;) and i(—Z; + Z;11). Hence, we
have shown Lemma 5.4.16. U

In the second place, let us verify Lemma 5.4.17.

Lemma 5.4.17. In the setting on Paragraph 5.4.6; the Spr-element i(Z;_y — Z;)
of g is equivalent to i(—Z; + Z;11) if and only if 2j = 1. Here, g = s0(27, 21 — 2j).

1"This ¢ becomes an outer automorphism of s0(27,20 — 2j).
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Proof. Naturally, it follows from (5.4.40) that, if the Spr-element T;_; = i(Z;_1 —
Z;) is equivalent to Tj1 = i(—Z; + Z;41), then one has 2j = [. So, it is sufficient
to confirm that, in case of 2j = [, there exists an automorphism ¢ of g satisfying
Y(Tj_1) = Tj41. Suppose that 2j = [ henceforth. Let us construct an automor-
phism ¢ of g = s0(27,2] — 2j) = s0(27,2j) such that ¢(Tj_y) = Tj;1. Define an
involutive linear isomorphism ¢’ of ihr = spang{iZ,}>2, by

V(12y) = (21 — Zaj),

W(iZg) = i(Zojq — 27;) for2<d<2j—2,
WiZaj—1) := (21 — Z),

V'(i124;) := —iZs;.

Then, the linear involution ¢’ satisfies

(o) = agjp  forl <k<2j-1,
W (ang) = —(on + 2375 0 + aojo1 + ay)

(5.4.41)

(5.4.42)

because of a,(Z,) = 4. Here, Y. denotes the complex linear thension of ¢ to 6
It comes from (5.4.42) that the Dynkin diagram of {'1)-(c,)}>2, is as follows:

52]'3 40/0 B
Ba

B2j-1 Baj—2
where 3, := ")%-(a,) for 1 < a < 2j. Hence, the linear involution ¢’ of ihg satisfies
(5.4.43) P (A (025, 5)) = A(025,b)

because the Dynkin diagram of {{4}(c)}?2, is the same as that of A (on;,5) =
{og Y| (cf. Murakami [Mu3, Lemma 1, pp. 295]). For the reasons, there exists

an involutive automorphism ¢ of dy; = s0(4j,C) such that (i) 1 (g.) C gu, (ii)
Yl = " and (iii) ¥(Xia,) = Xitj(a,) (see Proposition 2.3.2). From now on,
we are going to prove that the involution 1) satisfies the two conditions (a) and
(b) in Proposition 2.3.4. The definition (5.4.34) of f; means that 8 = id on b.
Thus, 650 1) = 1) 00 on ihg—that is, the involution ¢ of 0y; satisfies the condition
(a) in Proposition 2.3.4. We want to show that the involution ¢ also satisfies the
condition (b) in Proposition 2.3.4. It follows from (5.4.34) that

2j

A1(02]'76 : 96) = {Znaaa € A(02]'7 6)

a=1

n; =0 or iQ}

(see (2.3.4) for A(Dq5,h : 65)). The coefficient of any root a@ € AT (g, h) with
respect to ap; is either 1 or zero. Therefore, (nj,ny;) = (0,0), (0,1), (2,0) or
(2,1) for each root B = S nga, € Af(0y5,h : 65). On the other hand, it
follows from 9|,z = ¢’ and (5.4.42) that “¢(a;) = a9y (1 < k < 2j —1) and
“h(ag;) = — (a1 +2 3277 ag + agj_1 + ;). Consequently, the coefficient of ‘¢)(3)
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with respect to a; is £2 or zero, for every root 3 € Af(DQj,B : 0s). Hence since
Y], = ¢ and (5.4.43), we deduce that

ltzE(A1(02j,h : 96)) = Aq(095, b : 0g).
So, 1 also satisfies the condition (b) in Proposition 2.3.4. Consequently, the invo-
lution 1 satisfies the two conditions (a) and (b). By Proposition 2.3.4, there exists
an element H € hg such that 1 o exp ady,, 1H € Aut( ) N Aut(g,). Define ¢ by
W :=1p o expady,, iH."® Since expady,, iH = id on h, one has V0 = zﬁ|i,~hR =
So, it follows from (5.4.41) that

U(Tj1) = (i(Zj—1 — Z5)) = i(=Z; + Zj1) = T4
For the reasons, we have proved Lemma 5.4.17. 0]
Now, we are going to show Proposition 5.4.18.

Proposition 5.4.18. Under our equivalence relation, Spr-elements of DI: g =
50(27,20 — 2j), 3 < j <1 -3, are classified as follows:

Sprg/({£1} x Aut(g))
_ { {[i(Zj = Z))), [i(=2Z;+ Z2) ], [i(=2;+ Z)1 }if 2] #1,
{[i(Zj-1—2Z)) [i(=Z; + Z)] } if 2j =1.
Besides, (1) (g,50(2j — 2,20 — 2j) @ '), (2) (g.50(25,2 — 2j — 2) @ t') and (3)
(g,5u(j,l—7)®t') are the pseudo-Hermitian symmetric Lie algebra by an involution
pr =expradgi(Zj_1—2Z;), pp =expmady i(—Zj+Zj11) and ps = expwadgi(—Z;+
7)), respectively. Here, {Z,}\ _, is the dual basis of Thonh) = {ag} ;.

Proof. Two Lemmas 5.4.16 and 5.4.17, combined with (5.4.39), enable us to deduce
the first half of statements on this proposition. The latter half of the statements
follows from Lemma 3.1.1 and (5.4.40). So, Proposition 5.4.18 has been confirmed.

0

5.4.7. Case DIII so0*(2l). This paragraph is devoted to classifying Spr-elements of
$0*(2l) (see Proposition 5.4.22).

Let us define an involutive automorphism 6; of g, such that so*(2[) is related to
gy as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of 7. Let 67 be an inner
automorphism of 9; = so0(2[, C) defined by

(5.4.44) 7 := expmad,, iZ.
Then since 14, € g, and 97|5 = id, one deduces that the automorphism 6; sat-

isfies the conditions in Paragraph 2.3.2; (c1) 07(gy) C gu, (¢2) 62(h) C b and
(€3) “0:(Tx 0, 5) = Map,p- Due to the result of Murakami [Mu3, pp. 297,

type DIII], We know that this automorphism 67 is involutive. Moreover, his re-
sult states that {— iad}g’ll is the simple root system of ¢, the Dynkin diagram of

A e i) = ={- zad}d | 1s

18This + is an outer automorphism of so(2, 2j).
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1 _Z.Of_
] -1

—iOél —iOéQ —Z.Oélfg X

(cf. Remark 2.3.3) and so*(2[) is the real form (2.2.3) g = € @ ip of 9;, where
t:={K € g,|0:(K) = K} and p := {P € g, |0:(P) = —P}. Here, we remark
that the highest root —ip € A(€,ibg) is as follows:

(5.4.45) —ip=—ilag +as+ -+ o).

Denote by 207 the positive Weyl chamber with respect to A e, it) = {—ica}t;
Wi = {T € ibg | —ia(T) > 0, —iay(T) >0, -, —icy_1(T) > 0}.

With the notation, we are going to prove Lemma 5.4.19.

Lemma 5.4.19. In the above setting; an element T € 207 is an Spr-element of
g = 50*(2l) if and only if it is one of the following:

iZl, Z(Zd — Zl) fO?” 1 S d S [ — 1, Z.Zlfl, :tZZl

Proof. Suppose that an element 7' € 207 is an Spr-element of g. For every root
—iy € AA(t,ihr) one obtains —iy(iZ;) = 0, by virtue of A e i) = {—iag}'Z} and
ao(Zy) = 04p. Thus, the element iZ; is a central element of . So, Lemma 4.2.3,
combined with (5.4.45), (%) = 04y and T € ibg = spang{iZ,}._,, implies that
one of the following cases only occurs:

(Cl—l) T = Z(Zd + )\l - Zl) for 1 S d S [ — 1, (C,—Q) T = Z)\l - Zl,

where ); is a real number (A # 0 in Case (¢’-2)). Since T is an Spr-element, it
must satisfy 3(T') = +i for any root 5 € A0, h) \ Ar(9;,h) (ref. Lemma 4.1.1).
Therefore by a,(Z,) = 0, and (5.4.3), the value of \; is determined as follows:

—lor0 ifd=lord=1[-1,

Case (¢'-2): \, = 1.
1 fo<d<i—2 ase (¢-2): A

Case (c/-1): N, = {
Accordingly, if an element T € 207 is an Spr-element of g, then one of the following
cases only occurs:

(-11)T=iZ, (-12)T=i(Z4—27) for1<d<Il—1,
(-1.3) T =iZ_1, (c-2) T =+iZ.

Conversely, if an element 7" is one of the above elements, then it satisfies 5(7") = +i
for all roots B € Ay, ) \ Ag (9, h); and therefore, it follows from Lemma 4.1.1
that the element 7" is an Spr-element of g = s0*(2/). Thus, we have completed
the proof of Lemma 5.4.19. 0

By (4.1.2) and Lemma 5.4.19, we confirm that

(5.4.46) Spw/Hiﬂ}><Au“9”::{ Hgﬂiﬂ%iéIéanj

Y

1§d§l—1}
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where g = s0*(2). The following lemma implies that the above Spr-element i/,
i(Zy — 7)) and iZ;, | are equivalent to i(Z, 1 — 7)), i(Z,_ — Z;) and (7, — Z)),
respectively (2 <k <[ —2).

Lemma 5.4.20. In the setting on Paragraph 5.4.7; there exists an automorphism
¢ of g = s0*(2l) such that

o(iZ1) = i(Z1-1 — Zu),

GiZ0) = i(Ziy —27) for2<k<Il—2
O(iZi1) = i(Z — Zy),

o(iZy) = —iZ).

Proof. The construction of the automorphism ¢ in the proof of Lemma 5.4.17
enables us to obtain an automorphism ¢ of 9, which satisfies ¢(g,) C g, and
¢(ZZI) = Z.(Zlfl - Zl);

d)(ZZk) = i(Zl_k — 2Zl) for 2 S k S [ — 2,

O(iZi1) = i(Z1 — Zy),

o(iZ)) = —i2Z.

Hence, the rest of proof is to verify that ¢ is an automorphism of g = s0*(2(). From
(5.4.44), (5.4.47) and 6, being involutive, it follows that

¢ ob; =exprmady, ¢(iZ;) o p =07 0 ¢.
Thus, Proposition 2.2.3 assures that ¢ is an automorphism of g.!® This completes
the proof of Lemma 5.4.20. O

Lemma 5.4.20 and (5.4.46) mean that
(5448) Spro/ ({£1}xAut(e)) = { [iZ4], [i(Ze— Z)), [i21] | 1 << 1/2)},

where g = s0*(2[). Now, let us investigate whether the above Spr-elements are
equivalent to each other. Theorem 6.16 in [Bm] implies that

(iZ,) = 50" (2l - 2) @ t',
(5.4.49) ¢o(i(Z. — 7)) = su(c,l — c) @ t',
o(iZ)) = su(l) d t',
where 1 < ¢ < [l/2]. This shows that

(5.4.47)

(5.4.50) iZ) is not equivalent to iZ; and i(Z, — Z));
and that for any 1 <¢,¢ <[l/2]
(5.4.51) i(Z.— 7)) is equivalent to i(Z» — Z;) if and only if ¢ = (.

In addition, it follows from (5.4.49) that for 1 < ¢ < [I/2]
i(Z. — 7)) is not equivalent to 7,

(5.4.52)

except for the case of [ =4 and ¢ = 1.

19This ¢ is an outer automorphism of so*(21).
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We will demonstrate that the Spr-element i(Z; — Z;) is equivalent to iZ; in case
of [ = 4, by proving the following:

Lemma 5.4.21. In the above setting (I = 4); there exists an automorphism ¢ of
g = 50*(8) such that p(iZy) = iZ3, (iZy) = iZs, p(iZ3) = iZy and @(iZy) = iZy.

Proof. Let us construct an automorphism which satisfies condition in this lemma.
Define an involutive linear isomorphism ¢’ of ihr = spang{iZ,}:_, by

(5.4.53) O'(i2y) =123, ¢'(i2) =112y, ¢'(iZ3) =12y, ¢'(iZ4) :=1Z,.
Then, by o (Zy) = 04 we have

(5.4.54) fop(an) = as, fei(ae) = s, ‘oi(as) = an, oi() = au,

where . denotes the complex linear extension of ¢ to h. Therefore from (5.4.3),
it is natural that
‘o (A(04,0)) = A(d4, b).

Thus, Proposition 2.3.2 enables us to get an involutive automorphism ¢ of 04, =
50(8,C) such that (i) ¢(g.) C gu, (ii) <p|i,~]]R = ¢" and (iii) P(Xia,) = Xitp(a.)-
By virtue of ¢[;;, = ¢’ and (5.4.53), the rest of proof is to confirm that the
involution ¢ of 94 is an automorphism of g. Since ¢|; = ¢' and (5.4.53), one
obtains ¢(iZ;) = iZ4. So, the involution ¢ of 04 is commutative with 67, by the
definition (5.4.44) of ;. Hence, Proposition 2.2.3 implies that the involution ¢ is an
automorphism of g = 50*(8).?° For the reasons, we have proved Lemma 5.4.21. [

By using two automorphisms ¢ in Lemma 5.4.21 and ¢ in Lemma 5.4.20, we
obtain ¢(¢(iZ,)) = ¢(iZ3) = i(Z, — Z4) in case of | = 4.*' Thus, it is shown that
(5.4.55) i(Z. — 7)) is equivalent to 7y, in case of [ =4 and ¢ = 1.

Now, let us verify Proposition 5.4.22.

Proposition 5.4.22. Under our equivalence relation, Spr-elements of DIII: g =
50*(21) are classified as follows:

Sprg/({£1} x Aut(g))

:{ {[i2:), [i(Z.— 2Z)), [iZ]) | 1 <e<[/2} ifl#4,
{[i(Z.—2Z)], liz)] | 1<e<[l/2]} ifl=4.

Besides, (1) (g,50*(21 —2) @ t'), (2) (g,su(c,l —c) ®t') and (3) (g,su(l) ®t') are
the pseudo-Hermitian symmetric Lie algebra by an involution py = expmadgiZi,
p2 = expradyi(Z. — Z;) and p3 = expwadyiZ;, respectively. Here, {Z,},_, is the
dual basis of I, 5 = {ag} ;.

Proof. Due to (5.4.48), (5.4.50)—(5.4.52) and (5.4.55), we conclude the first half of
statements on this proposition. Lemma 3.1.1 and (5.4.49) enable us to deduce the
latter half of the statements. O

20This ¢ is an outer automorphism of s0*(8).
21This ¢ o ¢ is an inner automorphism of so*(8).
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The consequences in Subsection 5.4 are as follows:

Table I'V.
DI
8-1 g 50(2j+1,20—2j—1):1>4,j=0
Spre/({£1} x Aut(g)) [i(—Z; + Z;+1)] where Zy =0
¢g(i(—=Z; + Zj11)) s0(27+1,21—-25-3) o t!
8-2 g 50(2j+1,20—2j—1):1>4,1<;<1-3
Spre/({£1} x Aut(g)) [iZ: ), [i(—=Z; + Zj1) ] if 25+ 1 #1
[iz,]: if2j+1=1
¢y(12y) 50(2) — 1,20 -25— 1) p t!
¢o(i(=Z; + Zj11)) 50(25 + 1,21 — 25 —3) p t!
9-1 g 50(27,2l —2j): 1 >4,j=1
Spro/ ({1} x Aut(g)) | [i(Z; 1=Z)) |, [i(=Z;+Zj) |, [i((=Z;+ 7)) ]
where Z; =0
¢o(i((Z;-1 — Z))) 50(25 — 2,20 — 2j) @ t!
¢g(i(=Z; + Zj11)) 50(27,21 — 25 —2) t!
¢;(i(—=Z; + Z))) su(j,l —j) ot
9-2 g 50(27,2l —2j): 1 =4, j =2
Sprg/({£1} x Aut(g)) [i(=Zi+ Zj)]
¢o(i(—=Z; + Zj11)) 50(27,21 — 25 —2) @ t!
9-3 g 50(27,2l —2j): 1 >5,j=2
Sprg/({£1} x Aut(g)) | [i(Zj-1—Z;) |, [i(=Zj+Z;1) |, [1((=Z;+Z)) ]
¢;(i(Zj—1 — Z;)) s50(27 — 2,21 —25) @ t
¢;(i(=Z; + Zj11)) 50(27,20 — 25 —2) d t!
¢;(i(—=Z; + Z))) su(j,l —j) ot
9-4 g 60(27,20—2j): 1>6,3<j<[1-3
Spry/({£1} x Aut(g)) | [i(Zj—1 — Zj) |, [i((=2Z; + Zj11) ],
(-2, % Z)]: 2] #1
[i(Zj—1— Z;)), [i(=Z;+ Z)) ] if 2j =
¢(i(Zj 1 — 7Zj)) 50(2) — 2,20 — 2j) @ t!
¢g(i(=Z; + Zj11)) 50(27,21 — 25 —2) t!

85
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¢;(i(—=Z; + Z))) su(j,l —j) @t
DIIT
10 g s50%(20): 1 >4
Sprg/({£1} x Aut(g)) | [i21], [i(Zc = Z) ], [iZ1], 1 < e < [1/2]:
if1+£4
[i(Z. — Z)], [iZ)), 1 < e <[I/2]: if I =4

¢y(12y) s50°(21 —2) ® t!
¢s(i(Z:. — Z1)) su(c,l —c) dt'

¢s(12) su(l) o t'

5.5. Type Eg. This subsection consists of three paragraphs. Fach paragraph is
devoted to classifying Spr-elements of each real form of the exceptional complex
simple Lie algebra 5. First, let us introduce our setting. Let h be a Cartan
subalgebra of e, let {a,}8_, be the set of simple roots in A(eS, h) whose Dynkin
diagram is
eC: gL 2 3 2
a3 ioa; a5 Qg
2 (6}

(cf. Bourbaki [Br, Plate V, pp. 275-276]) and let g, be the compact real form of
ef given by A(ef, h) and (2.3.1). Then, we denote by {Z,}5_, (Z, € b) the dual
basis of I, ¢ §) = {a,}8_,. In these setting, we are going to classify Spr-elements

of each real form of ef.

Notation 5.5.1. In Subsection 5.5, we utilize the following notation:

. — 6
¢ HA(eE,h) - {aa}azl' O O
(e4) Q3 ICM (6773 Qg
Q2

e g,: the compact real form of 5 given by A(e§, ) and (2.3.1).
o {Z.}e-1: the dual basis of I, ¢ ;) = {aa}o—1-

5.5.1. Case EI ¢5(6). Our aim in this paragraph is to classify Spr-elements of eg).

In the first place, we will obtain an involutive automorphism 6; of e§ such that
(1) it satisfies (c1) 01(g.) C gu, (c2) 61(h) C b and (c3) tGI(HA(ng})) =I5, 5 and
(IT) eg() is related to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of
f;. In order to do so, let us construct an involutive automorphism 0y of ¢S such
that (c1) 6o(gy) C gu, (c2) Op(h) C b and (c3) tgo(HA(eéc,g)) = I, f)- By use of
6o, we will define an involutive automorphism ¢, afterward. Let 6 be an involutive
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linear isomorphism of ihr = spang{iZ,}°_, defined by

96(2Z1) = iZﬁ, 96(ZZ2) = iZQ,
06(ZZ5) = iZ3, 96(226) = ZZI

(see (2.3.2) for hg). Then, the complex linear extension 8} of 8} to b satisfies

oc(on) = ae,  'Oyclaz) = az,
(5.5.2) oo (as) = a5, "Ohc(0u) = ou,

oclas) = as,  Oyclas) = an,
since 4(Zp) = 4. This shows that

"o (D[, b)) = Aleg, h)
because At (¢S, b) is as follows:

te; +¢ (1 <i<j<bh),

(5.5.3) A*(e5,h) =12 1

5 (s — €7 — €6 + >0, (—1)"De;) with 37, v(4) even

where a; = (1/2)- (61+68—Z;:2 €), o =€1+€6 and a; =€, — €52 (3 < ¢ <6)
(cf. Bourbaki [Br, Plate V, pp. 275]). Accordingly, Proposition 2.3.2 means that
there exists an involutive automorphism 6 of ef satisfying (i) 6o(g.) C gu, (ii)
Ooliz, = 05 and (iii) Op(X1a,) = Xitgg(an)- It follows from bol,z. = 0 and (5.5.2)
that the involution satisfies the condition (c3) ltHO(I_IA(%C’E)) = (g, j)- So, we have
constructed an involution 6, of e§ which satisfies the three conditions (c1), (c2)

and (c3). Notice that the involution 6, is the same as 6, in Murakami [Mu3, pp.
305, type EIV].22

Qa3 (6%}
t
b o—o | |
a5 Qg

Now, define an automorphism 6, of ¢5 as follows:
(5.5.4) 01 1= by o expmad,g iZ.

Since iZy € g, and 01[; = 6ol it satisfies (c1) 01(gu) C gu, (c2) f,(h) C b and
(c3) tﬂl(HA(e(g’ﬁ)) = Il 5)- In addition, it is the same as the involution 6, in
Murakami [Mu3, pp. 305, type EI|. Therefore, Murakami’s result [Mu3] enables
us to deduce that {—infy 5., =i g 103 4ni50, —10]gnip, 15 the set of simple
roots in A(€, €N ibg), where ¢ := {K € g, |0,(K) = K} and  := a3y + a3 + au,
and its Dynkin diagram is as follows:

b=sp(4): F—F ol
—if ity —idy —id

ZErratum: pp. 305, the last line on [Mu3], read “EI (resp. EIV)” instead of “EIV (resp. EI)”.
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Here —id, 1= —iac|yp, (¢ =1,3,4) and —irj := —in|y;,. Besides, his result also
implies that the highest root —ip € A(, €N ibg) is
(5.5.5) —ip = —i(2n + 200 + 203 + ) |y

and that eg(g) is the real form (2.2.3) g = @ ip of e, where p := {P € g, |61(P) =
—P}. In the second place, let us describe the dual basis of HA(&W,}R) in terms of
the dual basis {Z,}_; of TI5c 5 = {@a}i_;. This description will be needed in
the third place. Since 6,[; = 6p[;, and since Oy|;;, = 0 and (5.5.1), we perceive
that

(5.5.6) ¢ Nibg = spang {i(Z, + Zg),i %4, i(Zs + Zs),i 74}

Nova, let {Td}ﬁzl, Td. € €N iER, denote t}.le dual basis of @ enipy) =
{—m|w5R, —za1|w5R, —za3|w5R, —za4|w5R}. Taking n = as + a3 + a4, (5.5.6) and
a4(Zp) = d4) into consideration, we can obtain

Tl = iZQ)

T2 - Z(Zl + ZG),

T3 — Z(—Z2 —|— Zg —|— Z5),

Ty = i(—Zs + Z4).

(5.5.7)

In the third place, let us search a Weyl chamber 207 of £ for Spr-elements of
g = ¢(). Here, 2; is given by
Wi = {T € tnibg| —in(T) >0, —ic, (T) > 0, —ias(T) > 0, —ics(T) > 0}.

Suppose that an element 7" € 20¢ is an Spr-element of g. Then, Lemma 4.2.4 and
(5.5.5) enablg us to hav§ T="T, bgcause {T;}4_, is the dgal basis of I1 5 ¢ grige) =
{—m|w6R, —zaﬂwER, —za3|w5R, —za4|w5R}. Hence, T = i(—Zy + Z4) comes from
(5.5.7). Consequently, this “T" = i(—Zy + Z;)” is a necessary condition for an
element T' € 20; to be an Spr-element of g = eq(). However, it is not the sufficient
condition. Indeed, there exists a root 8 = ay +ag+2a3+ 3y + 205+ € A(es, b)
(see (5.5.3)), and it follows from «,(Zy) = dap that S(i(—Zy + Z4)) = 2i # +i, so
that the element T' = i(—Z5 + Z,) can not be an Spr-element (cf. Lemma 4.1.1).

For the reasons, the set of Spr-elements which belong to 2J; is an empty set.
Accordingly, by (4.1.2) we assert the following:

Proposition 5.5.2. The set of Spr-elements of EI: eg6) is an empty set.

5.5.2. Case EII eg9). In this paragraph, we will classify Spr-elements of eg2) (cf.
Proposition 5.5.5).

Let us define an involutive automorphism 6, of g, such that eg) is related to
gy as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of ;. Define an inner
automorphism 6 of ¢ by

(5.5.8) 0 := expmadgciZs

(see Notation 5.5.1 for Z3). Then, this automorphism 6, is involutive and satisfies
the three conditions in Paragraph 2.3.2; (c1) 62(gy) C gu, (c2) 62(h) C b and (c3)
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tHQ(HA(%c’E)) = I 5,5 (vef. Murakami [Mu3]). The result of Murakami [Mu3, pp.
297, type EII| states that {—iay, —iv, —ias, —iaq}2:4 is the simple root system of
t:={K €g,|0:(K)= K} and its Dynkin diagram is as follows:

£ — su(2) @ su(6): o L LA
—10 —10y —105 —104
1 —iag
10—

where —iv 1= i(a; 4209+ 203+ 304+2a5+g). Moreover from his result, one knows
that ego) is the real form (2.2.3) g = €@ ip of ¢f (where p := {P € g, |0:(P) =
—P}). Now, let & and €, denote su(2) and su(6), respectively. We assume {—ic; }
(resp. {—iv, —icg, —iag}o_,) to be the set of simple roots in A(E;, € N ibg) (resp.
Ak, 8N iBR)). In this case, the highest root —ipu; € A€, 8 N iBR) and —iuy €
Aty 8N iF)R) are as follows:

(5.5.9) Trh= e
—ipy = —i(V + g + ay + a5 + ag).

From now on, we are going to describe the dual basis {T,}5_, of A, i) =
{—ion, —iv, —ioy, —iog}o_, in terms of {Z,}o_,. The description will be uti-
lized in the proof of Lemma 5.5.3. Define an element T, € iF)R by setting
—iay(T,) = 014, —w(T,) = 024, —tae(T,) = 03, and —iey(T,) = 640 (4 <
q < 6). Then, since T, € ihp = spanp{iZ,}%_, and «,(Z;) = d.4, and since
—iv = i(a1 + 209 + 23 + 3y + 205 + ), one perceives that

e T4 == Z(—%Zg, + Z4), T5 = Z(—Zg + Z5), T6 = Z(—%Zg + ZG)

Let us show the following:

Lemma 5.5.3. In the above setting; an element T € 207 is an Spr-element of
g = eg2) if and only if it is one of the following:

i(Zy — Z3), i(—Zs+ Zs), i(Zy— Z3), i(Z1— Zs+ Zs).
Here, 2% is a Weyl chamber with respect to A e,y = {001, —iv, —ias, —iogYo_y;

Qng:{TEiF)R‘

—iay(T) > 0, —iv(T) >0, —iag >0,
—ZCY4(T) Z 0, —ZCY5(T) Z 0, —zaﬁ(T) Z 0 '

Proof. Suppose that an element T € 207 is an Spr-element of g. Then, Lemma
4.2.2, together with (5.5.9), means that the element 7 is one of the following eleven
elements:

(b'-1) T, (b-2) T, for2<p<6, (b-3)T1+T,for2<p<6
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because {T,}5_; is the dual basis of TI5y 5.y = {—iau, =iV, —iay, —iag}g_y. In
terms of (5.5.10), we can rewrite the above elements as

(b-1) i(Z; — IZ?,)

(b-2.1) — < Z;, (b-2.2) i(Z> — Z3), (b-2.3) i(—2Z3 + Zy),
(b—2 4) Z( Zg + Z5) (b—25) Z(——Zg + Z6)
(b-3 1) ( ) (b—32) Z(Z1 + Z2 Zg), (b—33) Z(Zl — 223 + Z4),

(b-3.4) i(7, — 37,4 75), (0-3.5) i(Zy — Zs + Zs).

Due to the supposition and Lemma 4.1.1, the element T has to satisfy f(T) = +i
for every root § € A(eS, h)\ Ar(eS, h). For the reason, the element 7' is one of the
following:

(b-2.2) i(Zy — Z3), (b-2.4) i(—Z3+ Zs),

(b-3.1) i(Z, — Z3), (b-3.5) i(Z, — Zs + Zs)
since a,(Zy) = dap and (5.5.3). Conversely, suppose that an element 7" is one of
the above elements. Then T € 207, and it follows from «,(7;) = 6, and (5.5.3)
that it satisfies 3(T") = =i for any root 8 € A(eS,h) \ Ar (¢S, h), so that the
element 7" is an Spr-element of g = eg2) (cf. Lemma 4.1.1). Therefore, we have
proved Lemma 5.5.3. 0

By (4.1.2) and Lemma 5.5.3, we deduce that

(5.5.11) Sprg/({£1} x Aut(g))

={[i(Z2 = Z)], [i(=Zs + Z5)], [i(Z, — Zs)], [i(Z1 — Zs + Z6)] },
where g = ¢g(2). The following lemma implies that the above Spr-element i(Z, — Zs)
(resp. i(Zy — Z3)) is equivalent to i(—Z3 + Z5) (resp. i(Z1 — Z3 + Zg)).

Lemma 5.5.4. In the setting on Paragraph 5.5.2; there exists an automorphism )
of g = es(2) such that

(ZZl) Z( Zﬁ) ’QZ}(ZZQ) = Z(Z5 - 2Z6),

(ZZ3) Z(Zg — 226) ’QZ}(ZZ4) == Z(Z4 — 326)7

(ZZ5) Z(Z2 - 226) 1/)(226) = _ZZS

Here, {Z,}5_, is the dual basis of T 5 = {a,}8_,

Proof. Define an involutive linear isomorphism ¢ of ifg = spang{iZ,}%_, by
V' (iZy) == i(Z1 — Zg), '(iZ2) = i(Zs — 2Zs),

(5512) 1/),(223) = Z(Z3 — 2Z6); wl(ZZ4) = Z(Z4 — 3Z6);
1/),(225) = Z(Z2 - 2Z6); wl(226) = —ZZG

Then by a,(Zy) = day, the complex linear extension . of ¢ to b satisfies

We(on) = on, %(02) as,
(5.5.13) “e(as) = ag, “Yr(og) = a4,

tT/)@(OéE)) = Q, t?/)@(aa)
Here, v = —(a; + 205 + 2a3 + 3 + 25 + ag). In terms of (5.5.13), the Dynkin
diagram of {*f(a,)}8_, is as follows:
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%1 B3 B4 %2

Bs

Bs
where (3, := ")¢(ag) for 1 < a < 6. Therefore, we see that
(5.5.14) Wi (Ales, b)) = Aleg, b)

(ref. Murakami [Mu3, Lemma 1, pp. 295]). So, Proposition 2.3.2 assures that there

exists an involutive automorphism ¢ of ¢S satisfying (i) 1/(g.) C gu, (ii) @ifm =

and (iii) ¢(Xia,) = Xitj(a,)- Now, let us prove that the involution ¢ satisfies
the two conditions (a) and (b) in Proposition 2.3.4. From the definition (5.5.8) of
05, it is obvious that 6, = id on h. Thus 6y 0 ) = b 0 65 on ihg. Accordingly,
satisfies the condition (a) in Proposition 2.3.4. Let us show that the involution 1
also satisfies the condition (b) in Proposition 2.3.4. By (5.5.8), one obtains

n3:00r2}

(see (2.3.4) for AT (5, : 6,)). Since wifm =1’ and (5.5.13), we have “1)(a1) = ay,
"h(ag) = as, "P(az) = as, (o) = au, "P(as) = ag, "P(ag) = v = —(a1 + 20, +
203 + 30y +2a5 +ag). The coefficient of each root o € A (eS, h) with respect to ag
is either 1 or zero. Therefore, it follows that (ns,ng) = (0,0), (0,1), (2,0) or (2,1)
for any root 8 = 22:1 NeQy € Af(eg,ﬁ : 0y); and hence the coefficient of /()
with respect to s is £2 or zero, for any root 3 € Af (¢S, b : 6,). Accordingly, since
Yl =" and (5.5.14), we conclude that

ibr
tlz(ﬂl(e(ﬁcaﬁ : 92)) = Al(e(gar) 1 03),
namely the involution ¢ of ef also satisfies the condition (b) in Proposition 2.3.4.
Therefore, 1) satisfies the two conditions (a) and (b). Proposition 2.3.4 enables
us to have an element H € hr such that 1) o exp adeéc 1H is an automorphism of

6
A ) = {z € A D)
a=1

g = ¢¢(2). Define an automorphism v of g by ¢ := 1 o exp adc iH.2* By virtue of
Vlige = wifm =" and (5.5.12), we conclude Lemma 5.5.4. O

Now, let us demonstrate Proposition 5.5.5.

Proposition 5.5.5. Under our equivalence relation, Spr-elements of EII: g = eg(2)
are classified as follows:

Spre/({£1} x Aut(g)) = { [i(Z2 — Z5) ], [i(Z1 — Z5)] }-
Besides, (1) (g,50(6,4) @ t') and (2) (g,50*(10) @ t') are the pseudo-Hermitian
symmetric Lie algebra by an involution p; = expmadgi(Zy — Z3) and py =
expmadyi(Z1 — Z3), respectively. Here, {Z,}5_, is the dual basis of Oaee s =
{aa}g,:l‘

Z3This ¢ is an outer automorphism of e6(2)-
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Proof. Lemma 5.5.4 and (5.5.11) imply that

Sprg/({£1} x Aut(g)) = { [i(Z2 — Z3)], [i(Z1 — Z5)] }-
It is known that
¢(i(Z2 — Z3)) = 50(6,4) @ t',
¢o(i(Z1 — Z3)) = s0"(10) @ '
(cf. Theorem 6.16 in [Bm]). This shows that the Spr-element i(Zy — Z3) is not
equivalent to i(Z; — Z3); and that (g,s0(6,4) & t') and (g,s0*(10) @ t') are the
pseudo-Hermitian symmetric Lie algebra by an involution p; := exp 7 adg i(Z2— Z3)

and p, := expmadgyi(Z; — Z3), respectively (cf. Lemma 3.1.1). Therefore, we have
got, the conclusion. O

5.5.3. Case EIII eg_14y. In this paragraph, we devote ourselves to classifying Spr-
elements of eg_14) (see Proposition 5.5.8).

Let us define an involutive automorphism 63 of g, such that eg_14) is related to
gu as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of ;. Define an inner
automorphism 63 of ¢$ by

(5.5.15) 03 :=expmadgiZi.
Then, since iZ; € g, and 03; = id, one has (c1) 03(g.) C gu, (c2) f5(h) C b and (c3)

tHS(HA(eg,ﬁ)) = HA(eg,r})- Murakami’s result [Mu3, pp. 297, type EIII] states that the

automorphism 65 is involutive, the simple root system of ¢ := {K € g, | 03(K) = K}

is {—ia,}%_,, and the Dynkin diagram of A6 = {—tte 6_, is as follows:

1 2 2 1

t=s50(10)d th: x @—I—O—O .
—i03 |—10yy —10is —100
1 —iCYQ

Moreover, it follows from his result that eg(_14) is the real form (2.2.3) g = €@ ip of
¢S, where p := {P € g, |03(P) = —P}, and that the highest root —iu € A(E,ibhg)
is as follows:

(5.5.16) —ip = —i(ay + a3z + 2a4 + 2a5 + ag).
Now, denote by 20} a Weyl chamber with respect to Iy ;5.) = {—i0 }os;
Wi = {T € ibr| —iaa(T) >0, —iaz(T) >0, -, —iag(T) > 0}.
We are going to search this Weyl chamber 203 of € for Spr-elements of g = eg_14).

Lemma 5.5.6. With the above notation; an element T € 203 is an Spr-element of
g = eg—14) if and only if it is one of the following:

(=21 + Zs), i(—Z1+ Z3), i(—Z1+ Zsg),
iZs, +iZ,.

Here, {Z,}8_, is the dual basis of LN {ag}5_,.
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Proof. Suppose that an element T € 20; is an Spr-element of g. It comes from
HA(E,iﬁR) = {—ia.}8_, and a,(Zy) = dap that —iy(iZ;) = 0 for all roots —iy €
A(8,ibr). So, iZ; is a central element of &. Then, Lemma 4.2.3 and (5.5.16) allow
us to deduce that one of the following cases only occurs:
(C,—l.l) T = Z()\ . Z1 + ZQ), (01—1.2) T = Z()\ . Zl + Zg),
(-1.3) T=i(\- Z, + Z), (¢-2) T =iX\-Z,,
because of o, (Z,) = 0, and T € ihr = spang{iZ,}%_,. Here, \ is a real number
(A # 0 in Case (c’-2)). Since T' € 2} is an Spr-element, Lemma 4.1.1 implies that
it must satisfy 3(T) = =i for every root 8 € A(e5,h) \ Ar(eS, h). Therefore by
@a(Zp) = 0q4p and (5.5.3), the value of A is determined as follows: A = —1 in two
Cases (¢’-1.1) and (¢’-1.2), A = —1 or 0 in Case (¢-1.3), and A = £1 in Case (¢’-2).
Accordingly, the Spr-element T € 20} is one of the following:
(0—1.1) i(—Zl + ZQ), (C—12) i(—Zl + Zg),
(c-1.3) i(=Zy + Zg), iZs, (c-2) £iZ,.
Conversely, if an element 7" is one of the aboye elements,Nthen T' € 20} and it
satisfies 3(T") = =i for any root B € A(es,h) \ A (eS, h); and hence it is an
Spr-element of g (see Lemma 4.1.1). Thus, Lemma 5.5.6 has been proved. O

Lemma 5.5.6, combined with (4.1.2), enables us to lead the following:

(5.5.17) Spry/({£1} x Aut(g))

:{[Z:(—Zl+Z2)]a [i((=Z1+ Z3) ], [i(—ZlJrZG)]a}
[ 7], [iZ:] ’

where g = eg(—14). The following lemma means that the above Spr-element i(—Z1+
Zy) and i(—Z; + Zg) are equivalent to i(—Z; + Z3) and iZg, respectively.
Lemma 5.5.7. In the setting on Paragraph 5.5.3; there ezists an involutive auto-
morphism ¢ of g = eg_14y satisfying
¢(iZy) = —iZh, ¢(iZ2) = i(—221 + Z3), ¢(iZ3) = i(—27Z1 + Za),
¢(iZs) = i(=3Z1 + Z4), (iZs) =i(—2Z1+ Z5), ¢(iZs) = i(=Z1 + Zs).
Here, {Z,}8_, is the dual basis of Oaee ) = {ag¥o_,.

Proof. Let us define an involutive, linear isomorphism ¢’ of ihg = spang{iZ,}°_,
by

¢I(Zzl) = —iZI, ¢,(ZZ2) = Z(—QZl + Z3),
(5518) ¢I(223) = Z(—2Z1 —+ Zz), ¢,(ZZ4) = Z(—321 + Z4),
¢I(ZZ5) = Z(—2Z1 + Z5), ¢,(ZZ6) = Z(—Zl + Zﬁ)

Then since ay,(Zp) = d4p, the complex linear extension ¢f. of ¢’ to h satisfies
t¢fc(041) =V, t¢fc(a2) = Qs3,

(5.5.19) ‘o (as) = as, ‘dr(aa) = au,
t¢(c(a5) = s, t¢(c(a6) = Og.
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Here, v = —(ay + 20 + 2a3 + 3a + 25 + o). Therefore, the Dynkin diagram of
{*él () }S_, s as follows:

%2 5 4 5 5 %6
By
B

where 3, :='¢(a,) for 1 < a < 6. This shows that

" (Dleg, b)) = Aleg, b)
(cf. Murakami [Mu3, Lemma 1, pp. 295]). For the reasons, Proposition 2.3.2 enables
us to get an involutive automorphism ¢ of eg such that (i) ¢(gu) C gu, (ii) @l;5, = ¢'
and (iii) ¢(Xta,) = Xitg(a,)- By virtue of ¢[;; = ¢" and (5.5.18), the rest of proof
is to demonstrate that the involution ¢ of e5 is an automorphism of g = e6(—14)-
From ¢|;;. = ¢' and (5.5.18), it is easy to see that ¢(iZ;) = —iZ;. Thus, since
the involution 63 is defined by (5.5.15), the involution ¢ is commutative with 6.
Therefore, the involution ¢ is an automorphism of g = eg_14) (see Proposition
2.2.3).2* Accordingly, we have shown Lemma 5.5.7. 0

Now, let us prove the following:

Proposition 5.5.8. Under our equivalence relation, Spr-elements of EIIl: g =
es(—14) are classified as follows:

Spro/ ({1} x Aut(g)) = { [i(=Z1 + Z3) ], [i%], [iZ1] }-

Besides, (1) (g,%0*(10) @ t'), (2) (g,50(8,2) @ t') and (3) (g,50(10) D t') are the
pseudo-Hermitian symmetric Lie algebra by an involution p; = expmadgi(—2Z; +
Z3), p2 = expmadyiZs and p3s = expwadyiZ, respectively. Here, {Z,}8_, is the
dual basis of 1 ¢ 5) = {a,}5_,.

Proof. It is immediate from (5.5.17) and Lemma 5.5.7 that
Spro/ ({21} x Aut(g)) = { [i(=Z1 + Zo)], [iZ6], [iZ1] }.
The centralizers of the above Spr-elements in g = eg_14) are as follows:
¢(i(=Z1 + Z3)) = s0*(10) @ t',
(5.5.20) (i) = 50(8,2) D t',
¢(i7,) = 50(10) B t'

(ref. Theorem 6.16 in [Bm]). Therefore, Lemma 3.1.1 implies that (g, s0*(10) @
t'), (g,50(8,2) & t') and (g,50(10) @ t') are the pseudo-Hermitian symmetric Lie
algebra by an involution p; := expmadgi(—Z; + Z3), p2 = expmadyiZs and
ps = expmadyiZy, respectively. Besides, it follows from (5.5.20) that the three
Spr-elements i(—Z; + Z3), iZs and iZ; are not mutually equivalent. Thus, we have
completed the proof of Proposition 5.5.8. 0

24This ¢ is an outer automorphism of eg(_14).
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By Proposition 4.2.5, and by Propositions in Subsection 5.5, we have the follow-

ing:
Table V.
EI
11 g €6(6)
Spre/({£1} x Aut(g)) None
EIT
12 g e6(2)
Spra/ ({1} x Aut(g)) [i(Z — 7)), [i(Z: - %)
¢s(i(Zo — Z3)) 50(6,4) & t!
¢;(i(Z1 — Z3)) 50*(10) @ t!
EIIT
13 g €6(—14)
Sprg/ ({1} x Aut(g)) [i(=21 + Z5)], [126], [121]
¢g(i(—Z1 + Z3)) 50*(10) @ t!
¢g(1Z6) 50(8,2) @ t!
¢g(171) 50(10) @ t'
EIV
14 g €6(—26)
Sprg/({£1} x Aut(g)) None

95

5.6. Type E;. This subsection is devoted to classifying Spr-elements of each real
form of the exceptional, complex simple Lie algebra e¢5. Let us introduce our
setting. Let h be a Cartan subalgebra of %, let A(eS, h) be the set of non-zero
roots of e with respect to b, and let {o,}7_, be the set of simple roots in A(eS, h)

whose Dynkin diagram is as follows:

e(YC: 02 3 4 3 2 01
o] g ia4 as o Oy
2 (6]

(cf. Plate VI in Bourbaki [Br, pp. 279-280]). We denote by g, the compact real form
of ¢% which is given by A(e%, h) and (2.3.1), and we denote by {Z,}7_, (Z, € b)
the dual basis of Il (¢ 5) = {a,}7_,. In the setting, we will classify Spr-elements

of each real form of e%.
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Notation 5.6.1. In Subsection 5.6, we utilize the following notation:

7

o II S=dag . O O

ACH) {0 ams ap Q3 la4 a5 g Qo
(6%))

e g,: the compact real form of ¢ given by A(ef, ) and (2.3.1).
o {Z.}4=1: the dual basis of I, ¢ 5 = {aa}i=1-

5.6.1. Case EV e7(7y. Our aim in this paragraph is to classify Spr-elements of e7(7
(see Proposition 5.6.4).

In the first place, let us give an involutive automorphism 6, of g, such that e
is related to g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of #;. Define
an inner automorphism 6, of ¢% by

(5.6.1) 01 := expmadyg iZ>.

Then, one has (cl) 61(g,) C gu, (¢2) 0:(h) C bh and (c3) tﬁl(HA(e%ﬁ)) RINERS
since iZ, € g, and 91|,~] = id. Tt is shown by Murakami [Mu3, pp. 297, type
EV] that the automorphism 6, is involutive, the simple root system of ¢ := {K €
gu | 01(K) = K} is {—iv, —iay, —ia.}!_s, and its Dynkin diagram is as follows:

1 1 1 1 1 1 1

t = su(8): o—o- , : : —O,
—W —10 — 13— 104 — 105 — 10 —107

Here, —iv denotes the lowest root i(2aq + 2as + 33 + 4ay + 3as + 206 + a7) in
A(gu, ibg) (ref. Remark 2.3.1). Besides, it is also shown that ez(7y is the real form
(2.2.3) g = €D ip of ¢5, where p denotes the —1-eigenspace of f; in g,. Remark
that the highest root —ip € A(E, ibg) is

(5.6.2) —ip=—i(v+ a3+ a3+ as+as+ o+ ar).
Now, we will describe the dual basis {7, }¢_, of I 5.) = {—z;u, —iay, —ia 1 _5 in
terms of {Z,}_,, for the sake of the second place. Let T, € ibg = spang{iZ,}’_,

be an element defined by —iv(T,) = 614, —iay(T,) = 02,4 and —ia.(T,) = Oca
(3 < ¢ < 7). Then, we obtain

Ty = —+2,, Ty = i(Z) — Z), T =i(—32,+ Z3),
(563) T4 - Z(—2Z2 + Z4), T5 == Z(—%Zg + Z5), TG == Z(—ZQ + ZG);
T7 — Z(_%ZQ + Z7)

because of —iv = i(2ay + 2a9 + 3a3 + 4oy + 35 + 206 + a7) and a,(Z,) = d4p. This
description (5.6.3) will be useful immediately. In the second place, let us prove the
following:

Lemma 5.6.2. In the above setting; an element T € g is an Spr-element of
g = exn if and only if it is either i(Z, — Z5) or i(—Zy + Zg). Here, Wy is the
positive Weyl chamber with respect to x50 = {—iv, —iay, —io )1 _s;

—ZCY5(T) Z 0, —zaﬁ(T) 2 0, —ZCY7(T) 2 0

! — {T € ibg ‘ —iv(T) >0, —iay(T) > 0,—iasz(T) > 0, —ics(T) > 0, } .
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Proof. Suppose that an element T € 2J; is an Spr-element of g. Then, due to
(5.6.2) and Lemma 4.2.4, there exists an integer a € {1,2,...,7} satisfying T =T,
because {T,}’_, is the dual basis of MA@, im) = L= —ial, —ia.}7_5. Therefore,
it follows from (5.6.3) that the element 7" is one of the following elements:

— 27, i(Z, — Zy), i(—27Zy + Zs),
(22> + Zy), i(—=22Z2+ Z5), i(—2Z>+ Zs),
(=1 2y + Z7).

Since T € 20; is an Spr-element, Lemma 4.1.1 implies that it must satisfy B(T) =
+i for every root 8 € A(ef, )\ Ar(ef, h). Accordingly, the Spr-element T' is either
i(Zy — Zy) or i(—Zy + Zg), because a,(Z;) = 0, and AT (e, h) is as follows:

te,+¢€ (1<i<j<6), —er+es,
1 )
5 (—er + e+ Z?Zl(—l)”(l)ei) with 320 v(i) odd

where oy = (1/2) - (€1 + €3 — Z;ZQ €p), o =€ +eyand o, =€,1 —€.2 (3<c<7)
(cf. Bourbaki [Br, pp. 279]). Conversely, suppose that an element 7" is either
i(Zy — Zy) or i(—Zy + Zg). Then, the element T" satisfies 3(T") = +i for any root
B e A(eS,h)\ Ari(e€, b) because ay(Zy) = dap and (5.6.4). Consequently, Lemma
4.1.1 allows us to deduce that the element 7" is an Spr-element of g = e7(7). Hence,
we have shown Lemma 5.6.2. OJ

(5.6.4)  AT(eL,h) =

)

By (4.1.2) and Lemma 5.6.2, one sees that
(5.6.5) Sprg/({£1} x Aut(g)) = { [i(Z1 — Z2) ], [i(=Z2+ Ze)] },

where g = e7y. In the third place, we will verify that the above Spr-element
i(Zy — Zy) is equivalent to i(—Zy + Zg).

Lemma 5.6.3. With the above assumptions; there exists an automorphism ¢ of g,
such that it stabilizes g = e7(r) and satisfies

o(iZ)) = i(Zs — 224), o(iZs) = i(Zs — 224), (iZ4) = i(Zs — 324),

QO(ZZ4) = Z(Z4 — 4Z7), (p(ZZ5) = Z(Z3 - 3Z7), (p(ZZG) = Z(Zl - 2Z7),
QO(ZZ7) = —iZ7.

Proof. Let us construct such an automorphism ¢ in this lemma. Define an involu-
tive, linear isomorphism ¢’ of ihg = spang{iZ,}’_, by setting

QOI(ZZI) = Z(Zﬁ - 2Z7), QOI(ZZQ) = Z(Zg — 227), QOI(ZZ;),) = Z(Z5 - 3Z7),
(5.6.6) (’O:%“; = i(Zé— AZ7), 9'iZs) = i(Zy — 321), §'(iZ6) = i(Z) — 2Z7),
QY \thr) = —147.

This, together with «,(Zy)

dap, yields that

t
t

%(03) = O,
%0&:(%) = 0,

"ob(on) = as, ‘yi(as) = s,
(5.6.7) lolan) = au, tilelas) = a,
"op(ar) =v,
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where ¢ denotes the complex linear extension of ¢’ to h. Here, v = — (20 + 2000 +
3az + day + 3as + 206 + 7). Therefore, the Dynkin diagram of {fof(a,)}_, is as
follows:

Br s B i@l By B

B
where 3, :=oi(a,) for 1 < a < 7. So, ¢’ satisfies
(5.6.8) "ot (A(e7,h)) = A(eF, D)

(ref. Murakami [Mu3, Lemma 1, pp. 295]). Consequently, there exists an involutive
automorphism @ of e7 such that (i) $(g.) C gu, (i) @l;5, = ¢" and (iii) $(Xia,) =
Xitp(a,) (see Proposition 2.3.2). From now on, let us show that this involution ¢
satisfies the two conditions (a) and (b) in Proposition 2.3.4. Naturally, 0;|; = id
follows from (5.6.1). Hence, one deduces that 6, o ¢ = ¢ o 6; on iER, and so the
involution @ satisfies the condition (a) in Proposition 2.3.4. We want to verify that
the involution @ also satisfies the condition (b) in Proposition 2.3.4. By virtue of

(5.6.1), we have
ny = 0 or 2}

(refer to (2.3.4) for Af (¢S, b : 61)). Since Plip, = #' and (5.6.7), the involution @
of ¥ satisfies '@(a1) = ag, ‘Plaz) = ao, 'P(as) = as, 'Play) = au, 'Plas) = as,
tp(ag) = ag and 'p(ay) = v = (2a1 + 20y + 33 + 4ay + 3as + 206 + a7). The
coefficient of any root a@ € A% (e, h) with respect to ay is either 1 or zero. So, one
comprehends (ny,n7) = (0,0), (0,1), (2,0) or (2,1), for any root =37 n.a, €
AT (%, : 0)). Consequently, for any root 3 € Af(e$,h : ), the coefficient of
t3(B3) with respect to ap is £2 or zero. Thus, it follows from (5.6.8) that

'B(AL(e5,h:0))) = Ai(ef,h: 0y).
Hence, the involution ¢ also satisfies the condition (b) in Proposition 2.3.4. There-
fore, ¢ satisfies the two conditions (a) and (b). By Proposition 2.3.4, one has
an element H € hg such that @ o exp ad,ciH € Aut(g) N Aut(g,). Define ¢ by
p = P oexpadg iH.?> Since ?lis, = Plig, = ¥ and (5.6.6), we can get the
conclusion. O

Lemma 5.6.3 and (5.6.5) imply that

Spre/({£1} x Aut(g)) = { [i(=Z2 + Z)] },

where g = ez(7). Lemma 3.1.1 assures that (g, cq(i(—Z2 + Zg))) is the pseudo-
Hermitian symmetric Lie algebra by an involution p := expmadyi(—Z> + Zs).
Theorem 6.16 in [Bm] means that ¢g(i(—Z + Zg))) = eq2) @ t'. For the reasons,
we assert the following:

A+(67,h 91 {Z NeQlg € AJr(e77 h)

a=1

25This ¢ is an outer automorphism of e(7).
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Proposition 5.6.4. Under our equivalence relation, Spr-elements of EV: g = e
are classified as follows:

Sprg/({£1} x Aut(g)) = { [i(-Z2 + Zs) ] }-
Besides, (g, es(2) @ t') is the pseudo-Hermitian symmetric Lie algebra by an invo-
lution p = expmadgi(—Zy + Zs). Here, {Z,}._, is the dual basis of Maech) =
{aa a=1"
5.6.2. Case EVI e7(_5). In this paragraph, we classify Spr-elements of e7_5 (see
Proposition 5.6.6).
Let us define an involutive automorphism 6, of g, such that e;(_s) is related to

g, as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of f,. We define an inner
automorphism 6 of ¢% by

0y := expwad e 17

This s, satisfies (c1) 03(g,) C gu, (c2) 02(h) C b and (c3) *05(TT i) = ags, i)
because of iZ, € g, and fy|; = id. Murakami’s result [Mu3, pp. 297 type EVI]
states that the automorphism 6, is involutive, {—iv, —iap}Z,ZQ is the set of simple
roots in A(E, iBR) and its Dynkin diagram is as follows:

1 1 2 2 2 01

t=su(2) ®so(12): o o= , , , ,
—v —io i—za4—za5—za6—za7

1 —iOég
where ¢ := {K € g,|06,(K) = K} and —iv := i(20y + 205 + 33 + 4oy + 3as +
206 + a7). Moreover, it follows that ez(_s) is the real form of el given by (2.2.3)
g = €@ ip, where p denotes the —1-eigenspace of 0y in g,. Now, € is the direct
sum of two simple ideals & := su(2) and €& := so(12). We assume that {—iv} and
{—iap};):2 are the simple root system of €¢; and &, respectively. Then, the highest

root —ipy € Ak, 8 N iBR) and —ips € A(fy, 8N iF)R) are as follows:

(5.6.9) { i =

—ipe = —i(ay + a3z + 2a4 + 205 + 206 + 7).

Let T, be an element of ihg = spang{iZ,}7_, defined by —iv(T,) = 6,, and
—iay(Ty) = 0pa (2 <p < 7). Since a4(Z,) = 04p and —iv = i(2a + 22 + 33 +
day + 3as + 206 + 7)), we have

Ty =—+7, T=i(-Zy+ Z), Ty=i(—5Z + Zs),
(5.6.10) T, = z( 221 +Zy), Ts=i(-321+2Z5), Ts=(—2Z + Zs),
T7 = Z(—%Zl + Z7)

This {T,};_, is the dual basis of Iy, ;5. = {—iv, —ie, };_,. By use of (5.6.10),
we will prove the following:

Lemma 5.6.5. With the above notation; an element T € 20% is an Spr-element of
g = er_s5) if and only if it is either i(—Zy + Zs) or i(—Zy + Z7). Here, 20 is the
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positive Weyl chamber with respect to T ;5. = {-iv, —iap};ZQ;
W2 = {T € ibg| —iv(T) >0, —iax(T) >0, -, —iaz(T) > 0}.

Proof. Suppose that an element T € 207 is an Spr-element of g. Then, Lemma
4.2.2 and (5.6.9) enable us to see that the element T is one of the seven elements
Ty, Ty, T3, Ty, Ty + Ty, T} + T3 and T + T%, because {T,}’_, is the dual basis of
A i) = - —iap}l_,. Hence, it follows from (5.6.10) that one of the following
seven cases only occurs:

T = _%Zla

T=i—Z1+2), T=i(-2Z1+2), T=il—52Z +Z),

T=i-2Z14+2), T=i(-2Z+7Z3), T=1i—2Z+ Z).
Since T € 207 is an Spr-element, it must satisfy §(7) = =i for any root [ €
A(eS,h) \ Ar(eS,h) (cf. Lemma 4.1.1). Therefore, since a,(Z,) = 8, and (5.6.4),
one of the following two cases only occurs:

T=i(-Z1+2Z), T=il—Z1+ Zy).
Conversely, suppose that an element 7" is either i(—Z1 + Z5) or i(—Z; + Z;). Then,
it belongs to 27, and satisfies 3(T") = +i for any root 3 € A(e5, h) \ Ap (e, h),
because of o, (Z,) = dap and (5.6.4). So, Lemma 4.1.1 implies that the element

T' is an Spr-element of g. Accordingly, we have completed the proof of Lemma
5.6.5. 0

Let us demonstrate Proposition 5.6.6.

Proposition 5.6.6. Under our equivalence relation, Spr-elements of EVI: g =
e7(—5) are classified as follows:

Spro/({£1} x Aut(g)) = { [i(=Z1 + Z2) ], [i(=Z1+ Z7)] }.

Besides, (1) (g,es2) @ t') and (2) (g,e5—14) ® t') are the pseudo-Hermitian
symmetric Lie algebra by an involution p; = expmadgi(—2Zy + Z3) and py =
expmadgi(—Z1 + Z7), respectively. Here, {Z,}._, is the dual basis of Maqe ) =

{aa}Z:p
Proof. By virtue of (4.1.2) and Lemma 5.6.5, we deduce that
Spre/({£1} x Aut(g)) = { [i(=Z1 + Z2) ], [i(=Z1 + Z7)] }.

About the above Spr-elements, it is known that

Cg(i(—Zl + ZQ)) = 26(2) ©® tl,
¢g(i(—=Z1 + Z7)) = eg(—10) D!

(cf. Theorem 6.16 in [Bm)]). This (5.6.11) shows that the Spr-elements i(—7; + Z5)
and i(—Z; + Z;) are not equivalent to each other. Besides, Lemma 3.1.1 and
(5.6.11) mean that (g, es2) @ t') and (g, eg—14) @ t') are the pseudo-Hermitian
symmetric Lie algebra by an involution p; := expradgi(—Z; + Z5) and py :=
expmadyi(—Zy + Z7), respectively. For the reasons, we have proved Proposition
5.6.6. U

(5.6.11)
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5.6.3. Case EVII e7_y5. This paragraph deals with the classification of Spr-
elements of e7(_s5) (cf. Proposition 5.6.9).

First, we give an involutive automorphism 65 of g, such that e;(_o5) is related to
gu as in the formulae (2.2.1), (2.2.2) and (2.2.3) by means of ;. Define an inner
automorphism 63 of ef as follows:

(5.6.12) 0 := exp madc iZ7.

In this case, it follows from iZ; € g, and 03]; = id that (c1) 03(gu) C gu, (c2)
f5(h) C b and (c3) t93(HA(e$,6)) = Il (¢ 5)- Due to the result of Murakami [Mus3,
pp. 297, type EVII], one knows that the automorphism 63 is involutive, the simple
root system of € is {—ia.}5_,, and the Dynkin diagram of A e, i) = {—ia}8_, is

as follows:
tE=¢sDth: 01_ 2_ 3_ 2, 01_ X
—zal—zagi—zcu—z%—za(j

2 —iag

Here, € denotes the +1-eigenspace of 63 in g,. Moreover, his result implies that
e7(—25) 18 the real form (2.2.3) g = €@ ip of e, where p:= {P € g, |05(P) = —P}.
Remark that the highest root —ip € A(E,ibhg) is
(5.6.13) —ip = —i(ag + 205 + 203 + 3oy + 2a5 + ).
Next, let us show Lemma 5.6.7.
Lemma 5.6.7. In the above setting; an element T € 203 is an Spr-element of
g = ey(—25) 4f and only if it is one of the following:
i(Zy — Z7), i(Ze — Z7), +iZ;.

Here, 203 is the positive Weyl chamber with respect to HA(?,iﬁR) = {—ia.}’_;

Wi = {T € ibg | —icy(T) >0, —icy(T) > 0, -+, —ic(T) > 0}.
Proof. Suppose that an element T' € 203 is an Spr-element of g. From o, (Zy) = 6,4
and TI5 @ 5.y = {—i0c}e_;, one obtains —iy(iZ7) = 0 for any root —iy € A(E, ibr).

So, the element 227 is a central element of €. Hence, the supposition and Lemma
4.2.3, combined with (5.6.13), assure that one of the following cases only occurs:

(1) T=i(Z + X Z7), (12 T=i(Ze+ X Z:), (-2)T =i\ Z
because T € ihg = spanp{iZ,}!_| and a,(Zy) = 0,4. Here, A is a real number
(A # 0 in Case (¢-2)). Since T' is an Spr-element, it must satisfy 5(T) = =i
for any root 3 € A(eS, h) \ Ar(es, b) (see Lemma 4.1.1). Therefore, by virtue of
ao(Zy) = 04 and (5.6.4), the value of A can be determined as follows: A = —1 in
two Cases (¢’-1.1) and (¢/-1.2), and A = +1 in Case (c¢’-2). For the reasons, the
element 7" is one of the following:

(C—]..].) Z(Zl — Z7), (C—]_2) Z(Zﬁ — Z7), (C—2) :|:ZZ7

Conversely, if an element 7" is one of the above elements, then it satisfies 3(T") = +i
for all roots 3 € A(eS, h) \ A (eF, h) because of a,(Z;) = 4 and (5.6.4). So, the
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element 7" is an Spr-element of g = e7(_25) (see Lemma 4.1.1 again). Consequently,
we have shown Lemma 5.6.7. O

Lemma 5.6.7 and (4.1.2) enable us to deduce that
(5.6.14)  Spro/({£1} x Aut(g)) = { [i(Z1 — Z7)], [i(Zs — Z0)], [i27] },

where g = ¢7(_25). The following lemma means that the above Spr-element i(Z; —
Z7) is equivalent to i(Zg — Z7).

Lemma 5.6.8. In the setting on Paragraph 5.6.3; there exists an automorphism ¢
of g = ey_a25) such that

(=2
SOEZ'ZJ =i(Zs — 2Z7), @(iZa) = i(Z2 — 2Z7),

(,O(ZZ:),) == Z(Z5 — 3Z7),
p(iZy) = i(Zs — 4Z7), @(iZs) = i(Z3 — 3Z7), »(iZs) = i(Z1 — 2Z7),
QO(ZZ7) = —iZ7.
Proof. The automorphism ¢ in Lemma 5.6.3 satisfies
p(iZ1) =i(Zs — 2Z7), @(iZa) = i(Zy —2Z7), ¢(iZ3) = i(Z5 — 3Z7),
p(iZy) = i(Zs — 4Z7), @(iZs) = i(Z3 — 3Z7), »(iZs) = i(Z1 — 2Z7),
Therefore, it suffices to confirm that the automorphism ¢ of g, is an automorphism
of g = er(—25. Since ¢(iZ7;) = —iZ;, and since 5 is involutive and (5.6.12),
¢ is commutative with 3. Accordingly, Proposition 2.2.3 implies that ¢ is an
automorphism of g = e7(_s5).>® Hence, Lemma 5.6.8 has been proved. O

Now, let us demonstrate Proposition 5.6.9.

Proposition 5.6.9. Under our equivalence relation, Spr-elements of EVIL: g =
e7(—25) are classified as follows:

Spre/({£1} x Aut(g)) = { [i(Z — Z7) ], [i%7] }-

Besides, (1) (g, eo(—14) Dt') and (2) (g, e Dt') are the pseudo-Hermitian symmetric
Lie algebra by an involution p; = expmadygi(Zs — Z7) and py = expmadyiZy,
respectively. Here, {Z,};_, is the dual basis of TIxc 5 = {aa}io1-

Proof. It follows from (5.6.14) and Lemma 5.6.8 that
Spre/({£1} x Aut(g)) = { [i(Zs — Z7)], [i27] }-
It is known that
Cg(i(ZG — Z7)) = €p(—14) @& tl,
¢g(iZ7) = e ® tt
(ref. Theorem 6.16 in [Bm]). By (5.6.15), we perceive that the Spr-elements
i(Zg — Z;) and iZ; are not equivalent to each other. Moreover, from (5.6.15)
and Lemma 3.1.1 we deduce that (g, es_14) @ t') and (g, es @ t') are the pseudo-

Hermitian symmetric Lie algebra by an involution p; := expmadyi(Zs — Z7) and
p2 = exp mady iZ7, respectively. Hence, we have got the conclusion. O

(5.6.15)

26T his ¢ is an outer automorphism of e7(_ss).
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The results obtained so far are as follows:

Table VI.
EV
15 g €7(7)
Sprg/({£1} x Aut(g)) [i(=Z2+ Zs)]
¢g(i(—Z2 + Zg)) eg2) Dt
EVI
16 g €7(-5)
Sprg/({£1} x Aut(g)) [i(=Z1+ Z2) ], [i(=21 + Z7) ]
¢g(i(—=Z1 + Z3)) eg2) O t!
cg(i(—=2Z1 + Z7)) eg(—14) D t'
EVII
17 g €7(—25)
Sprg/({£1} x Aut(g)) [i(Zs — Z7)], [iZ7]
¢g(i(Z6 — Z7)) eg(—14) D t'
¢g(127) e @ t'
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By Proposition 4.1.2, and by collecting Tables I through VI, we assert the fol-
lowing theorem:

Theorem 5.6.10. Under our equivalence relation, Spr-elements of g are classified

as follows:
Al
1 g sl(2k+1L,R): k>1
Spre/({£1} x Aut(g)) None
2 g sI(2k,R) : k> 2
Spre/({+1} X Aut(g)) [i7k ]
ATl
3 g su*(2k) 1 k> 2
Spra/ ({£1} x Aut(g)) A

ATl
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4-1 g Eu(j,l—i-l—j):lZl,j:l
Sprg/({£1} x Aut(g)) [i(=Z;+ Zj) ], [i7;), <D <1—
4-2 g 5u(j,l—|—1—j):l23,2§j§l—1
Spre/({£1} x Aut(g)) | [((Za — Zj) ], [i(=Z5+ Zj) ],
[i(Zc — Z; + Zj1a) ], [iZ;],
1<c<[(j-2)/2]+1,
1<d<Il—j:
if l+1#25
[i(Za — 7)) ), [i(Z — Zj + Zj1a) ], [iZ5],
1 S a S .7 - 17
1<e<[(j—2)/2]+1,
c<d<j—c:
ifl+1=2j
BI
5 g 50(2j,2l—2j+1):l22,1§j§l
Sprg/({£1} x Aut(g)) [i(Zj—1 — Z;) ]|, [i(=Z; + Zj41)]
where Zp =0:4if 1 <j<[—1
[i(Zj1 = Z;)] - if =1
CI
6 g sp(LR): 1 >3
Sprg/({£1} x Aut(g)) [i(Za —Z)]. [izi], 1 < d < [1/2]
CII
7 g sp(j,l—j):1>3,1<j<Il-1
Spro/ ({1} x Aut(g)) [i(~2;+ %)
DI
8-1 g 50(2j +1,20—2j—1):1>4,j=0
Spre/({£1} x Aut(g)) [i(—=Z; + Zj11)] where Zy =0
8-2 g 50(2j +1,20—2j—1):1>4,1<j<1-3
Soro/(£1} x Aut(9)) | (2] (75 + Zo)) £ i 25 + 171
[iZy] :if2j+1=1
9-1 g 50(27,2l—2j):1>4,7=1
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Sprg/({£1} x Aut(g))

[i(Zj—1—2Z) ], [i(=Z+Z;1) ), [i(=Z;+21) ]
where Zg =0

0-2 g 50(25,20—2j) 1 1 =4, j =2
Sprg/({£1} x Aut(g)) [{(=Z; + Zjs1) ]
0-3 g 50(27,20 —25) 1 1> 5, j =2
Spre/({+1} x Aut(g)) | [i((Zj1—Z)) ], [i(=Zi+Z) | [i(=Z;+2) ]
9-4 g 50(25,20 —2j): 1>6,3<j<1-3
Spre/({£1} x Aut(g)) | [i((Zj1 = Z)) ), [i(=2Z; + Zj1) |,
[i(~2,+ 2)] : if 25 #1
[i(Zi- = Z)1, [i(=Z;+ Z)] - if 25 =1
DIII
10 g s0*(20): 1 >4
Spro/ ({1} x Aut(g)) | [iZ1], [i(Z. — Z)], [iZi], 1 < e <[1/2] :
if l #£4
[i(Z.—Z)], [iZ], 1<c<[l/2]:ifl=4
EI
11 g ¢6(6)
Spre/({£1} x Aut(g)) None
EIT
12 g €6(2)
Sprg/({£1} x Aut(g)) [i(Z: = Z3) ], [i(Z = Z5) ]
EIIL
13 g ®6(-14)
Sprg/({£1} x Aut(g)) [i(=Z1+ Z3) ], [1Z6], [iZ:]
EIV
14 g €6(—26)
Spre/({£1} x Aut(g)) None
EV
15 g ¢7(7)
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Sprg/({£1} x Aut(g)) [i(—Z2+ Zs)]
EVI
16 g er(—5)
Sprg/({£1} x Aut(g)) [i(=Z1+ Z)], [i((=Z1 + Z7) ]
EVII
17 g e7(—25)
Sprg/({£1} x Aut(g)) [i(Zs — Z7)], [127]
EVIII
18 g es(s)
Spre/({£1} x Aut(g)) None
EIX
19 g es(—24)
Spre/({£1} x Aut(g)) None
FI
20 g fa(a)
Spre/({£1} x Aut(g)) None
FII
21 g fa(—20)
Spre/({£1} x Aut(g)) None
G
29 g B2
Sprg/({£1} x Aut(g)) None

Two Theorems 3.2.1 and 5.6.10 allow us to lead the following:

Corollary 5.6.11. Under Berger’s equivalence relation, simple irreducible pseudo-
Hermitian symmetric Lie algebras (g, p) are classified as follows (where v denotes
the +1-eigenspace of p in g) :

Al
1 | g [slk+1,R):k>1
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p | None
2 g |sl(2k,R): k>2
p |expmadgiZy
v |sl(k,C)at
All
3 g |su*(2k):k>2
p |expmadgiZy
v |sl(k,C)at
ATIT
1] g |suGl+1—j)i>1,j=1
p | (2) expradgi(—Z; + Zj4), < b<I1—j;
(4) expmadgiZ;
v | (2)su(b)®su(l+1—5—0bj)dt
(4) su(j) @su(l +1-j) @t
4-2 g |su(j,l+1—75):1>3,2<j<I1-1
p | (1) expradgi(Z, — Z;), 1 <a<j—1;
(2) expradgi(—Z; + Zj4p), 1 <b<1—j;
(3) expradgi(Z. — Z; + Zj14),
1<e<[(j—2)/2]+1,
1<d<Il—y;
(4) expradgiZ; :
ifl+142)
(1) expradgi(Z, — Zj), 1 <a < j—1;
(3) expradgi(Z. — Z; + Zj14),
1<e<[(j—2)/2]+1,
c<d<j—g
(4) expradgiZ; :
ifl+1=2j
v () su(j—a)@su(l+1—j,a)dt

su(b)dsu(l+1—75—b,j) Dt

(1) su(
(2) su(
(3) su(c,d) ®su(j —c,l+1—j7—d) ot
(4) su(j)dsu(l+1—j)dt

107



108

N. BOUMUKI

5 | g |s0(25,20-2j+1):1>2,1<j<]I
p | (1) expmadgi(Z;—1 — Z;), where Zy = 0;
(2) expradgi(—2Z; + Zj11) :
fl1<j<i-1
(1) expradgi(Z;_1 — Z;) :
ifj=1
v o[ (1) s0(27 —2,20—25+1)p t!
(2) 50(25,20 —2j — 1) & t!
CI
6 g |sp(LR):1>3
p | (1) expradgi(Zy— Z1), 1 <d <][l/2];
(2) expradyiZ
v | (1) su(d,l—d)et!
(2) su(l) @ t*
CII
T g |sp0l—7):1231<j<I-1
p |expmadgi(—Z; + Z))
v |su(j,l—j) et
DI
81 | g |s0(2j+1,20—2j—1):1>4,j=0
p | (1) expmadgi(—Z; + Zj+1), where Zy =0
v | (1) s0(25+1,21—25—-3) t
82 | g |so(2j+1,20—2j—1):1>4,1<j<[—3
p | (1) expradgi(—Z; + Zj11);
(2) expradgiZ; :
if 2] +1#1
(2) expradgiZ; :
if2j+1=1
v [ (1) so(27+1,20—-25-3)p t!
(2) s0(2j — 1,20 —2j — 1) @ t!
01 | g [s0(2j,20—2j):1>4,j=1
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expmadgi(—Z; + Zj11);

1
2
3) expradgi(—Z; + Z))

expmadyi(Z;_1 — Z;), where Zy = 0;

1) s0(2j — 2,20 — 2j) d t!

2) 50(25,20 — 25 —2) @ t!

(
(
(
(
(
(

3) su(j,l—j)ot

50(27,2l —2j): 1l =4, =2

2) expradgi(—Z; + Zj41)

-t

(
(

2) 50(27,21 — 25 —2) & t*

9-3

50(27,20 —2j) : [ >5, j =2

T | &

expmadgi(—Z; + Zj11);

1
2
3) expradgi(—Z; + 7))

1) s0(25 — 2,20 — 25) & t!

2) 50(27,21 — 25 —2) & t*

(
(
(
(
(
(

3) su(j,l—j) ot

50(25,20 —2j):1>6,3<j<[—3

expmadyi(Z;_1 — Z;);
expmadgi(—Z; + Zj11);
exp madg i(— Zj +7):

)
)
)
)
)
)
(
)
)
(
; expmadyi(Z;_1 — Z;);
)
)
)
)
(
)
)
)

(1
(2
(3

if 2j # 1

(1) expradgi(Z;_1 — Z;);
(3) expradgi(—2Z; + 7)) :

if2j =1

(1) s0(2j — 2,21 — 2j) @ t!

(2) s0(25,21 —2j —2) @ t*

(3) su(j,l—j) ot

DIII

10

s0*(20): 1 >4

(1) expmadyiZy;

(2) expradgi(Z. — 7)), 1 <c <

(3) expradgiZ :

[1/2];
if 1 4 4
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(2) expradgi(Z. — Z;), 1 < c < [l/2];
(3) expradgiZ :
ifl=4

s50"(2 —2) @ t!

u(e,l —c) ot

0

(1)
(2)
(3) su(l) o t!

EI

11

€6(6)

None

12

expmady i(Zy — Z3);

1)
2) expmadgi(Z) — Z3)
)

13

expmadgi(—2Z1 + Z3);
exp m adg 1 Zs;
exp madg 12,

50*(10) @ t!

14

15

€7(7)

expmady i(—Z2 + Zg)

26(2) &) tl
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EVI
16 s e7(—5)
p | (1) expmadgi(—21 + Z3);
(2) expradgi(—21 + Z7)
v [ (1) e @t
(2) eo-10) D!
EVII

17 g | er(-25)

p | (1) expmadyi(Zs — Z7);
(2) expradgiZy
)

v | (1) eginy @

(2) eg @t
EVIII
18 g €3()
p | None
EIX

19 g €3(—24)

p | None
FI
20 | 9 | fa
p | None
FII

21 g fa(—20

p | None
G
22 g | 9202
p | None

Remark 5.6.12. At the table in Corollary 5.6.11, each element S satisfying p =
exp mady S is the canonical central element of v relative to (g, v).
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6. A CLASSIFICATION OF SIMPLE IRREDUCIBLE
PSEUDO-HERMITIAN SYMMETRIC SPACES

In this section, we define an equivalence relation on the set of simple irreducible
pseudo-Hermitian symmetric spaces (G/R, Y, J,g), and we give a correspondence
between the equivalence relation on the set of (G/R, 3, J,g) and that on the set of
Spr-elements of g = Lie(G) (see Theorem 6.2.1).

Remark 6.0.13 (Shapiro [Sh, pp. 532]). A simple pseudo-Hermitian symmetric space
G/R is irreducible if and only if g = Lie(G) is a real form of a complex simple Lie
algebra.

6.1. An Equivalence relation. Let us fix a connected Lie group G whose Lie
algebra g is a real form of a complex simple Lie algebra, and let us define an
equivalence relation on the set of simple irreducible pseudo-Hermitian symmetric
spaces. Let (G/R,,%,,J,,8,), p = 1,2, be a pseudo-Hermitian symmetric space
endowed with an invariant complex structure .J, and an invariant pseudo-Hermitian
metric g, (with respect to .J,), where ¥, is an involutive automorphism of G such
that (G, )o C R, C Gx,. Here, (Gy,)o denotes the identity component of Gy, :=
{9 € G|X,(9) = g}. In the setting, we say that (G/Ry, X1, Ji,81) is equivalent to
(G/R3,Xs, Jo, g2), if there exists an automorphism ® of G satisfying the following
four conditions:

(C1) PoX 0d L =1,

(C.2) ®(Ry) = R». B

(C.3) A G-equivariant diffeomorphism & of G/R; onto G/R,, defined by

®(gR,) := ®(g)R, for gR, € G/Ry, is holomorphic or anti-holomorphic—
that is, d® o .J;, = +.J, 0 d®.

(C.4) There exists a non-zero number A € R such that ®*g, = \ - g;.
This is an equivalence relation on the set of simple irreducible pseudo-Hermitian
symmetric spaces (G/R, %, J,g). In the next subsection, we will demonstrate that
this equivalence relation corresponds to the equivalence relation on the set of Spr-
elements of g = Lie(G). For the goal, let us verify the following:

Proposition 6.1.1. Let (G/Ry, %1, J1,81) and (G/Ry, 3, Jo,g2) be two simple
irreducible pseudo-Hermitian symmetric spaces. Then, (G/Ry, %1, J1,81) is equiv-
alent to (G/ Ry, s, Jo, g2) if and only if there exists an automorphism ® of G such
that Po X0 d 1 =3,.

Proof. The necessary condition is obvious. So, we devote ourselves to proving the
sufficient condition. Suppose that an automorphism ® of G satisfies PoX; o ® ! =
¥,. For p = 1,2, there exists an Spr-element S, € g = Lie(G) such that

(a) Ry = Cq(S,), (b) J, = T (c) Xp = AeXpWsp

(cf. Remark 2.1.7). Since R, = C¢(S,) are connected (ref. Shapiro [Sh, pp. 533]),
the supposition “® o ¥ 0o ! = ¥,” enables us to deduce that the automorphism
® of G satisfies the condition (C.2) ®(R;) = Ry. From now on, let us confirm that
a diffeomorphism @ of G/R; onto G/R,, gR; + ®(g)R,, satisfies the condition
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(C.3) d® o J, = +.Jy 0d®. In order to do so, it is sufficient to confirm that
d® o J, = +Jy0d® at the origin o € G/R, because ® is G-equivariant and .J,
are invariant. Identify the tangent space T,(G/R;) (resp. Ts,)\(G/Ry)) with the
—1-eigenspace q; = [S, g] of expmady Sy (resp. g := [Ss,g| of expmady Sz) in
g, henceforth (see Lemma 3.1.1-(1) for q, = [Sy,g]). Here, it follows from (c)
that the differential homomorphism (X,). of ¥, accords with expmadyS,. This
identification allows us to assume that (J;), = adg Si|q, on q1 = T,(G/R;) and
(J2) ) = adg Sa2|q, o0 42 = T4, (G/Rs) (since (b)), and also allows us to assume
that (d®), = ¢|q,, where we denote by ¢ the differential homomorphism of ®.
Accordingly, it follows from ¢(q,) = qo that, if ¢ o ady Sy = £ady Sy o ¢, then the
diffeomorphism ® of G/R; onto G/R, satlsﬁes the Condltlon (C. 3) So, we want to
show that ¢poady S; = +ady S20¢. By the supposition and (2,), = expmady Sp, it
is clear that goexpmady S;0¢~" = expmady Se. Thus, the proof of Theorem 3.2.1
enables us to have d)(Sl) +S5. This shows that ¢ o ady S1 = tady Sy 0 ¢. For
the reasons, the diffeomorphism & satisfies the condition (C 3) dPo J1 +.J,0d®.
Consequently, the rest of proof is to verify that the condition (C.4) holds. So, let
us verify that. Proposition 2.1 in Shapiro [Sh, pp. 530] states that gy (Ji(u),v)
(u,v € T(G/Ry)) is an invariant symplectic form on G/R;. Thus, Theorem 1 in
Matsushima [Ma, pp. 54] and its proof imply that there exists an element W; € g
satisfying

Lle(Rl) = Cg(Wl),
g1(J1(X),Y), = By([W:,X],Y) forany X,Y € q; =T,(G/Ry)
(recall Notation (n4) in Subsection 2.4, for By). Therefore, since Lie(R;) = ¢4(S1)
and dimg ¢g(W1); = dimg ¢4(S1); = 1 (cf. Shapiro [Sh, pp. 532]), there exists a
non-zero number \; € R such that W; = A; - Sy; and hence gi(J;(X),Y), =
A1+ By([S1,X],Y) for any X,Y € q;. This, together with (J;), = ady Sil4,, deduces
that for all vectors X,V € q;
g1(X,Y)o = g1 (J1(X), Ji(Y))o
=Ar- BE([SDX]’ [Sla Y])
=\ - By(X,Y)
because (ady S1)*(Q) = —Q for any Q € q; =[S, g] and g; is a pseudo-Hermitian
metric with respect to J;. Similarly one sees that there exists a non-zero number
A2 € R satisfying
g2( X', Y a0y = A2 - Be(X',Y")  forany X", Y’ € q2 = Ts(,,(G/R>).
Hence, it follows from (d®), = ¢|,, and ¢ € Aut(g

)
g2(dq)(X),d(I)(Y)) =X B (¢(X)a¢ )
By(X
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for all vectors X,Y € q; = T,(G/R;). Hence, A := \y/)\; is a non-zero real number
such that ®*g, = A - g; at the origin 0 € G/R,. Since ® is G-equivariant and g,
are invariant, we conclude that ®*g, = X - g; on G/R;. Thus, the condition (C.4)
holds. Therefore, we have completed the proof of Proposition 6.1.1. 0]

The proof of Proposition 6.1.1 allows us to assert the following:

Lemma 6.1.2. For every simple irreducible pseudo-Hermitian symmetric space
(G/R,X, J,g), there exist an Spr-element S € g = Lie(G) and a non-zero number
A € R such that

(G/R, %, J,g) = (G/Ca(S), Acxprs, Js, X - 8s,)-
Here, J is given in Remark 2.1.7, and gp, is given in Lemma 3.1.1.

6.2. A Correspondence. Fix a connected Lie group G whose Lie algebra g is
a real form of a complex simple Lie algebra, and denote by PHSPs the set of
pseudo-Hermitian symmetric spaces (G/R,%, J,g). Let PHSPs / Aut(G) be the
quotient set of PHSP4 by the equivalence relation defined in Subsection 6.1. With
the notation, we will demonstrate the following:

Theorem 6.2.1. Suppose that all automorphisms of g can be lifted to G.
Then, the following mapping Fy is a bijection of Sprg/({£1l} x Aut(g)) onto
PHSP¢ / Aut(G) :

Fy : Spry/({£1} x Aut(g)) — PHSP¢ / Aut(G) (bijective)
[S] — [(G/CG(S)aAexpWSaJsang)]'

Here, J is given in Remark 2.1.7, and gg, is given in Lemma 3.1.1.

Remark 6.2.2. If G is simply connected or if G is the adjoint group of g, then the
hypothesis in Theorem 6.2.1 is always satisfied (ref. the proof of Lemma in Oshima
and Sekiguchi [Os-Se, pp. 436-437]).

Proof of Theorem 6.2.1. Note that for every Spr-element S € g = Lie(G), the
quartet (G/Cq(S), Aexprss Js: 8s,) is a pseudo-Hermitian symmetric space (recall
Lemma 3.1.1-(3)). First, let us show that the mapping F; is well-defined and is
injective. Let S; and S, be two Spr-elements of g. By the hypothesis, Proposition
6.1.1 and Theorem 3.2.1, we comprehend that the following four conditions are
mutually equivalent:
(1) S is equivalent to Ss.
(2) There exists an automorphism ¢ of g such that ¢ o expradyS; 0 ¢! =
exp 7 adg Ss.
(3) There exists an automorphism @ of G such that ®oAey,rs, 0P~ = Aexp s,
(4) (G/Ca(S1), Aexprsys Js158r,) is equivalent to (G/Cq(S2), Aexprsss Joss 8y )-

Therefore, the mapping F5 is well-defined and is injective. Lemma 6.1.2 implies
that the mapping F; is surjective. For the reasons, the mapping F5, is bijective.
So, we have got the conclusion. O
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6.3. About the equivalence relation defined in Subsection 6.1. Let g be a
real form of a complex simple Lie algebra, and let G’ be the adjoint group of g.
In this case, we can restate the equivalence relation defined in Subsection 6.1 as
follows:

Proposition 6.3.1. With the above assumption; let (G/R,,%,, J,,g,) be two
pseudo-Hermitian symmetric spaces (p = 1,2). Then, (G/Ry,%1, J1,81) is equiva-
lent to (G/Rg, X9, J2, g2) if and only if there exist a non-zero number A € R and a
diffeomorphism f of G/Ry onto G/Ry which satisfy f*gs = A - g1.

In order to prove Proposition 6.3.1, we first demonstrate Lemma 6.3.2.

Lemma 6.3.2. Let (L,/Hy,%,) be an irreducible symmetric space defined by an
involution ¥, of L, where L, is a connected, semisimple Lie group and it is effective
on L,/H, (p = 1,2), and let f be a diffeomorphism of Li/Hs onto Ly/Hy which
satisfies f(01) = 09 and

df (V'xY) = Vde(X)df(Y) for all vector fields X,Y on L,/Hj,

where o, denotes the origin of L,/H, and V? denotes the canonical affine connec-
tion on L,/H, (p = 1,2). Then, there exists a Lie group isomorphism ® of L, onto
Lo satisfying three conditions

(i) PoX) =%500,

(ii) ®(H,) = H,,

(iii) f = @, where ® is an Li-equivariant diffeomorphism of Ly/H, onto Ly/H,
defined by ®(a1Hy) := ®(ay)Hy for aiHy € Ly/H;.

Proof. Denote by ¥, an involutive, affine transformation of (L,/H,, V?) defined by
S,(aH,) :=%,(a)H, for aH, € L,/H, (p = 1,2). Then, it follows from %,(0,) = o,
and f(0;1) = o9 that

(foXiof (o) =0y = 3s(0y).
Besides, since d¥, = —id on T, (L,/H,), one deduces that (d(f o £y 0 f7)),, =
(d¥3)e,- Therefore, the uniqueness of affine transformation (cf. Nomizu [Nol,
Lemma 6, pp. 820]) assures that

(6.3.1) foXiof =%,

Take an element [ € L,, and denote by 7,(/) a transformation of L,/H, defined
by 7,(1)(aH,) = laH, for aH, € L,/H, (p = 1,2). Then, for any [ € L, and
aH, € L,/H,, one obtains 7,(5,(1))(aH,) = Z,(1)aH, = Z,(7,(1)(,(aH,))) by
virtue of ¥, being an involutive automorphism of L,; and thus

(6.3.2) (E,(0) =Z,07,(1)0%, forallelL, (p=1,2).

Let Aut(L,/H,, V) denote the group of affine transformations of (L,/H,, V?) (p =
1,2). For each ¢; € Aut(L,/H;, V'), it is clear that fop, o f~! € Aut(Ly/H,, V?).
Hence, one can define a bijection @ of Aut(L,/H,, V") onto Aut(L,/H,, V?) by

@ : Aut(L,/H,, V") — Aut(Ly/Ho, V?)
¢~ fopiof .
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This mapping ® is a homeomorphic homomorphism of Aut(L,/H;, V') onto
Aut(Ly/Hy, V?), where Aut(L,/H,, V?) has the compact-open topology. Now,
the hypothesis in this lemma, and Theorem 16.1 in Nomizu [No2] enable us to
perceive that

7, : L = 7,(l), is a Lie group isomorphism of L, onto Auty(L,/H,, V7).
Here, Auty(L,/H,, V?) denotes the identity component of Aut(L,/H,, V?). Ac-
cordingly, we can conclude that
(6.3.3) @ : 7 () — for(ly)o f 1, is a Lie group isomorphism

of 7 (Ly) = Auto(Ly/H,, V') onto 75(Ls) = Autg(Ly/Hy, V?).
Let us define a Lie group isomorphism ® of L; onto L, by setting
d ::TQIO(I)'OTI.

First, we will prove that this isomorphism satisfies the condition (i) @03 = ¥y0®.
For any element [; € L, there exists an element [y € Ly such that

for(h)of =)
because of (6.3.3). Then, it follows from (6.3.1) and (6.3.2) that
for(Si()oft=Ffo(Siom(ly)o%)of™
=Yyo0forn(l)of o,
=Y50 Ta(l3) o PO
= 15(3a(l2)).
From this, one obtains the following:
(i (h) = (for(Zi() o f7) =75 (12(Ba(la)) = Za(la);
So(®(h)) = o (5 (fom(l) o f7h) = Ba(ry Hma(le))) = Sa(la).

Consequently, we have shown that ® satisfies (i) ®oX; = Xy 0®. Here, it has been
also shown that ®(l;) = Iy for all elements Iy, I, which satisfy for(l1)of ' = m(ly).
Next, let us verify that

(6.3.4) mo® = fom,

where 7, denotes the projection of L, onto L,/H, (p = 1,2). For any element
I, € Ly, there exists an element I, € Ly such that f o7 (1) o f~' = 75(l5). Then,
one has ®(l;) = ly; and therefore

FQ((I)(ll)) = 7TQ(l2) = l2H2 = TQ(lQ)(OQ)
= (fon(l)o f)(02) = f(ru(l)(01)) = f(m(lh)).

Hence, we have verified (6.3.4). This (6.3.4) leads the condition (iii) f = ®.
The rest of proof is to show that & satisfies the condition (ii) ®(H;) = H,.
For each element h; € H;, it follows from m(h;) = o; and (6.3.4) that
7o (®(h1)) = f(mi(h1)) = f(01) = 0y. Thus, ®(hy) € 75" (02) = Hy, and one has
®(H,) C Hy. On the other hand, for any element hy, € Hy we have my(hy) = 09,
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and so m (D71 (hy)) = f(ma(h2)) = f '(02) = 01. Therefore, it is deduced that
®~!(hy) € 7' (0y) = Hy, so that Hy, C ®(H;). For the reasons, we see that
®(H,) = Hy. Consequently, we have demonstrated Lemma 6.3.2. O

Now, we are in a position to prove Proposition 6.3.1.

Poof of Proposition 6.3.1. We identify g with the Lie algebra of G. The necessary
condition is obvious (recall the condition (C.4) for (G/Ry, %1, J1,81) to be equiva-
lent to (G/Ra, X2, J2,82)). So, we will only prove the sufficient condition. Suppose
that there exist a non-zero number A\ € R and a diffeomorphism f of G/R; onto
G /Ry which satisfy f*gs = X - g;. Then, Theorem 15.5 in Nomizu [No2], together
with f*gy = X\ - g;, implies that f is an affine diffeomorphism of (G/Ry, V') onto
(G/R2,V?). Here, V? denotes the canonical affine connection on G/R, (p =1,2).
Note that for p = 1,2, G/R, is an irreducible symmetric space and G acts on G/R,
effectively (because g is a real form of a complex simple Lie algebra and G is its
adjoint group). There exists an element g € G such that

(12(g) o f)(o1) = 09,

where o, denotes the origin of G/R, (p = 1,2), and 7»(g) denotes a transformation
of G/Ry defined by m(g) (aRQ) := gaRy for aRy € G/Ry. Then, 15(g) o f is an
affine diffeomorphism of (G/Ry, V') onto (G/ Ry, V?) satisfying (1o(g)o f)(01) = 0s.
Lemma 6.3.2 means that there exists an automorphism ® of G which satisfies three
conditions

(i) Po¥) =350,

(ii) ®(R1) = Ry, )

(iii) 2(g) o f = P, where ® is a G-equivariant diffeomorphism of G/R; onto

G/R;y defined by ®(aR;) := ®(a)R, for aR; € G/R;.
By existence of ® satisfying $ o3y = ¥y 0P, and by Proposition 6.1.1, we conclude
that (G/Ry, %4, J1,g1) is equivalent to (G/ Rz, Yo, Jo, g2). Accordingly, if there exist
a non-zero real number A and a diffeomorphism f of G/R; onto G/ Ry which satisfy
[*go = A-g1, then (G/Ry, %, J1, g1) is equivalent to (G/Ra, X9, J3, 82). So, we have
got, the conclusion. O

Remark 6.3.3. By the above proof, one can deduce that in the same setting on
Proposition 6.3.1,

if a diffeomorphism f of G/R; onto G/ R, satisfies f*ge = X - gy,
then it is holomorphic or anti-holomorphic, namely df o J;, = +.J5 o df.

Indeed, in the proof of Proposition 6.3.1, it has been proved that there exist an
element ¢ € G and an automorphism ® of GG which satisfy
(i) PoXy =309,
(i) B(R1) = Fa, ]
(iii) 72(g) o f = @, where ® is a G-equivariant diffeomorphism of G/R; onto
G /Ry defined by ®(aR;) := ®(a)R, for aR; € G/R;.
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The proof of Proposition 6.1.1 implies that ® satisfies the condition (C.3) d® o
J = £J5 0d®. Hence from & = 7»(g) o f, it follows that f is holomorphic or

anti-holomorphic, where we note that 73(¢) is a holomorphic transformation of
(G/Ry, J3).

6.4. Appendix (Conjecture). In 1984, Takeuchi [Ta] has classified totally real,
totally geodesic submanifolds M of each Hermitian symmetric space M with
dimgr M = dim¢ M. By arguments in this paper, we conjecture that in the Lie al-
gebra level, totally real totally geodesic submanifolds M of each simple irreducible
pseudo-Hermitian symmetric space G/R with dimg M = dim¢ G/ R would be clas-
sified as follows, in the case where the induced metric on M is non-degenerate.

AT

1 |G/R|SL(2k,R)/(SL(k,C) x SO(2))

M | 80,(k, k)/SO(k, C)

((SL(k,R) x SL(k,R))/SL(k,R)) x R
2 | G/R | SL(4m,R)/(SL(2m,C) x SO(2))

M | Sp(2m,R)/Sp(m, C)

(SL(2m, C)/SU*(2m)) x SO(2)

All
3 | G/R | SU*(2k)/(SL(k,C) x U(1))
M | SO*(2k)/SO(k, C)

(SL(k,C)/SL(k,R)) x U(1)

4 |G/R | SU*(4m)/(SL(2m,C) x U(1))

M | Sp(m,m)/Sp(m, C)

((SU*(2m) x SU*(2m))/SU*(2m)) x R
ATIT

5 |G/R|SU(i,n—1i)/S(U(k,h) xU(i —k,n—1i—h))
M | SOy(i,n —1i)/(SOg(k,h) x SOy(i — k,n — i — h))
6 | G/R|SU(2a+ 2b,2s + 2t)/S(U(2a,2s) x U(2b, 2t))
M | Sp(a+0b,s+1)/(Sp(a,s) x Sp(b,t))

7 |G/R| SU(2k,2h)/S(U(k,h) x U(k,h))

M | ((SU(k,h) x SU(k,h))/SU(k,h)) x U(1)
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BDI

G/R

SOo(i,n — i)/(SOu(i — 2,n — i) x SO(2))

(SOp(a+ 1,k —a)/SOy(a, k — a))
X (SOp(i—a—1,n—k—i+a)/SOy(i—a—2,n—k—i+a))
for 0 <k <[(n—2)/2] and 0 < a < [(i —2)/2]

G/R

SOo(i,n — i)/ (SOu(i,n — i — 2) x SO(2))

(SOo(b+ 1,k — b)/SOo(b, k — b))
X (SOo(n—i—b—1,i—k+b)/SOg(n—i—b—2,i—k+b))
for 0 <k <[(n—2)/2] and 0 < b < [(n—1i—2)/2]

CI

10

G/R

Sp(n,R)/U(i,n — i)

(SL(n,R)/SOy(i,n — i) x R

11

G/R

Sp(2a + 2b,R)/U(2a, 2b)

Sp(a +b,C)/Sp(a,b)

12

G/R

Sp(2m,R)/U(m,m)

(Sp(m, R) x Sp(m, R))/Sp(m, R)

(SU(m,m)/SO*(2m)) x U(1)

CII

13

G/R

Sp(i,n —1)/U(i,n — i)

(SU(i,n — 1)/ SO (i,n — i)) x U(1)

14

G/R

Sp(2a,2b)/U(2a, 2b)

(Sp(a,b) x Sp(a,b))/Sp(a,d)

DI

15

G/R

SOy (2i,2n — 2i) /U (i, n — i)

(SO0 (i, — i) x SOg(i, 1 — ))/SO(i,n — i)

16

G/R

SO0 (4s,4t)/U(2s, 2t)

(SU(2s,2t)/Sp(s,1)) x SO(2)

DIII

17

G/R

SO*(2n)/U(i,n — i)
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M | SO(n,C)/SOqy(i,n — 1)
18 | G/R | SO*(4m)/U(m,m)

M | (SO*(2m) x SO*(2m))/SO*(2m)
(SU(m,m)/Sp(m,R)) x U(1)

19 | G/R | SO*(2n)/(SO*(2n — 2) x SO*(2))

M | SO(n,C)/SO(n —1,C)

20 | G/R | SO*(2n)/U(n)
M | SO(n,C)/SO(n)
21 | G/R | SO*(4m)/U(2m)

M | (SU*(2m)/Sp(m)) x R

EII
22 | G/R | Eg2)/(S00(6,4) x SO(2))

M | Fyu/SOo(5,4)
Sp(4,R)/(Sp(2,R) x Sp(2,R))
Sp(3,1)/(Sp(2) x Sp(1,1))

23 | G/R | Esz)/(SO*(10) x SO*(2))

M | Sp(4,R)/Sp(2,C)

EIII
24 | G/R | Eg(—14)/(SO*(10) x SO*(2))

M | 5p(2,2)/5p(2,C)

25 | G/R | Eg(_14)/(S00(8,2) x SO(2))

M | Fy_20)/S05(8,1)
Sp(2,2)/(Sp(1,1) x Sp(1,1))

26 | G/R | Eg(_14)/(SO(10) x SO(2))

M | Fy_20)/SO(9)
Sp(2,2)/(Sp(2) x Sp(2))

EV
27 | G/R | Exz)/(Es2) x SO(2))
M | SL(8,R)/Sp(4,R)
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SU*(8)/Sp(3,1)

(Eo)/ Faw) X R

EVI

28| G/R | Er(—5)/(Es@) x SO(2))
M | SU(4,4)/Sp(4,R)
SU(6,2)/Sp(3,1)

(Eo2)/ Fuy) x SO(2)

29 | G/R | Er(—s)/(Eg(-19) x SO(2))
M | SU(4,4)/Sp(2,2)
(Es(10)/Fi20) x SO(2)
EVII

30 | G/R | Eq(—25)/(Es(—12) X SO(2))
M | SU*8)/Sp(2,2)
(Eo(—26)/ Fa(—20)) x R

31| G/R | Ey_as/(Es x SO(2))

M | SU*(8)/Sp(4)
(Eo(26)/F1) x R
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