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This p,aper presents a method to analyze the steady-state characteristics of an adaptive 

notch filter, when the effects of finite precision arithmetic are taken into account. The 

reduction of these effects by means of error spectrum shaping is also discussed. Closed-form 

expressions for the steady-state mean square error of variable coefficient have been obtained 

Finally the results of computer simulation are shown which confirm the theoretical prediction 

S 1. Imtroductiom 

Adaptive digital notch filters have many applications such as the detection of 

sinusoids in noise or eliminating sinusoidal interfe_rence from a broad-band 

signal. Implementations using finite impulse response (FIR) and infinite impulse 

response (IIR) filters have been discussed in the literatures [1]-[4] ･ An advantage 

of IIR notch filter is that it requires fewer multiplication operations per output 

sample, when compared to FIR filters 

Errors due to finite wordlengh can be quite large in narrow-band IIR filters. It 

has been shown that these errors may be considerably reduced by using a technique 

known as error spectrum shaping (ESS) [5]-[7] 

In this paper we present an adaptive IIR notch filter with ESS. The adaptive 

detection of a sinusoid with additive white Gaussian noise has been investigated. 

Floating-point arithmetic with rounding is examined and the expressions for the 

steady-state mean square errors of output sinusoid and variable coefficient are found 

The outline of this paper is as follows. Some preliminaries on adaptive notch 

filter with ESS are presented in Section 2. In Section 3, the steady-state mean 

square errors of output sinusoid and variable coefficient are obtained. Some 

simulation results that verify the expressions derived for the steady-state analysis 

are presented in Section 4. Section 5 concludes the paper. 

S 2. PreliEmimaries 

Figure I (a) shows the block diagram of adaptive notch 

we consider only the case where the received signal consists 

additive Gaussian noise. The mput data are wrrtten as 

filter. For simplicity 

of single sinusoid and 
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Fig. I Adaptive notch filter with error spectrum shaping. (a) Block diagram. 

with error spectrum shaping 

u(k) = A cos((7clK)k + a) + n(k), 

where k is the time index, K is an unknown 

with mean zero and variance cr~ -
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(b) Variable notch filter 

k = O, 1, 2,･･･, (1) 
constant determining the angular 

frequency of the input sinusoid, and n(k) is a sequence of Gaussian random variables 

notch filter is given by 

~1 + z~2 (2) 2 1 - ocl(k)(1 + oco)z~1 + o(oz~2 

where ccl(k) is variable coefficient controlling a notch frequency. The re_jection 

bandwidth can be determined by Qeo [1] 

For brevity we consider only the gradient algorithms which do not require 

any matrix inversion. The updating formula for notch filter becomes 

o(1(k + 1) = ocl(k) - /syl(k)~(k) (.3) 
where // is a constant controlling the convergence rate. In (3), yi(k) is the output 

of notch filter and ~(k) is the deffe.rential of yl(k) with restpect to oel(k). ~(k) is 

generated by the circuit having the transfer function 

G(z) = (1 + Qco)z~ (4) 1 - c(1(k)(1 + cco)z~1 + oc z 

Frgure I (b) shows the variable notch filter with ESS. Here we will consider 
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the special case where a sum of products is accumulated in full precision and only 

the final result is quantized. 

As is well known, the quantization error in the floating-point arithmetic depends 

on the signal to be quantized. The quantization error can be described by 

e(k) = e(k)w(k), 8(k) = (m.(k) - m(k))/m(k) (5) 

where w(k) is the signal to be quantized, and 8(k) is the relatrve error. m(k) and 

m.(k) denote the mantissa and the mantissa after rounding, respectively. For 

convenience in analysis, (m.(k) - In.(k)) is assumed to be uniformly distributed 

random variable in the interval, (-(112)2~b, (1/2)2~b), and m(k) is assumed to be 

uniformly distributed in (0.5, 1.0), where b + I is the mantissa wordlength (one bit 

for sign) . 

Assuming that (m*(k) - In(k)) and m(k) are white noise process, and that 

(m.(k) - m.(k)), m(k) and the signal w(k) are mutually independent, e(k) in (5) is 

mean zero white noise process. 

At the steady-state, the input sinusoid is rejected and the power spectral density 

of the signal w(k) can be expressed by IH(z)12. In this case, the variance of e(k) 

is obtained easily as [8] , [9] 

a~ = (2~2b/12)(1 + oco)cF~･ (6) 
The transfer function from the error signal to the filter output rs given by 

1 + plz~1 + p2Z~ 
N(z) = I - c(1(k)(1 + oco)z~1 + ocoZ~2 (7) 

Table I Iists the ESS structures considered in this paper. ~) is the direct form 

filter with no ESS. ~) is simple form of ESS requiring no additional multiplications 

~) requires one additional multiplication. @ is the optimal ESS structure and 

requires two additional multiplications [5] . 

Table I Variable Notch Fnters with Error spectrum shaping 

FILTER　STRUCTURE
β
1

β
。

①WITHOUT　ESS O O

②SUBOPTIMALESS1 一2 1

③SU毘OPTIMALESS2 一2α。（k） 1

④0PTIMAL　ESS 一α。（k）（1＋α。） αO
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S 3･ Steady-State Amalysis 

Here, we consider the error of sinusoidal output due to the roundoff error at 

the notch filter output. The variance of output sinusoid, a.2~t' is given by 

a21 " 
er~*t - 2lc _* I N(ej~)12 dco. (8) 

By using the pl and p2 given in Table I, we get a"2*t as shown in Table II. From 

the results of this table, it is seen that the variance of output error, cr.2~t' can, be 

reduced by means of ESS 

Table n variances of Output Errors, a.2** 

①

　　　　　　　　1　2σ1（1一α1）！1一α、（k）・／

②

、2／3一α。（k）（1＋α・）一α・｝σ1　　　　（1一αξ）｛1＋α。（ん）｝

③

　　　2　2σ1　　1＋αo

④
　
2
σ
1

Next, we provide a quantitative analysis of the steady-state mean square error 

of Qel(k) under the assumption that the effe_ct of fiuctuation of c(1(k) to filter 

performance can be neglected. In order to analyze the effe.cts of quantization error, 

we will use the method developed in [10] . At the steady-state, the value of Qcl(k) 

fluctuates around cos IT/K, causing a mean-square error of the sine wave frequency 

estimate. Under the assumption that fluctuation of o(1(k) is very small, it follows 

for z = ej*lK 

IH(ej'lK)1 = PIAOCI (k)1 (9a) 
where 

p = (1 + o(o)/{(1 - oco) sin (7clK)} , AQcl(k) = ccl(k) - cos (7clK). (9b) 

After the convergence the output of the notch filter is given as 

yl(k) = - ApAo(1(k) sin((1clK)k + o) + nl(k), (10) 

where n I (k) is the noise term due to the quantization. We restnct attention to 
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the coefficient error due to the quantization, the noise term due to the input noise 

n(k) is omitted in (10). ~(k) will have a single sinusoid being tracked and it can 

be expressed as 

~(k) = - Apsin((7c/K) k + e), (11) 
in the steady-state. 

Substituting (10) and (11) in (3), we have 

AQcl(k + 1) = {1 - IlA2p2 sin2((1clK)k + 6)} Aocl(k) (12) 

- 14A p~l (k) sin ((1c/K) k + 6). 

Equation (12) is a first-order time-varying ordinary diffe_rence equation with respect 

fo A ocl(k). The second term of the right-hand side is input term. By taking the 

expected value of coefficient of A ocl(k), we obtain the time-invarient diff'e_rence 

quation 

Act (k + 1) I - ~A2p2 Aa (k) IlAp~ (k)sm((~lK)k+e) 
2
 

From (13) the steady-state variance of A ocl(k) can be obtained as 

1
 cr2 - 2rc * I F(ej~)12 P(co) dco, 

(13) 

( 1 4) 

where 

F(ej(o) = ~ IlAp 

l/ ' 1 -' I --A2p2 e~' Jco 
2
 

P(co) = 4 N co k k +N co+ 

(1 5a) 

(15b) 

F(ej~) of (15a) is the transfe.r function from input 111(k) sin ((7clK)k + e) to A ocl(k) 

and it has low-pass characteristics having very narrow bandwidth. N(co) indicates 

the power spectrum of nl(k). For given //, oco' K and input SNR, the mean-square 

error of ocl(k) can be obtained from (.14), (15a) and (15b). 

S 4. Simnwlation ~eswlts 

The numerical examples are presented here in order to illustrate the results in 

Sectron 3. The input sinusoid had unrt magnitude and was corrupted by the white 

Gausslan noise with signal-to-noise ratios of 0.0 dB and 10dB. The input was 
applied to a filter using infinite precision, and slso a filter with same coefficients, 

but using a shorter mantissa in the computation. The outputs and the values of 
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variable coefficients 

over 5000 samples 
and ,t are fixed at 
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of the two filters were then 

to obtain the estimates of 

5 and 0.00005, respectively. 
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Figs 2 and 3 show results for ~) WITHOUT ESS. Figure 2 shows the 

theoretical and simulated results for the variances of output error, a.2*t ' As expected, 

the values of cr.2~t for fioating-point arithmetic is proportional to the power of input 

noise. While those for fixed-point arithmetic did not depend on the variance of 

input additive noise L1l]. In Fig. 3 the simulated variances of A ocl(k), cr~, are 

plotted versus Qco, along with the theoretical curves. It should be noted that the 

values of a~ inclease as cco approaches one. Note from Figs 2 and 3 . that the 

theoretical and simulated results agree reasonably well 

In Figs. 4 and 5, we show the results for ~) SUBOPTIMAL ESS 1. Figure 4 

shows the theoretical and simulated results for the variances of output error, 

or.2~t' As expected, er.2*t for ~ SUBOPTIMAL ESS I is much smaller than thot 

for (~) WITHOUT ESS. In Fig. 5 the simulated variances of A c(1(k), a~, are 

plotted versus Qco, along with the theoretical curves. It should be noted that the 

values of a~ are redused by the ESS. Note also from Figs. 4 and 5 that the 

theoretical and simulated results agree reasonably well 

S 5. Comclwsioms 

In this paper, we have studied the steady-state behavior of adaptive notch 

filters implemented with fioating-point arithmetic. Approximate and simple closed-

form results are derived to obtain the mean-square errors of enhanced sinusoid 

and coefficient fiuctuation due to finite wordlength 

The resulting expression is useful for design purposes and also leads to several 

observations about the effects of finite precision arithmetic for adaptive IIR filters 
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