Mem. Fac. Sci. Shimane Univ.,
25, pp. 45-51 Dec. 25, 1991

A Structure Theory of Freudenthal-Kantor Triple Systems IV

Noriaki KamMiva

Department of Mathematics, Shimane University, Matsue 690 JAPAN
(Received September 4, 1991)

In this paper, we define the Jacobson radical and the Frattini subtriple system for
Freudenthal-Kantor triple systems and investigate it. For the case of nilpotent triple system,
it is shown that the Frattini subtriple system contains the Jacobson radical.

Introduction

The notion of radical plays an important role in the theory of algebras and
triple systems. It seems to be interesting for us to know how the radical behaves
in Freudenthal-Kantor triple systems. Thus in particular, we investigate the
Jacobson radical and the Frattini subtriple system of the triple system in this article.

Throughout this paper, we shall be concerned with algebras and triple systems
which are finite dimensional over a field @ of characteristic different from 2 or 3,
unless otherwise specified. We shall mainly employ the notation and terminology
in [7, 8].

§1. Preliminaries

For ¢ = + 1, a triple system Uf(e) with triple product ( —, —, — ) is called a
Freudenthal-Kantor triple system if

[L(a, b), L(c, d)] = L({abc), d) + ¢L(c, {bad)) (U—-1)
K({abc), d) + K(c, {abd)) + K(a, K(c,d)b) =0 (K—1)
where L(a, b)c = (abc) and K(a, b)c = {acb) — {bca).

ProrosiTion 1.1 ([8]). Let U(e) be a Freudenthal-Kantor triple system. If
P is a linear transformation of U(e) such that P{xyz) = {Px, Py, Pz) and
P2 = —¢Id, then (U(e), [—, —, —1) is a Lie triple system with respect to the triple
product

[xyz]:= (xPyz) — {yPxz) + {(xPzy) — {yPzx). 1-1)

In particular, if e = — 1, K(x, y) = 0 and P = Id (that is, U(e) is a Jordan triple
system), then the triple product becomes [xyz] = {(xyz) — {(yxz).

CorOLLARY. ([7, 17]) Let U(e) be a Freudenthal-Kantor triple system. Then
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the vector space T(g) = U(e) ® U(e) becomes a Lie triple system with respect to the
triple product defined by

(O] s o 10} 02
b)\d)\s) | \ —eK®b, d) el a)—Lb,c)/\f)

The Lie triple system T'(¢) defined above is called the Lie triple system associated
with a Freudenthal-Kantor triple system U(e). Then the standard imbedding Lie
algebra L(e) = L(T(e), T(e)) ® T(e) associated with T(e) is defined as follows;

[XI,XZ]:=([H1,H2]+L(x1,x2))®H1x2—H2x1 (1-3)

where X; = H, + x;, H;e L(T(¢), T(¢)); x;€T(e)(i =1, 2).
An element of the Lie algebra L(e) is expressed as a linear combination of

L(a, b) K(c, d) X
<_8L(e7f) GL(b’ a)>®<y> (1 4)

ProrosiTion 1.2 ([7]). For a Freudenthal-Kantor triple system U(g), the Lie
iriple system T(e) associated with Ul(e) and the standard imbedding Lie algebra L(e),
we have
(a) R(T(e)) = T(R(U(2)))
(b) R(T(e)) = R(LE)NT(e)
(c) R(L(e)) = L(T(e), R(T(¢))) ® R(T(e))
where R(U (e)) (resp. R(T(¢)), R(L(¢))) is the solvable radical of U(e). (resp. T(e), L(e))

Prorosition 1.3 ([11]). Let U(e) be a Freudenthal-Kantor triple system with
a left neutral pair (u, v). (i.e. L(u, v) = Id). Then there exists a subtriple system S of
U(e) such that U(e) =S @ R(U(e)) and S = U(e)/R(U (¢)).

We remark that the notion of Freudenthal-Kantor triple systems contains
that of Jordan triple systems [13], generalized Jordan triple systems of second order
[12], structurable algebras [2] and J-ternary algebras [1, 4].

§2. Jacobson radical

In this section, we shall define the Jacobson radical for a Freudenthal-Kantor
triple system and investigate it.

DEFINITION. The Jacobson radical of Freudenthal-Kantor triple system U(e)
is defined by the intersection of all maximal ideals of U(e), with the convention
that this intersection is U(e) if there are no maximal ideals. We denote it by

Jr(U(#).
Similarly, in the case of a Lie triple system T, we denote it by Jg(T). (cf. [11])
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This notion of Jacobson radical is different from that of [5] due to
Prof. L. Hogben and K.McCrimmon for Jordan algebras.

LemMMA 2.1 The Jacobson radical Jx(U(€)) of U(e) is contained in the derived
subtriple system {U(e)U(e)U(e)).

Proor. In the case U(e) = (U(e) U(e) U(e)), this is trivial. So we assume that
U(e) # U@ U U(e)y. If x¢<{U(e)U(e) U(e)), then there is a subspace M of Ule)
which is complementary to the subspace @x spanned by x and so M contains
(U(U()U(e)y. Then M is a maximal ideal of U(g). Since Jp(U(e)) = M, x¢
Jr(U(e)). Therefore we have Jg(U(e)) = <U(e)U(e) U(e)).

TurorREM 2.2 Let Ul(e) be a Freudenthal-Kantor triple system with a left
neutral pair (u, v). Then we have

Jr(U(e)) = (U U () U(e)> nR(U(e)),
where R (U(¢)) is the solvable radical of U(g).

Proor. If I is a maximal ideal of U(e), then the factor triple system U(e)/I
is simple or {Ul(e)/I, U(e)/I, U(e)/I) =0. In the former case, since U(e)/I is
simple, I contains R(U(g)). From Proposition 1.3, U(e) is decomposed to

U(e) = Bo ® R(U(e)) z-1

(B, is a semisimple subtriple system of U(g)). Hence I is of the form M + R(U(e)),
where M is a maximal ideal of B,. Since the semisimple subtriple system B, can
be expressed as the direct sum of simple ideals (cf. Theorem 2.5 in [7]), the Jacobson
radical of B, is 0. Hence the intersection of all such maximal ideals of U(e) equals
to R(U(g)). In the latter case, since (U(g)/I, U(g)/I, U(e)/I) =0, I contains
(U(e)U(e) U(e))>. Hence the intersection of all such maximal ideals of U(e) contains
(U@ U(e)U(e)y. Considering two cases, we have

(U@ UEUE)NRUE) = Jr(UE) = RUE). z-2
By Lemma 2.1 we have

Jr(UE) = <UEUEUE)). 2-3)
Combining (2 — 2) with (2 —3), we obtain
Jr(U(e) = U U(e) Ule)> NR(U(e)).

This completes the proof.

COROLLARY. If Ule) is a perfect (that is U(e) = {U(e) U(e) U(e))) Freudenthal-
Kantor triple system with a left neutral pair, then we have
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Jr(U(e)) = R(U(e)).
In particular, if U(e) is semisimple, then J(U(e)) = 0.

Corollary. If U(e) is a L-solvable Freudenthal-Kantor triple system with a
left neutral pair, then

Jr(U() =<U) Ul Ule))-

THEOREM 2.3. Let U(e) be a Freudenthal-Kantor trile system with a left neutral
pair and T(e) be the Lie triple system associated with U(e). Then,

Jr(T (e)) = T(Jr(U(e)).

Proor. From the definition of Lie triple system T(g) associated with a
Freudenthal-Kantor triple system U(c), we have

[T T TE)]=U@EU@EUE))®UEU(EUE). 2-4
Hence we have the following
Jr(T(e)) = [T(e) T(e) T() 1N R(T(e))

(by Theorem A in [12])
= (U@ UEUE)>@<UEUEUE)NRUE) @ R(U(E))

(by (2—4) and Prop. 1.2)

= Jr(U(e)) @ Jr(U(e))
(by Theorem 2.2)
= T(Jr(U))-

This completes the proof.

TurOREM 2.4. Let U(e) be a Freudenthal-Kantor triple system with a left
neutral pair and L(g) be the standard imbedding Lie algebra. Then,

Jr(L)nU(e) = Jr(Ul(e))
where Jg(L(¢)) is. the Jacobson radical of Lfg).
Proor. From Theorem B in [12], it follows that
Jr(L(e)) = L(T (), R(T(e))) ® Jr(T(e))- 2-3)
By Theorem 2.3, we have
Jr(T(e)) = T(Jr(U(2))). 2-6)
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Combining (2 — 5) with (2—6), we obtain
Jr(L(e)) = L(T(e), R(T(e))) @ (Jr(U(e)) ® Jr(U(e))).
Hence we get
Jr(LE)NU(e) = Jr(U(e)).

This completes the proof.

§3. Frattini subtriple system

In this final section, we shall define the Frattini subtriple system for
Freudenthal-Kantor triple systems and consider it.

DerFiNITION. A proper subtriple system M of a Freudenthal-Kantor (triple
system Ul(e) is called the maximal subtriple system U (¢) if the only subtriple system
properly containing M is Ul(e) itself.

DermiTion. The Frattini subtriple system F(U(e)) of U(e) is the intersection
of all maximal subtriple system of U(e). It means that F(U(e)) = U(s) if U(e) has
no maximal subtriple system.

ProrosiTioN 3.1. The Frattini subtriple system F(U(g)) of U(¢) is contained in
the derived subtriple system (U(e)U(e) U(e)).

Proor. If <U@U()U(e)> = U(e), then it is trival. Let <U(e)U(e)U(e)) #
U(s). Then we assume that xe F(U(¢e)), x¢<U()U(e) U(s)). Furthermore, assume
that U(e)=B+<U()U()U(e)) + ®x, where B is a complement of &x +
{U@)U() U(e)) in U(e) as the vector space over a field @. Let M= U(e) U(e) U(e))
+ B. Then M is a maximal subtriple system of U(¢). From the assumption that
x is an element of F(U(g)), it must belong to such subtriple system M. This is a
contradiction. Hence, F(U(¢)) is contained in {U(e)U(e)U(e)>. This completes
the proof.

For every ideal A of U(e), we define A" by
AM:= A" 15 U(e), A° = A,
where A U(e) = CAU() U(e)) + <U() AU(e)> + (U(e)U(e) 4).

An ideal A of a Freudenthal-Kantor triple system U(e) is called nilpotent if there
exists a positive integer n such that A" = (0). The least such n is said to be the
class of nilpotency of A.

DermiTioN. The upper central series of a nilpotent Freudenthal-Kantor
triple system Uf(e) is a sequence {Z;} of ideals Z; of U(e) defined inductively as
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follows, Z, = {0} and, for all i >0, Z;,,/Z, is the center of U(e)/Z;. i.e.,
Z,(U(e)):= {xeU(e)|x = U(e) = 0}
Zy(U(@©)/Zi-1(U(e):= Z,(U@)/ Z;-1(U(#))) (i = 1).

If n is the class of nilpotency for U (¢), then Z, coincides with U(e).

DerniTion. If H is any subtriple system of a Freudenthal-Kantor triple
system U(e), its idealizer I(H) is the set

Hu{xeU(e)|x+*H = H}.
We note the following:
{(xeU)|lx*Hc H} 2 {xeU(e)|x+U(e) < H},
(xIH)IH)Y + I(H)xI(H)) + IH)I(H)x) € x+I(H)< H,  for all xeH.

ProrosiTION 3.2. Let Ule) be a nilpotent Freudenthal-Kantor triple system.
Then every proper subtriple system H of Ul(g) is a proper subtriple system of its
idealizer 1(H).

Proor. We define a sequence {H;} of subtriple system of Uf(e) such that
H,=H and H,,, is the idealizer in U(e) of H; for all i >0. By the induction,
we can easily show that H; 2 Z, for all i > 0. Since Z, = U(e) if n is the class of
nilpotency, we get H, = U(¢). This implies that Ho& H;.

ProPoSITION 3.3. Let Ul(e) be a Freudenthal-Kantor triple sj)steln and M be
a maximal subtriple system of U(e). If M contains U(e)", for some integer n, then
M is an ideal of U/(g).

Proor. Let M be a maximal subtriple system such that M = Uf(g)*. Since
U(e)* is an ideal, we can define the quotient triple systems U(e) and M by
Ule) = U(e)/U(e)", M = M/U(e)". Then Ue) 2 M and (U(e))* =0. Hence Ule)
is nilpotent. By Proposition 3.2, I (M)2 M. Since M/U(e)" is a maximal subtriple
system of U(e)/U(e), it must be that I(M/U(e)) = U(e)/U(e)* = U(e). Hence M
is an ideal of U(¢). Therefore this completes the proof.

Form Proposition 3.3, we have the following theorems.

TuEOREM 3.4. Let U(e) be a nilpotent Freudenthal-Kantor triple system and
M be a maximal subtriple system of U(s). Then M is an ideal of U(e).

TaEOREM 3.5. Let U(e) be a nilpotent Freudenthal-Kantor triple system. Then
the Frattini subtriple system F(U(e)) of Ul(e) is an ideal of Ul(e). In particular,
F(U(¢)) contains the Jacobson radical Jg(U(e)).
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