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It is shown that under suitable assumptions the actions of periodic instantons may be 

identified with gauge anomalies, and the actions with even topological charges are given by 

weights and magnetic charges 

S 1. llmtroductiom 

For periodic instantons, interesting results have been obtained by Garland and 

Murray [3], [4]. On the other hand gauge anomalies have been investigated by 

Alvarez-Gaum6 and Ginsparg [1] and others. By their work we know that gauge 

ano, malies are deeply concerned with homotopy theory. 

In this article we discuss periodic instantons which satisfy suitable conditions 

((3), (4) m Section 2). In Section 2, using a conformal compactification [7] the 

action is identified with the gauge anomaly in [1] up to the constant 47c2. In 

Section 3 we consider periodic instantons with even topological charges. There we 

refer to [6] for lifting group actions on bundles. For the SU(2) instantons we can 

directly verify the existence of a lifting action, but for a use in future we discuss from 

a general view point 

Troughout the article S1 denotes the circle with length 2lc, and w.n. means a 

winding number 

S 2. Periodic imstamtoms 

Let ;1:(6, x) be a connection on the space S1 x R3. Then it can be described as 

~ = cde + ~i3= I Aidxi, where c, Ai : R3 -> g~su(2) the Lie algebra of all smooth maps 

from the circle group int.o the Lie algebra su(2). Here we assume that the 
connection satisfies the following conditions. 

(1) 

(2) 

IF;12 

slxR3 

F1 is self-dual, 

(3) IAl-O as 

F1 is the 

lx -~oo, A 

curvature, 

eA i
 

i ~ ae 
de A dxi for OeS1 
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(4) A -> a diagonal form as I xl --~' oo 

By (1), (2) the connection can be extended to a connection on a bundle over a 

conformal compactification S1 x R3 U S~ ([7]). By [7] 

S1 x R3US~ = S1 x DNUS* x ([O oo) x fS )US*, 

where D~ denotes a 3 disc with sufficiently large radius and [O, co) x fS1 is a warped 

product space with function f(T) = e ~ 2, for T e [O, oo). Then the compactification is 

S1_homeomorphic to the unreduced join S1 x D3 U D2 x S2 = S1 * S2. 

REMARK. By a direct verification we can see that Chakrabarti's 1-pole solutions 

L2] and the solution in [5] fulfills the assumptions (1) - (4). Let {E~} be the basis of 

the Lie algebra su(2), A. = IA~i dxi and A = ~E* R A.. Then by (3) Ari ~' O for 

each a, i. Further, by (1) and (2), IAI is bounded ([7]). 

By [3] (actually using Bianchi identity, integration by parts and Stokes 

theorem), 

' 1 
SIXR31F~12 = 2 slxs*tr FA A ~de +~ptoA A A 

where //o is a constant, 

Let so : S1 x D3 ~, P, s* : D2 x S2 ~> P be local sections of the principal SU(2)-

bundle and A be the Ehresmann connection. Then we have 

s~(A) = A, s~(A) = g~ 1(.s~(A))g + g~ Idg, 

where g S1 x S2 H, SU(2) is the corresponding gauge transformation. By [7], 

 -> O at infinity S~ ･ (See also [4]) 

Then ~d6 -> g~Ide9 asymptotically. By the remark above 

AAA->0 as xl->00 
s'*s' 

Now we can assume that near the limit set S~ A = g*(Ao) holds for the restriction 

Ao on S~ of the extended connection, because near S~ the space is a product D2 

x S2 . By the assumption (4) A = g*(Ao) ~> a diagonal form. Then FA = Fg'(A~) 

-> d*g*(Ao), where d* is the exterior derivative in R3. Thus 

l F~l2 = 2 - tr(g~Ido9 A g*FAO) 

slxR3 slxs2 
= - 2 tr(g~ Id69 A dx9*(Ao)) 

slxs2 
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Here we refer to [1] for the gauge anomaly of the gauge transformation g 
Sl x S2 ~' SU(2). In our case the non zero modes condition is not necessary 

But by a siutable gauge on the limit set S~ we can choose a connection such as 

i(- ydx + xdy) O
 in a local form, k is an integer, k

 - i(- ydx + xdy) O
 

whose Dirac operator satisfies the non zero condition. 

By [1] the gauge anomaly is given as follows 

i 2 27C tr(g~ I do9 A dxg*(Ao) 
slxs2 

w n (g : S1 x S2 ~, SU(2)) (13.83a and 13.103 in [8]). 

Hence we have 

THEOREM I Fll2 = 87c2 x w.n. (9 : Sl x S2 -> SU(2)). 

slxR3 

S 3･ Imstamtoms with evem topological charges 

For a compact Hausdorff space Y, Iet X = S1* Y and B = So*X be unreduced 

joins. Let oc : S1 _> G be a homomorphism of the circle group to a compact 
connected Lie group. Then Ad(cc( )) gives an S1_action on the group G. Denote by 

G. the centralizer of the subgroup oc(S1) in G and G" the quotient space G/G.. The 

map 
g": G"3[h] -> ho( )h-10c( )~1 eQ G 

is an injective map, where ~' G is the based loop space. Consider 'the diagram of 

homotopy sets 
[S1* Y, G] ~~ [(e* Y, Y), (Q'G, eo)] ~~ [So* Y, ~'G] 

the unit element, eo the constant loop and ~; means an isomorphism. Then we have 

THEOREM (2 in [6]). If [X'] e [Sl* Y, G] belongs to im g~, then there is a bundle 

action on the bundle which corresponds to [X'] 

Now consider the case G = SU(2n - 2), B = SO*(S1*S2~~3), n ~ 2 and 
o( : S1 3eio _> (eio)"-1 x (e~ie)"-1 e G. 

PROPOSITION (4 in [6]). Im g~ D 27c2~_1(SU(2n - 2)) 

We have G" = SU(2n - 2)/S(U(n - 1) x U(n - 1)), and 
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[So*S2~ 3 SU(2n 2)/S(U(n 1) x U(n - 1))] ~~a__ ker(io)* 

n
 

[S2~-3, S(U(n - 1) x U(n - 1))]. 

where io : S(U(n - 1) x U(n - 1)) ~' SU(2n - 2) is the inclusion map. Then the 

restriction on the fixed sphere S2~~2 of any C2~~2-bundle of even topological charge 

splits as an S1_vector bundle, i.e. E1 ~) E, with structure group S(U(n - 1) x 

U(n - 1)), where the bundle E1 e) E, is trivial as an SU(2n - 2)-bundle 

Let y : S~ ~' SU(2)/S(U(1) x U(1)) be a map. Instead of c( above if we use a 

map oc ' S13ei6 ->(e' ) ~ x (e~iPo)" p . ,Po ~ I - I e SU(2), then 

~*de=g~Ido9 = ip e O I O 1 1 O _ ~O O ~ y o _1 y O e + O -1 d6' 

where e eiPo. Hence by the theorem in Section 2 we have 

1
 COROLLARY )M(A) = ~ s'xR' [ F~l2 = 8lc2pcl(E1)' 

where cl(E1) is the first Chern class of E1. 

c( p 
REMARK I Choose a representatrve _ f ~ e SU(2) m the class y then 

1 O _1_ Iocl2-lP12 -20cP 
y O - ~ -2~~ lpl2-Iocl2 ly 

1 O c( p Therefore y is a stabilizer of if and only if _ _ eS(U(1) 
O -1 -p oc 

x U(1)). Thus we can identify the Higgs field c with the map y and its homotopy 

class with the magnetic charge cl(E1) 

REMARK 2. By [5] a periodic instanton is given by the periodic solution to the 

equation of motion, that is 

~2 sinh r 1 ip = ~ + 2 r cosh r - cose' 

where r = x . 

given by 

Let p be the period. 
In the mtegral P V ip dO the coefficlent of x rs 

oip ' 
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~2 r cosh r - sinh 1' sinh r _ I a + I e 1
 2~/rT Tan r

 

a' + I O 2~ 2 Tan I a' - I tan 2 o 
r
 

where a = cosh 

and put 

~2 r + sinh r, a' = cosh r. Let T be Pauli matnces and ~ = x 

_-r pVipd6=f(r)-r)c T 
2
 

oip 

Then calculating the improper integral we obtain 

limf(r) = 7c, and lim f(r) = O. 
,-o .~ " 

Thus we have a Skyrmion with barion number 1. Then it 

to study carolons from a view point of Skyrmions [9]. 

seems to be interesting 
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