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In this paper, we introduce the notions of semi-elastic 4nd semi-stratonormal spaces, 

and show that a space is elastic (resp. stratonormal) if and only if it is semi-elastic (resp. 

semi-stratonormal) and monotonically normal. Furthermore, we show that semi-elastic and 

semi-stractonormal spaces are characteralzed by some pair networks 

S1. IntroductiolD 

Ceder's M3-space [5] (i.e. space with a cr-cushioned parr base) was studied and 

renamed "stratifiable space" by Borges [1]. By notmg the properties [1, Lemma 

2.1] of stratifiable spaces, Zenor introduced the notion of monotone normality in 

[14] and the class of monotonically normal spaces was studied in [8], [2], [3] 

etc. Thereafter, the intermediate classes between the class of stratifiable spaces and 

one of monotonically normal spaces were introduced and studied. For instance, 

linearly stratifiable spaces were studied in Vaughan [12] and Yasui [13], elastic 

spaces in Tamano and Vaughan [1l], Gruenhage [7], Borges [3] and Pope 
[10]. Furthermore, the stratonormal space was defined by Borges [2]. An 
excellent survey of these classes except stratonormal spaces was given by Burke 

and Lutzer [4]･ Note. that these classes except monotonically normal spaces are 

characterized by some pair bases. 

On the other hand, Creede [6] introduced the notion of semi-stratifiable spaces 

which rs defined by semi-stratification. Semi-stratifiable spaces are characterized 

by some pair networks (Pareek [9]); that is, a space is semi-stratifiable if and only 

if 'it has a cr-cushioned pair network. 

In this paper, we introduce the notions of semi-elastic and semi-stratonormal 

spaces. We show that a space is elastic (resp. stratonormal) if and only if it is 

semi-elastic (resp. semi-stratonormal) and monotonically normal. Furthermore, we 

show that semi-elastic, semi-stratonormal and c(-semi-stratifiable ([13]) spaces are 

characterized by some pair networks 

These classes mentioned above are located as follows 
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41¥~~ semi-stratifiable Qc-,stratifiable 

¥ Qc-semi-stratifiable elastic 

¥ semi-elastic stratonormal 

¥ semi-stratonormal monotonically normal 

Throughout this paper, all spaces are assumed to be regular T1 ' Cl denotes 

the closure operator in a space and 2x the power set of X. Let ~ be a relation 

on a set A. For a beA a I b means that nerther a

S2. Prelimimaries 

In this section, we state some definitions and some results, which are used to 

prove some theorems m sectron 3 

For definition and some properties of monotonically normal spaces, see [14], 

[8], [2] and [3]･ In this paper, we assume that each monotone normality operator 

G is exclusively defined for ~ach pair of separated subsets, and G satisfies 

G(A, B) n G(B, A) =, ip for any pair (A, B) of s~parated subsets (i,e. B n Cl A = 

A n Cl B = ip). ' For definitions of stratifiable and semi-stratifiable spaces, see Borges [1] and 

Creede [6], respectively. As a connection of these spaces, there is the following 

theorem. 

THEOREM 2.1(,[8, Theorem 2.5]). A space X is stratfiable tf and only tf X is 

semi-stratfiable and monotonically norlnal. 

Pareek [9] introduced the notion of pair networks ; i,e. a pair network ~r is 

a collection of pairs W= (WI ' W2) of subsets of a space such that W1 c W2 and, 

for each point x and each neighborhood U of x, there is (W, W2)e~~/ with 
x e W1 c W2 C U. By using the notion of pair network, semi-stratifiable spaces 

are characterized as follows 

THEOREM 2.2([9, Theorem 2.1]). A space X is semi-stratlfiable tf and only tf 

X has a' a-cushioned pair netTvork. 

For each initial ordinal cc (in this paper, c( means exclusively an mfinite initial 

ordinal number), an o(-stratifiable (resp. oc-semi-stratifiable space) was defined by 

Vaughan [12] (resp. Yasui [13]). For these spaces, there is the following theorem 

THEOREM 2.3([13, Theorem 3]). A sapce X is o(-stratlfiable tf and only tf X is 

oc-semi-stratlfiable and monotonically norma/. 
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The following definitions are some generalizations of cushiond pair collection 

in Ceder [5]. 

DEFlNITION 2.4([1l] and [2]). Let' X be a -space. 

(a) Let ~f be any collection of subsets of X and let R be a relation on c~/ (i.e. 

R c ~~/ >

said to be a framing of ~; provided that, for every U, Ve i~/ with U h V~ ip, either 

U 
(b) A collection i~/ is said to be framed in a collection ~r vvith framed function 

f : i~/ -> r provided that there exists a framing R of i~/ such that for every 6~/' c a~/ 

which has an R-upper bound we get that Cl(U ~~/') c Uf(~~l'). 

(c) If 6~f is framed in lr and R is a transitive relation, then' a~/ is said to be 

elastic in r. 

(d) A pair base ~~ for X (i.e. ~~ is a collection of paifs p = (P1, P2) of subsets 

of X such that Pi is open. P1 c P2 and, for each x.eX and each neighborhood 
U of x, there exists (P1, P2)e~~ with x e Pl c P2 C U) is said to be an elasttc .(resp, 

framed) base if there is a framing of ~~l = {PI : (Pl. P2)e~~} such that ~~l is elastic 

(respi. framed in ~~2' ~ {p2 : (pl, p'~)e~~} with respect to' 'the 'function f : ~~l -> ~~2 

defined by f(Pl) = P2 for (Pl, P2)e~~. ' ' 

(e) A sp,ace with an elastic (resp. framed) . base is called an elastic (resp. 

stratonormal) space. 

For elastic spaces., the following theorem was obtained by Pope [lO]. 

THEOREM 2.5([10, Thedrem 2.8]). .A spabe X with a topology j~= is ~ elastic tf 
and only tf 'there exist a partially ordered set (P, :~ ) and a function S : P x j~r L~ j~r 

(a) for each Uejcr and po eP, 

Cl(U {S(p,~ U) : p e P, p ~ po})' c U ; 

(b) U{S(p, U): peP} = U for each Uejcr. 

(c) tf U, Vejcr and U c V, S(p, U) c S(p, V) for all peP; 

(d) tf S(p, U)nS(p', V) ~ ip for p, p'e~~ and U, VeJcr, then either p ~ p' or 

p' ~ p. 

In stratonormal spaces, we can prove an analogous theorem of Theorem 2.5 

Note that for a relation ~ on a non-empty set A, we call ~ a preorder if ~ 

is reflexive and antisymmetnc 

THEOREM 2.6. A space X with a topology Jcr is stratonormal tf and only tf 

there exist a preordered set (P, ~ ) and a function S : P x j~r _> j~r suc/'7 that the 

conditions (a)-(d) of Theorem 2.5 are satisfied. 
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S3･ Semi-elastic amd semi-stratomormal spaces 

First, we introduce the notions of semi-elastic and semi-stratonormal spaces 

DEFINITION 3.1. A space X with a topology jcr is said to be semi-elastic (resp. 

semi-stratonormaD if there exist a partially ordered (resp, preordered) set (P, ~ ) and 

a function S : P x Jcr ~' 2x such that ' 
(a) for each Uej~r and each po eP, 

Cl(U {S(p, U): peP, p ~ po}) c U 

(b) U{S(p, U):peP} = U for each UeJ6r. 

(c) if U, VeJcr and U c V, then S(p, U) c S(p, V) for all peP; 

(d) for each Uejcr and each peP, S(p, U) and U {S(p', V): p'eP, pllp', VeJ~r} 

are the separated subsets of X. 

The following theorem shows that the notions of semi-elastic and semi-
stratonormal spaces are natural (cf. Theorems 2.1 and 2.3) 

THEOREM 3.2. A space X is elastic (resp. stratonormal) tf and only tf X is 

semi-elastic (resp. semi-stratonormal) and monotonically nol'ma/. 

PRooF. Necessity is clear by using Theorems 2.5 and 2.6 

Sufficiency : Let (P, ~ ) be a partially ordered (resp. preordered) set and 

S : P x jcr _> 2x a function satisfying (a)-(d) of Definition 3.1, where J~r is a topology 

X. Define a function T : P x jcr ~> jcr by 

T(p, U) = G(S(p, U), (X - U) U(U {S(p', V) : p llp', p' eP, VeJ~r})) 

where G is a monotone normality operator. Then it can be easily that (P, ~ ) and 

T satisfy the conditions (a)-(d) of Theorem 2.5 (resp. 2.6). For instance, (a) is proved 

by the fact that, for each U e Jcr and each po e P, 

Cl(U {T(p, U) : p ~ po' PeP}) 

c Cl(G(Cl( U {S(b, U) : p ~ po, PeP}), X - U)) 

CU 
and (d) is proved by the facts that, for p, p' e P with p llp', 

S(p, U) c (X - V)U(U {S(q, W): p' jlq, qeP, Wej~r})(= K) 

T(p, U) c G(K, S(p', V)), 

T(p', V) = G(S(p', V), K), 
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G(K, S(p', V)) n G(S(p', V), K) = c, 

therefore T(p, U)nT(p', V) = c. Thus the proof is completed 

Finally, we give characterizations of semi-elastic, semi-stratonormal or Qc-semi-

stratifiable spaces by some pair networks. 

THEOREM 3.3. A space X is semi-elastic (resp, semi-stratonormal) tf and only 

tf X has a pair network ~ = {(W1' W2)} such that ~1 = {WI : (Wl' W2)e~} i's 

elastic (resp. framed) in ~2 = {W2 : (WI ' W2)e~} with respect to the function 

f : ~1 ~ ~2 defined.by f(W1) = W2 and,for each (W1' W2)e~, W1 and U {W1' e~1 : 

Wl ll W1' } are the separated subsets. 

PRooF. Necessity : Let J'r be a topology of X and give a well order to 
J~. Now suppose that (P, ~ ) and a function S : P x j4r ~ 2X satisfi'es the conditions 

of Definition 3.1. If we define the lexicographic order in P x j4t and the set 

{S(p, U): (p, U)eP x j~} is equipped with the same order as that of P x j4r (i.e 

S(p, U) 

x j~r} satisfies the conditions of this theorem as follows : First, it is clear that ~/ is a 

pair network. Secondly, if S(p, U)nS(q, V) ~ c for S(p, U), S(q, V) e ~1, it is clear 

from (d) of Definition 3.1 that p 

(q, V) ~ (p, U). Thus, the relation ~ on ~1 is framing of ~1' Thirdly, for each 

(po' Uo)eP x J~, Iet 

W= U {U: (p, U ) 

Then 

Cl(U {S(p, U): (p, U) ~ (po' Uo)' (P, U)eP x jar} 

c Cl(U {S(p, W): p 

cW 
Thus, for '~fi c ~rl which has ~ -upper bound, we get Cl(U ~i) c uf(~i)･ There-

fore, ~~'l is elastic (resp. framed) in ~2 With respect to the function f : ~rl ~> ~2 

defined by f(W1) = W2' Finally, for each S(p, U)e~1, S(p, U) and U {S(p', V): 

(p, U)ll(p', V), (p', V) e P x jar } are the separated subsets by the fact 

U {S(p', V) : (p, U)ll(p', V), (p', V) eP x J~r} 

= U {S(p', V): pllp', (p', V)eP x J4r}-

Sufficiency : Suppose that ~ = {(WI ' W2)} be a pair network satisfying the 

conditions of this theorem. Then without loss of generality, we may assume that 

~1 = { W1 : (WI ' W2)e~~'} is a partially ordered (resp. preodered) set (see Pope [10, 

Lemma 2.7]). Define a function 
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S: ~rl x jcr_>2x by 

= . Wl ' if , W2C (/. 
S'(W1' U)= ' 

ip otherwise. 

Then S satisfies the conditions (a)-(d) of DefiTlit･io~ . 3.,1_.as f,ollows ~ (b)~ -(9) an4 (.d) ..ar~ 

trivial. To prove (a), for each U e J~r and each W~ e ~rl, 

, Cl(U {S(Wl' U): Wl ~'W~ }) .,. 

c ql(U {W'I :' W1' ~ W~. W2 ~: U}j 

c U{W2: W1 ~ W?. W2 C U} 

( . c'-U. , .. 

Thus, ~~he,p;09f is'_bompleted. ' ' ' ~ " ' . ' 

The oc-semi-stratifiable spaces -are ' also char'acterized by some pair networks as 

follows.', The proof is easily verified, so ' omitted. Fo.r "the definition of a linearly 

cushioned ' collectidn' of pairs.' see: . [12. Definition '2.5] 

'THEOREM 3.4.' A ' ~pacq. X is Qc-sel?~i-stratlfi, ~ble, tf ~rid onl_v 'If ~r has a lihearly 

cpl~hioped pair .netwbr~ '~!j ,' ~nd _~ is cofi~al ~ith ~. ' ' ' ' ' 

S4. Problems 

The following problems naturally arise 

PROBLEM 4.1. (1) Is it true that stratonontial spaces are elastic ? 

(2) Is the closed image of an elastic , (resp. a stratono:rmal) space elastic (resp 

stratonormal) ? (See [2].) 

(3) Is it true that the adjunction space of two elastic (resp. stratonormal) 

spaceS rs elastic (resp. stratonormal) ?･. . . ' . ' ･ ' ' - ･ ' .; , 

By' Theor~m 3.2, these prob~lems ~ are reduced to the ca.ses of semiielastic or 

serm-stratonorn~al. sp~ces, because t~.e closed ima~e of a monotpni,cally norm~l space 

and the adjunctron sp~c~ of two mohot6nically normal spaces are alsd monotonically 

normal. In particular, the affirmative answer･' of ,Probleim' ･4.1 (2)' ,(elastic case) is 

Tamano's conjecture ([1l]). 
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