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ABSTRACT. In an infinite network N without positive potentials (called a par-
abolic network), a generalized version of the Dirichlet problem is solved in an
arbitrary subset of N. This solution is shown to play a pivotal role in the
potential-theoretic study in N, such as the construction of an analogue of the
logarithmic potential in NV, balayage, harmonic and superharmonic extensions,
condenser principle etc.

1. INTRODUCTION

An infinite electrical network is characterized mathematically by imposing a
specific analytic structure on an infinite graph, to each branch of which is associated
several electrical parameters. Unrelated to an electrical network, a Markov chain
is determined by a countable state space X and a stochastic transition matrix
(p(x,y)), =, y in X and p(z,y) being the probability of transition from x to y.
However, the similarities between these two structures are striking (see Zemanian
[9] and Woess [6]).

In these two cases, the common feature is to start with a countable set X of
nodes and a countable set Y of edges, each edge [z,y] joining a pair of nodes z
and y; further, with each edge [z, y] is associated a real number t(z,y) > 0 called
the conductance. We say that N = {X,Y, ¢} determines an infinite network. Then
follows the classification of infinite networks into two classes, hyperbolic and para-
bolic networks, which correspond to the transient and the recurrent Markov chains
(see Yamasaki [7] and [8]). A tree as defined by Cartier [3] can be considered
as a special case of an infinite network without circuits. There are many results
proved in the frame work of a hyperbolic network or tree, but not so in parabolic
networks. In this note, pursuing the analogy of a parabolic network N with a par-
abolic Riemann surface R, we construct a function on /N similar to the logarithmic
potential in R, and study the Dirichlet problem, balayage, minimum principle and
condenser principle in this context. The proofs of the theorems in this article are
so arranged as to show the important role played by the Dirichlet solution in the
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2 V. ANANDAM

potential-theoretic study of networks. Using the fact that there are no circuits in
a tree, some of the results found here can be proved differently in the context of
trees (see [1] and Bajunaid et al.[2]).

2. PRELIMINARIES

Let X be a countable set of points (here called nodes), some of them pair-
wise joined by edges; we say that the edge [z,y] joins the nodes z and y. Let
Y denote the set of edges which are assumed to be countable. Denote x ~ y to
mean that there is an edge [z, y] joining = and y, in which case the nodes = and
y are said to be meighbours. A path joining x and y is a collection of vertices
{z = xp,21,...,2, =y} where z; ~ x;11 if 0 < i < n—1; for this path, the length
is n. The shortest length between = and y is called the distance between x and y.
We also assume that given any two nodes x and y, there exists an associated real
number t(x,y) > 0 such that ¢(z,y) > 0 if and only if z ~ y. Then N = {X Yt}
is called an infinite network if the following conditions are satisfied.

(1) There is no self-loop in N, that is no edge of the form [z, x] in V.
(2) Given any vertices x and y in X, there is a path connecting x and y.
(3) Every x € X has only a finite number of neighbours.

0
For any subset F of X, we write £ = {x : z and all its neighbours are in F'}

0 0
and OF = E\E. Note that for a subset E, we have £ = F' if and only if £ = X.
An arbitrary set F in X is said to be circled if every node in OF has at least

0
one neighbour in E. Example: Let e be a fixed node. For any node z, let |z|
denote the distance between e and z. Then B, = {z : |x| < m} is circled. Write
V(E) to denote the union of E and all the neighbours of each node of E, that
is V(E) = EU{y : y ~ z for some € E}. In particular, V(z) denotes the set
consisting of z and all its neighbours. Remark that if F is connected, V(F) also is
connected. Also note that for any set E, V(E) is circled. For, if FF = V(E), then

0
E C F. Hence if z € OF, then by definition z has a neighbour in £ and hence in
0
F.

0°¢ 0
Proposition 2.1. Let A be circled, and B = A . Then 0B = 0A and B = A¢;
also, B is circled.

0° 0
Proof. Note B =A = A°UO0A. Let z € 0A. Then, for some y € A, y ~ z; thus
z € A C B, but a neighbour y of z is not in B, hence z € dB. Conversely, let

0 0
b € OB. Then, b ~ a for some a € X\B = A. Since a € A and a ~ b, we should

0 0
have b € A\ A, which means b € A. Consequently, 0B = JA and B = A°“.
To show that B is circled, take b € 0B. Since dB = 0A, b should have a

0
neighbour a € A° = B. Hence B is circled. OJ
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0 0 0
Proposition 2.2. Let E be an arbitrary set and F = V(E). Then E = F and
OF C OFE; also F' is the largest circled set contained in FE.

Proof. By definition, % C ;7. Since F' C E, we also have ;7 C LOU. Hence LUU = jg'. To
see OF C OF, first note that aFﬂﬁo? = 6Fﬂlg' = (). Then, LO?UGF = ;WU()F =FcC
E = LOU U OFE implies that OF C OF. V(E 0) is circled by definition and V(LO?) CE.

Suppose the circled set A C F. Then A C E Let x € QA. Then there exists
z € A such that x ~ z. Since z € E and z ~ x, we find that x € F. Hence
aACF.ThenAz?lUé’ACEU@F:F’UaF:F. O

We consider now functions defined on subsets of X. All functions are real-

valued. Given a function f on V(z), define Af(x) =" t(x, ;) [f(x:) — f(z)] =
—t(x) f(2) + D,y tw, 2:) f (i), where t(x) = > t(z,7;) and note t(z) > 0 for
any x € X. We say that f is harmonic (resp. superharmonic) at z if Af(x) =0
(resp. Af(x) < 0). A function f defined on an arbitrary set E is said to be
harmonic (resp. superharmonic) on E if and only if Af(x) =0 (resp. Af(x) <0)
0

for every x € E.

Note. Some authors prefer to define a real-valued function u as a harmonic function
on E provided its Laplacian is 0 at every node of E. This presupposes that u is
defined on V(E). But for the topics we discuss here, such as the Dirichlet problem,
the minimum principle, the condenser principle etc. u is either not defined outside
E or its value outside E is not of consequence. Hence, it becomes important to
distinguish between the interior and the boundary nodes of E. Thus, the Laplacian

can be defined only for the interior nodes of F and a similar operator at the
boundary nodes is the inner normal derivative [1].

0
Mimimum Principle. Let E be circled and E be connected. If s is a lower bounded

0
superharmonic function on E and attains its minimum at a node in E, then s is
constant.

A variation of this principle is the following.

Proposition 2.3. Let E be an arbitrary proper subset of X. Let s be a superhar-
monic function on E, attaining its minimum on E. Then infsg s = infg s.

Proof. Let a = infygg s and f = infgs. Then, a > f > —oo. Suppose a > [.
Then s(z) = [ for some z € LO?, by hypothesis. Choose y ¢ E. There is a path
{z = xo,x1,...,2, = y} connecting z and y. Let ¢ be such that =} € LUU for all
k<iand ;¢ %. Then i < n.

Now, Bt(z) = t(2)s(z) > Y2, ., t(z,zi)s(zi) > B t(z, 2:) = Bt(2).



4 V. ANANDAM

It is clear then s(z;) = j for every z; ~ z. In particular s(z;) = 3. Continuing

0 0
this process, we see that s(z;11) = 5. Now z;41 ¢ E, but 2,41 ~ z; € E. Hence
xip1 € OE. Consequently, inf,csp s(z) < (3, which is a contradiction. This proves
a=[. O

Definition 2.4. An infinite network N = {z,y,t} is called parabolic if and only
if any lower bounded function s on X is a constant if As < 0 on X; otherwise X
is called a hyperbolic network.

The minimum principle stated in Proposition 2.3 is mostly useful in case of
a finite set F where the condition that the superharmonic function s attains its
minimum on F is superfluous. However in the case of a parabolic network, we have
the following Minimum Principle.

Theorem 2.5. Let A be an arbitrary proper subset in a parabolic network. Let u
be a lower bounded superharmonic function on A such that u > « on 0A. Then
u > on A

Proof. Let v = inf(u, ). Then v is superharmonic on A and v = o on JA. Suppose

0
for some z € A, v(z) = f < . Define s(z) =v(x) if x € A, and = a if z € X\ A.
Then s is superharmonic on X and since it is lower bounded on X also, s is a
constant which should be «a, contradicting the fact that s(z) =v(2) = <a. O

Remark 2.6. The above minimum principle is a characteristic property of parabolic
networks. For, if NV is a hyperbolic network, there exist superharmonic functions
p > 0 on X such that infx p = 0. Hence if A is the complement of a finite set, then
inf 4 p = 0 while infg4 p > 0.

3. DIRICHLET PROBLEM ON AN ARBITRARY SET

In this section, the solution to the Dirchlet problem on an arbitrary subset of
a network is obtained. This becomes an important tool in proving, in the next
sections, many of the basic properties of superharmonic functions in a parabolic
network.

Theorem 3.1 (Dirichlet problem). Let E be a proper subset (finite or not) of a
parabolic or hyperbolic network X. Let FF = V(E). Suppose f is a real valued
function on F\E. Let u (respectively, v) be superharmonic (respectively, subhar-
monic) on F such that v < f < u on F\E. Then there exists a function h such
that v < h <wu on F, h=f on F\E and h is harmonic at every node of E.

Proof. Let p= fon F\E,and p=wuon E. Let ¢= f on F\F, and ¢ = v on E.
0

Recall that £ C F. Then p is superharmonic and ¢ is subharmonic at each node
of F; and ¢ < p on F. Let F be the family of functions s on F' such that s = f on
F\E, s is subharmonic at each node of F and s < pon F. Let z € E. Then for
any s € F, t(2)s(z) < D t(z, 2z)8(z:) < Dotz zi)p(z) < t(2)p(2).

Define s;(z) = s(z) if # # z, and s1(z) = > t(tz(’zz)i)s(zi) if z = z. Then s(z) is
subharmonic at each node of E, s;(x) is harmonic at x = z; sy = f on F\F; and
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s; < pon F. Hence s; € F. Consequently, if we define h(z) = sup s(z), for all
s € F, then h(z) is harmonic at each node of E. Moreover, h = f on F\E and
v<qg<h<p<uonkF. O

Corollary 3.2. Let E be an arbitrary subset of a parabolic network X. Let F =
V(E). Let f be a bounded real-valued function on F\E. Then there ezists a unique
bounded function h on F such that h = f on F\E and h is harmonic at each node
of E.

Proof. Let « < f < f on F\E. Then take u = 8 and v = « in the above theorem
to arrive at the existence of h with the stated properties.

To prove the uniqueness, suppose h; is another bounded function on F' such that
hy = f on F\FE and h; is harmonic at every node of E. Then take ¢ = h — hy
so that ¢ is bounded on F', harmonic at each node of E and ¢ = 0 on F\FE. Let
o = ¢+ on F and ¢y = 0 on X\F. Then ¢, is bounded subharmonic on X, so
that ¢¢ is a constant which should be 0. Hence ¢ < 0 on F'; similarly ¢ > 0 on F,
so that ¢ = 0. 0]

Corollary 3.3 (See Theorem 2.3 [1], Classical Dirichlet Problem). Let E be an
arbitrary subset of a parabolic network X, such that OF is finite (in particular, E
is any finite set). Suppose f is a real valued function on OE. Then there erists
a uniquely determined bounded function h on E such that h = f on OE and h is

0
harmonic at every node of E.

Remark 3.4. Since the proof of the above Theorem 3.1 does not convincingly show
that h(z) is harmonic at each node of FE, the referee suggests the inclusion of a
note on the Perron family. Lemma 3.4 and Theorem 3.5 are the referee’s. See
also Constantinescu and Cornea [4, Folgesatz 1.3] and Premalatha and Kalyani [5,
Theorem 3.3].

Recall that V(z) = {y € E: y ~ xz} U {z}. For a real-valued function u on E,
0

and an arbitrary node a € F, the discrete analogue P,u of the Poisson integral is
denoted by Pyu(z) = u(z) if z # a and Pyu(a) =Y o tgf;;)u(z)

0
Lemma 3.5. Assume that u is superharmonic on E. Let a € E. Then Pyu is
superharmonic on E, harmonic at a and Pyu(x) < u(x) on E.

Proof. Since u is superharmonic at a, we have Pyu(a) < u(a). For z ¢ V(a),
we have P,u = uw on E NV (x), so that AP,u(z) = Au(zx) < 0 at each = €

0 0
E\V(a). In case, z € ENV(a), we have for z # a, APu(z) = —t(z)Pu(x) +
Yotz 2)Pu(z) < —t(z)u(z) + )2, t(z, 2)u(z) = Au(z) < 0; for = a, we have
AP,u(a) = —t(a)Pyu(a) + Y, t(z,a)u(a) = 0. O
A non-empty subset J of superharmonic functions on E is said to be a Perron
family if it satisfies the following conditions.
(1) For any vy, vs € J, there exists v € J such that v < min(vy, vy).
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0
(2) Poue J forevery u € J and a € E.
(3) There exists a real-valued function ug on J such that v > uy for allv € J.

Theorem 3.6. If J is a Perron family on E, then h(x) = inf{v(z) : v € J} is
harmonic on E.

Proof. By (3), we have h(z) > uo(z) on E. Let a € 109 be fixed arbitrarily. Since
V() is a finite set, we can find a sequence {v{™} in J for every = € V (a) such that
vi = h(x) as n — oo. By (1), there exists u, € J such that u, < min{o{"”,z €
V(a)}. Then, u,(z) — h(z) as n — oo for every x € V(a). Let u = P,u,. Then
ur € J and ul(z) — h(z) as n — oo for every x € V(a) and u} is harmonic at a.
Consequently, we have Ah(a) = lim,,_,o, Au’(a) = 0. Thus h is harmonic at a. O

4. SOME POTENTIAL-THEORETIC RESULTS IN A PARABOLIC NETWORK

By making use of the Dirichlet solution in a parabolic network N, an analogue
of the logarithmic potential in N is constructed in this section. Also by the same
method, balayage, harmonic and superharmonic extentions, condenser principle
etc. are investigated.

Theorem 4.1 (Green function, see Yamasaki [7, Theorem 3.2]). Given any finite

0
subset E of X and a node e € E , there exists a unique (non-harmonic) super-

harmonic function g > 0 on E such that g = 0 on OE, and Ag(x) = —6.(x) on
0
E.

Proof. Let B be the set of neighbours {z;} of e. Let |x| denote the distance of a

0
node z from e. Choose m large so that B,, = {z : |z| < m} is such that B,, D F.
Let A = B,,\{e}. Then 0A = BU JB,,. Find the Dirichlet solution ¢ on A with
boundary values 1 on B and 0 on dB,,. Extend ¢ to B, by setting ¢(e) = 1. Then
¢ is superharmonic on B,,, with 0 < ¢ < 1.

Let F be the family of superharmonic functions s > 0 on B,, such that 0 < s <1
and s(e) = 1. Let u(z) = inf s(z), for all s in F. Since ¢ € F, it is clear (following
the proof of Theorem 3.1) that 0 < u < 1, u(e) = 1, u(z) = 0 on dB,, and u is

0
harmonic at every node of B,,\{e}; u(z) is not harmonic at x = e, for otherwise
v = 0 by the minimum principle on B,,.

Now, let h be the Dirichlet solution on E, with boundary values u on OF. Let

0
v(xz) = u(x)—h(z) on E. Then v(zx) is harmonic at every node in F\{e}, Av(e) <0

and v > 0 on E. Define g(z) = 72(1“;()8) on E. Then g(z) > 0on E, g =0 on OF

0
and Ag(x) = —d.(z) on E.
To prove the uniqueness, suppose there exists another function ¢g; > 0 on F such

0
that g1(x) = 0 on OF and Agy(z) = —d.(z) on E. Let ¢(z) = g(x) — g1(x) on E.
0

Then A¢(z) =0 on E, ¢ =0 on OF and ¢ is bounded. Hence, by the minimum
principle, » =0 on E. 0
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Lemma 4.2 (Harmonic Extension). Let h be a harmonic function defined outside
a finite set in a network. Let e be a fixed node. Then there exists a harmonic
function u on X\{e} such that (h — u) is bounded outside a finite set.

Proof. For a node z, let |z| denote the distance of x from the fixed node e. Let m
0 c

be sufficiently large so that h is defined on B,, where B, = {z : |x| < m}. Let
f be the bounded Dirichlet solution outside B with boundary values h on 0B,

(Corollary 3.3). Write ¢ = h — f which is harmonic on B with boundary values
0.

Let p > 0 be the superharmonic function on B, with harmonic point singularity
{e} and p = 0 on 0B, (Theorem 4.1). By the minimum prmmple p > 0 on

Bm. For a large a > 0, let vy = ¢ on B and v; = ap on B On 0B,,,

m?

ty)vi(y) =0 < > ty,yi)vi(y;), since y € OB, has a neighbour in B where v,
can be made to take an arbitrarily large value since « is large and arbitrary. Then

vy is subharmonic on X'\{e}, harmonic outside 0B,,. Similarly, if v = ¢ on B
0
and vy = —ap on B,,, then vy is superharmonic on X\{e} and harmonic outside

0
0B,,. Choose now 3 > 0 large, so that ap < —ap + § on B,
Then, on X\{e}, v; < vy + . Use now the method of proof of Theorem 3.1 to
determine a harmonic function u on X'\{e} such that v; <u < vy + 5 on X\{e}.
0

Clearly, (u — h) is bounded outside B,,. O

Remark 4.3. The above Lemma 4.2 is not of much interest in a hyperbolic network.
For, by using the Dirichlet solution on a finite set, it is easy to see that if A
is harmonic outside a finite set in a hyperbolic network N, then there exists a
unique harmonic function H and two bounded potentials p; and p, on N such that
h = H + p; — ps outside a finite set in V.

Recall that a superharmonic function s in a network is said to be admissible if
and only if it has a harmonic minorant outside a finite set. It is immediate (using
Lemma 4.2) that if s is admissible and A is any finite set, then s has a harmonic
minorant outside A. Two admissible superharmonic functions in a network are
said to be equivalent, if the difference between their greatest harmonic minorants
outside a finite set is bounded.

Theorem 4.4. Let s be an admissible superharmonic function on X. Let A be
any proper subset of X. Then the Dirichlet problem is solvable on A with boundary
values s on 0A.

Proof. Let u be a harmonic minorant of s outside a finite set in X. Let e ¢ A.
Then there exists a harmonic function v on X\e such that (v — v) is bounded
outside a finite set. Hence s has a harmonic minorant on A. Let g be the greatest
harmonic minorant (g.h.m.) of s on A.

0
Define ¢(z) = s(x) on 0A, and ¢(x) = g(x) on A. Then ¢ is subharmonic on
A, ¢ <son Aand ¢ = s on JA. Hence by Theorem 3.1, there exists a harmonic
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function A on A such that h = s on JA. Note that h = g is the g.h.m. of s on
A. O

Remark 4.5. (See Theorem 3.13 [1], Balayage) Let u be an admissible superhar-
monic function on X. Let E be any proper subset of X. Let h be the Dirichlet
solution on E with boundary values v on JE. Define BY = h on F, and = u on

E°. Then, BE is an admissible superharmonic function on X such that BY < u
OC

on X, BE =w on F ; BE is harmonic on E; and BE is equivalent to u.

Theorem 4.6 (Condenser Principle). Let A and B be two disjoint (finite or not)
subsets of X. Then there exists a function ¢, 0 < ¢ <1 on X, such that

(i) ¢ =0 on A and subharmonic at every node of A;

(ii) ¢ =1 on B and superharmonic at every node of B;
(iii) ¢ is harmonic at every node of X\(A U B).

Proof. Let E = [X\(AUB)]. Let FF = V(E). Let f = 0 on (F\E) N A and
f=1on (F\F)NB. Then (Theorem 3.1), there exists a function h (the Dirichlet
solution) such that h = f on F\F, and Ah = 0 at every node of E. Extend h by
0 on A, and by 1 on B. Let the thus extended function be denoted by ¢. Then ¢
satisfies the conditions stated in the theorem. 0

Theorem 4.7. Let E be a connected infinite subset of a parabolic network. Let
F = V(FE). Then there exists an unbounded function H > 0 on F such that H is
positive harmonic at every node of E and H =0 on F\E.

Proof. Since E is connected, F' = V(F) is connected also. Fix a vertex e and let |z|
denote the distance of x from e; write B, = {z : || < n} and S,, = {z : |z| = n}.
Choosing a subsequence of B,,, if necessary, we can assume without loss of generality
that £ NS, # 0.

Let f, = 0 on (F\E)N B,_1, and f, = 1 on S,. Let h, be the function on
F N By, such that h, = f, on [(F\E)N B,]U[ENS,] and Ah, =0 on ENB,_;.
(Note that E'N B,_; is in the interior of F N B,,. For, if x € EN B,_; and x ~ y,
then |y| <nand y € F, so that y € FFN B,,.)

Let u, = h, on FN B,, and =1 on F'N BS. Then u, is defined on F' such
that Au, < 0 on E. Note u, > 0 on FN B, ;. For, suppose u,(z) = h,(z) =0
for some z € ENB,,_1. Let a € ENS,. Since E is connected, there exists a
path connecting z to a; call it {z = zg, 21, 29,...,2m = a}. Here |z| < n —1 and
|zm| = n. It is possible that there is some other node in this path lying on S,,. Let
i be the smallest index such that |z;| = n and Ah,(z;) =0 for 0 < j <i—1. Since
hy, > 0on FNBy,, hy(z) = 0 and Ah,(z) = 0, by the minimum principle we should
have h,(xz) = 0 for all x ~ 2. In particular, h,(2;) = 0; again since Ah,(z) =0,
hn(z2) = 0. Repeating this process, we arrive at the conclusion h,(z;) = 0; but this
is a contradiction, for h,(z;) = 1 since |z;| = n.

Consequently, u,, > 0 and Au, < 0 on E for all n. Define v,(z) = ;‘:(—(fo)) on F,
where xy is a node fixed in E. Then on the connected set E, v, > 0, Av, < 0
and v, (zo) = 1 for all n > some N. Hence by the Harnack property, {v,(z)} is
bounded for any z € E. This enables us to extract a subsequence {v/ } from {v,}
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such that limv;, () = H(x) exists for any € E. Since for each z in F, Av] (x) =0
except for a finite number of n, we conclude that H(z) is harmonic at every node
of E, H>0on Eand H=0on F\FE.

By the minimum principle in a parabolic network (Theorem 2.4), note that H
should be unbounded on E. O

Remark 4.8. Fix a node e in a parabolic network X. Let {z;} be the neighbours of
e. Let E; = {x : the path connecting = and e passes through z;}. We shall place
z; also in F; but e ¢ E;. Then E; is connected and the F;’s are finite in num-
ber, so at least one of them, say F;, contains an infinite number of nodes. Take
E = Uy (E; U Ey) if E;NE) # (. Then E is an infinite connected component which
contains all the nodes y € X\{e} such that there is a path in X\{e} connecting
y and z;. (The situation is somewhat like in the Euclidean plane where the com-
plement of a non-empty compact set consists of disjoint connected components,
one of which is unbounded.) Let F' = V(E). Note that F' = E U {e}. Construct
a function H > 0 on F' as in the theorem, which is harmonic at every node of
E,H>0on F and H = 0 on F\E. Extend H to the whole of X, by giving
values 0 to nodes outside F'. If we denote this extension by H,, it has the following
properties: H, > 0 on X, H.(e) = 0, H.(z) is harmonic at every node x # e; and
note that H,(z) should be unbounded on X, for otherwise H, being subharmonic
and bounded on a parabolic network should be a constant in X, which is a con-
tradiction. Clearly such functions H, may be many and non-proportional. In the
sequel, we shall fix a node e and one such function H,.

Theorem 4.9. For any z € X, there exists a unique superharmonic function q,(x)
on a parabolic network X such that (i) Aq,(z) = =d,(x) , (i1) q.(2) =0, and (iii)
for a (unique) o > 0, (g, + aH,) is bounded on X.

0
Proof. Let A be a finite circled set such that e and z are in A. Let h be the
bounded harmonic function on A® with values H, on 0A (Corollary 3.3), so that
h—H, <0on A° Let F be the family of all superharmonic functions s on X such
that s(z) > 0 and s > h — H, on A°. Clearly, the superharmonic function s = 0 is
in F . Let u(z) = inf s(z), for all s in F.

For any y # z and any s € F, if we define s;(x) = s(z) if z # y, and s1(y) =
> %s(yz), then s; < s, s1(z) is harmonic at = y and s; € F . Consequently,
u(z) is harmonic on X'\{z} and u(z) > h(z)—H.(x) on A°. Let v(z) = h(z)—H,.(x)
on A¢, extended by 0 on A. Then v € F. Hence, u(z) < h(x) — H.(x) on A and

u(z) = 0. Also, since y ~ z implies that y € A, we have ) tgfj;)u(y) <0 = u(z),

so that u(x) is superharmonic at + = z. Note that u being upper bounded and

non-constant, u(x) cannot be harmonic at x = z. Hence Au(z) < 0. Write
q.(x) = —A“ifz). Then, Ag,(z) = —d,(x) on X, ¢,(z) =0 and |q,(z) — gu(ég is a

bounded harmonic function on A°. That is, ¢,(x) has all the properties stated in
the theorem.

To prove the uniqueness of ¢,, suppose () is another function on X, such that
AQ(z) = —=d,(x), Q(z) = 0 and (Q + SH,) is bounded on X. Then, let [(z) =
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¢.(x) — Q(z). Since Al(x) = 0, I(x) is harmonic on X. Moreover, [(z) = (8 —
a)H.(z) + f(x), where f(z) is bounded on X and harmonic outside a finite set.
Suppose f — a # 0. Then, since H, is positive, [(z) should be bounded on one
side on X. This means that [(z) is a constant, since X is a parabolic network and
[(z) is a harmonic function on X bounded on one side. Consequently, (8 — a)H,
should be bounded on X. But this is a contradiction since H, is unbounded and
f —a # 0. We conclude therefore that o = 3, in which case [(x) is a constant that
should be 0. U

Proposition 4.10. Given a superharmonic function s outside a finite set in a X,
there exist two superharmonic functions Q@ and Q. on X such that Q. has finite
harmonic support and s = QQ — Q. outside a finite set.

Proof. Choose a finite circled set A such that s is defined on 0A. Let h be the
harmonic function on A with boundary values s on 0A. Let p = s on A¢, and = h

0
on A. Then, Ap =0 on A, and Ap < 0 on A€ It is possible that Ap > 0 at some
nodes on 0A. Let them be yy, o, ..., y;. Consider Q(x) = p(x)+Ap(y1)qy, (x)+. . .+
Ap(yi)qy; () where ¢,(x) denotes the superharmonic function on X with Ag,(z) =
—0,(x). Then AQ(y;) = 0 for 1 < j < i, that is () is superharmonic on X.
Moreover, if we write Q.(z) = 22:1 Ap(y;)gj(x), then s(z) = p(z) = Q(z) — Q.(z)
on A®. This proves the proposition. 0

In the above proposition, (). can be removed in some cases, as the following
proposition shows. That is, p extends as a superharmonic function on X. To
see that, write X = UA, where A, is an increasing sequence of finite circled sets

0
such that A,_; C A, and for large n, take s, as the Dirichlet solution in A,, with
boundary values s on 0A,.

Proposition 4.11. Given a superharmonic function s outside a finite set in a
parabolic network, there exists a (non-harmonic) superharmonic function Q@ on X
such that s = Q) outside a finite set if and only if s, tends to —oo uniformly on
finite sets.

Proof. The network being parabolic, if s = () outside a finite set, then s, = @), for
large n so that s, tends to —oo uniformly on finite sets. Conversely, assume that s
is defined outside A,,_;. Since s, tends to —oo uniformly on A,,, choose n large so
that s,(z) <infya,, s on A,,. Then by the minimum principle, s, < s on A,\A,,.
Define () = s on A{, and = s, on A,,. Then (@ is superharmonic on X and s = Q)
outside A,,. O
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