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The Newton method has quitely universal use for a nonlinear optimization problem, 

max 'f f(.x) : .x' e U } . The algorithm satisfies to be quadratically convergent under a mild 

condition. This paper concentrates on the further convergence from a statistical viewpoint. 

A deformation of the objective function f is proposed by association with methods of statistical 

testing hypothesis. It is shown that the k-step modified function enjoys convergence of 

(k + 2)-th order. 

1. ~mtroclwctHon 

Let U be an open subset of Rd and let f be an analytic function on 

U. Consider a problem of maximization of f over U. We assume that there exists 

a unique maximizer x* in this problem. Furthermore, assume that the gradient 

vector vy(x) vanishes only at x* and that the Hessian matrix Hf(x) is 
negative-definite over U. The Newton method introduces a sequence 'lxp : P = 
O, 1, ･ ･ ･} defined by 

xp+1 = xp - Hf ()c ) vy(xp), 

where the initial point xo is appropriately determined. It is known that 
llxp+1 ~ x* Il ~ c llxp - x* jl2 with a constant c ~ 1. 

In a statistical context we regard the objective function f as a log-likelihood 

f'unction based a sample with size n. Then in the estimation problem, x* is nothing 

but the maximum likelihood estimator. For a problem of testing a hypothesis 
x = xo against x ~ xo the following testing methods have been established (see [3]) : 

c((xo) E -~{f(x*). -f(x )f' o~ 

b(xo) E ~ tvy(xo) H7 1 (xo) Vf(xo) 

and 

y(x ) t(x* xo) Hf(x ) (x* - xo)' 
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which are refe_rred to as the likelihood ratio statistic the Rao statistic and the Wald 

statistic, respectively. It is known that under a mild condition for randomness of 

observation these statistics have a common random behavior around the null 

hypothesis as n increases. This property comes from the property that Hessian 

matrices of oe(x), p(x) and y(x) are equal to each other when evaluated at x = x*. Of 

course, one cannot find o((x) and y(x) without knowledge of x*. Under the above 

assumptions for f, x* minimizes simultaneously each of the functions oc(x), p(x) and 
y (x) . 

In this paper the key idea is to pay attention to the fact that x* is f'ound by 

only one-iteration in applying y(x) to the Newton method, that is, 

xl = xo ~ Hv(~)co)~ I V y*(xo) = xo ~ Hf(x*)~ IHf(x*)(xo ~ x*) = x* 

for any initial point xo e U. From this point of view we propose a sequence of 
functions {fk(_x.) : k = 1, 2, ･ ･ ･} defined by 

fl = ep(f). 

fk = ckq)(,fk_ 1) + (1 - ck)fk_1 (k > 2) 

where ck = ")_/(k + 1)(k + 2) and (p(f)(x) = (112)t Vf(x)HJ I (x) vy(x). Note that 

fl = p and that the the maximizer of fk is conmonly x* for all k :~ 1. We shall 

show that limk_*f,(x) = y(x). Thus fk may become gradually fe.asible to find x*, 

of which property is more exactly stated as f'ollows. 

THEOREM. The N_,pwton algorithm for fk defined as above, 

xp + I = xp - Hf~*1 (xp) Vfk(xp) (P ~ O) 

has the (k + 2)-th ordp,_r of convergence, that is, 

ll xp+1 ~ x* Il ~ ck ll xp - x* Ilk+2 

with the constant ck ~ 1. 

In Section 2 we prove the theorem. Section 3 gives a numerical example and 

discusses the implication of this modification. 

2. Proof of Theorem 

We keep the notation used in the previous section and fix the objective function 

f and the optimal point x* throughout this section. Define a family ~~~ of analytic 

f'unctions g : U -> R such that 

for all _x ~ x* in U, g(x*) > g(-x), V g(x) ~ O (A I ) 

Hg(x*) = Hf(x*) and Hg(x) (A2) 
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The functrons ce, p and y, defined in Introduction, are in ~~aT and further, fk is also 

in ~~' for any k ~ 1. Note that ~~~ is a convex set. Next for any k ~ I we introduce 

a subclass ~~~-k = {9: U -> R} of ~~~ such that 

(A3) g(x) has the i-th order derivative vanishing at x* for any i, 3 ~ i ~ k + 2 

Clearly ~c~~ I) ~(~l :D ~~~~2 ::) " ' and ~~c~k is also convex. Note that y(x) is in ~~~~k for 

any k ~~ 1, that is, Iimk_*~~~k = {y} from the assumption of analyticity. We write 

V *f (x) ~ Hf~ I (x) vy(x), 

so that q) (f)(x) = 

 with the Euclidean inner product 

 PROPOSITION 1. If fe~ip~k, then 

Hf(x )a,,a,, a,. V f(x*) (k - 1)a. a. ... a. V ffx*~ 
,* *. ** J¥ l 

for I ~ il""'ik ~ d, where ai E alaxi with x = (xl""'xd). 

PROOF. By definition, Hf(x) V *f(x) = vy(x) . The k-times differentiation of 

both sides yields 

~ kC, (ei, . . . ai.Hf(x)) (a " aik V *f (x)) 

i.+ , 

.=0 

= ai* ei. . . . aik vy(x) (2.1) 
by the Lerpnrtz law The substitution of (2 1) mto x = x* Ieads to 

Hf(x*)e a ...a V f(x*¥ ke e a Hf(x*)a,k V f(x*) i* i. i* J¥ )+ ' ' "' '-* '* '' 'k 
= a. a. ･･･aik Vf(x ) 

'* '' 

because all the terms except for r = O and r = k - I in the RHS of (2.1) vanishes 

at x*. The result follows from V tV*f(x*) = I (identity matrix). [l 

REMARK. by a similar argument of the proof', it is seen that if fe~~~k, then 

ei,ai. ･..a V f(x ) O (2 

Furthermore we have the following proposition 

PROPOSITION 2. For any k ~: 3, tf fe~lp~k then 

(a) q)(f)e~~c~k and 
(b) - (k + 1)(k - 2) ai, ei. " ' ai.. , ep(. f ) (x*) = ai, ai. . . . aik. , f (x*) 

2
 

PROOF (a) Dlfferentiatmg q)(f) m x,,, xi.,...,xi~ with I ~ m ~ k, we have 
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a' a' "' a'~(p(f)(x) 
'1 '2 ' 

~ 
= ~ ~C. 
 (2.2) 

i* + * 

'=0 

which implies 

a' a' "'a'~q)(f)(x ) O 
'* '. ' 

for m ~ 3 by noting Remark This leads to (p(f)e~cc~ (b) When m k + I m 
(2.2), we have 

a. a. ...a k + I {
 

' ep(f) (x*) = 
'k+ 1 

'i '2 '1 '2 'k 
'k+ 1 2

 

+ 

}. 
'. 'k + * 

From Proposition 1, 

/ .. a V*f(x*), ail Vf(x*)> = - (k - 1)e. a. "' eik.,f(x ) ¥ai."' ik+1 
'* '2 

which completes the proof 

We now prove Theorem stated in Introduction by using Proposiuon 2 

PROOF of Theorem. By induction we have fk e ~~a~k + 2 ' applying Proposition 

2. Consequently 

Hfk(xp) = Hf(x*) + o(llx x* Ilk 1) 

Vfk(kp) = Hf (x*) (xp - x*) + o ( Il xp - x* Ilk) 

Hence the application of fk to the Newton method yields 

xp+ I ~ x* = xp - x* - Hf~kl (xp) Vfk(xp) = xp - x* 

(H(x*) + o( Il x x* Ilk~ 1))- I (H(x*) (xp - x*) + o( Il x x* Ilk)) 

= O( 11 xp - x* llk) 

which completes the proof 

3. A mamerica~ example 

Consider the model in which a random variable X has 
with mean P e R and variance P2. In Table, we shall show 

to an M.L.E. of p in the case of using fl and f. We can 

the convergence based on fl is more rapid than that of f 

a normal distribution 

the iterative process 

see from Table that 
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Table. Iterative process for f3 and f 

(convergence criterion 10~9) 

Iteration 

number 

Initial 

f
l
 

value 0.2 

f
 

Initial value 0.8 
f
l
 

f
 

1
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 

.263074761 

.442097128 

.546513815 

.610703 543 

. 6 1 8024798 

.618033989 

.259375000 

.414895124 

.500646777 

.571876554 

.609677692 

.617732985 

.618033590 

.618033989 

.714815016 .336842105 

.618214642 .505940567 

.618033989 .575482249 

.610870543 

.617812095 

.618033772 

.618033989 

4. Discussiom 

We discuss an effect of change of variables in the optimization problem 

max {f(x) : x e U}. Let T be a one-to-one transformation on U. We write 
f(')(y) E f(T ~ I (y)) and hence the optimal point x* is exactly mapped into y* = T (x*) 

because of f(') (y*) = f(x*). However in the sequence {y(') : p ~ O} generated by 

applying the Newton method to f(') T(y(')) is not generally equal to xp for p ~ 1 

even if if stated from T(x(o')) = xo' Thus the Newton method leads to different 

courses to the optimal point by change of variables. For example, the ideal 

property for y(x) discussed in Introduction is lost after any nonlinear change of 

variables. Conversely there is an approach to detecting variables for rapid 

convergence, see [3]. In this paper our approach is to deform the original f]Jnction 

f in place of the above way. The k-step modification involves the k-times 

compositron of ep, which accompanies with the computation of the (k + 2)-order 

derivatives of f. Our method will be more feasible with aid of program package 

for processing the mathematical formulas. 
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