Mem. Fac. Sci. Shimane Univ., 25, pp. 21-37 Dec. 25, 1991

Representations of *P*-Congruences on *P*-Regular Semigroups

Yosuke OKAMOTO*) and Teruo IMAOKA

Department of Mathematics, Shimane University, Matsue, Japan (Received September 4, 1991)

One of the purposes of this paper is to characterize congruences on \mathcal{P} -regular semigroups by using \mathcal{P} -congruence pairs, which is the \mathcal{P} -regular version of congruence pairs for regular semigroups. The other is to study congruences on a \mathcal{P} -regular semigroup S with the same trace, the restriction of a congruence to the set of idempotents of S. Also the special types of congruences on \mathcal{P} -regular semigroups are observed.

§1. Introduction

Let S be a regular semigroup and E the set of idempotents of S. Let $P \subseteq E$. If S satisfies the following, it is called a \mathcal{P} -regular semigroup and P is called a C-set in S:

- (1) $P^2 \subseteq E$,
- (2) $qPq \subseteq P$ for any $q \in P$,
- (3) for any $a \in S$, there exists $a^+ \in V(a)$ (the set of all inverses of a) such that $a^+ P^1 a \subseteq P$ and $aP^1 a^+ \subseteq P$.

In such a case, S is denoted by S(P). Let $a \in S(P)$ and $a^+ \in V(a)$. If a^+ satisfies $a^+P^1a \subseteq P$ and $aP^1a^+ \subseteq P$, then a^+ is called a \mathscr{P} -inverse of a, and the set of all \mathscr{P} -inverses of a is denoted by $V_P(a)$. An element of a C-set P in S is called a projection. The class of \mathscr{P} -regular semigroups contains both the classes of orthodox semigroups and regular *-semigroups. A good account of the concept of \mathscr{P} -regularity can be seen in [7] and [8].

Hereafter S(P) means a \mathscr{P} -regular semigroup S with a C-set P in S. A congruence on S is sometimes called a \mathscr{P} -congruence on S(P). Let ρ be a \mathscr{P} -congruence on S(P), and put $\bar{x} = x\rho$ for any $x \in S$, $\bar{S} = \{\bar{x} : x \in S\}$ and $\bar{P} = \{\bar{q} : q \in P\}$. Then $\bar{S}(\bar{P})$ is also a \mathscr{P} -regular semigroup with a C-set \bar{P} . So $\bar{S}(\bar{P})$ is called the *factor* \mathscr{P} -regular semigroup of S(P) mod. ρ , and it is denoted by $S(P)/(\rho)_{\mathscr{P}}$.

Let ρ be a \mathcal{P} -congruence on S(P). Then it is called an *orthodox* \mathcal{P} -congruence

^{*)} The author's present address: CODEC Co., Ltd., 2-11, Taira, 1-Chome, Miyamae-Ku, Kawasaki, 216 Japan.

on S(P) if $S(P)/(\rho)_{\mathscr{P}}$ is an orthodox semigroup, and it is called a *strong* \mathscr{P} -congruence on S(P) if it satisfies the condition:

For any $a \in S(P)$ and $e \in P$, $a\rho e$ implies $a^+ \rho e$ for all $a^+ \in V_P(a)$.

Also it is called a strong orthodox \mathscr{P} -congruence on S(P) if it is both an orthodox \mathscr{P} -congruence and a strong \mathscr{P} -congruence on S(P). As was seen in [8], if ρ is a strong \mathscr{P} -congruence on S(P), then $S(P)/(\rho)_{\mathscr{P}}$ is a regular *-semigroup with the set $\{e\rho: e \in P\}$ of projections; in fact, the *-operation \bigstar on $S(P)/(\rho)_{\mathscr{P}}$ is given by $(a\rho)^{\ast} = a^{+}\rho(a \in S(P), a^{+} \in V_{P}(a)).$

The set $\{a \in S(P): a\rho e \text{ for some } e \in E\}$ is called the *kernel* of ρ , and it is denoted by ker ρ . Also the set $\{a \in S(P): a\rho e \text{ for some } e \in P\}$ is called the \mathscr{P} -kernel of ρ , and it is denoted by \mathscr{P} -ker ρ . It is well-known that ker ρ is the union of idempotent ρ -classes (for example, see [3]). The restriction $\rho \cap (E \times E) [\rho \cap (P \times P)]$ of ρ is called the $[\mathscr{P}$ -] trace of ρ , and it is denoted by $[\mathscr{P}$ -] tr ρ .

For any subset A of S(P), define the terminology as follows:

- A is $[\mathcal{P}-]$ full if $E \subseteq A [P \subseteq A]$,
- A is a \mathcal{P} -subset if $V_P(a) \subseteq A$ for any $a \in A$,
- A is a \mathcal{P} -self-conjugate if $x^+Ax \subseteq A$ for any $x \in S(P)$ and $x^+ \in V_P(x)$,
- A is weakly closed if $a^2 \in A$ for any $a \in A$.

The following is due to [7] and [8].

RESULT 1.1. Let $a, b \in S(P)$, $e \in E$ and $p \in P$. Then (i) $V_P(b) V_P(a) \subseteq V_P(ab)$, (ii) $a^+ \in V_P(a)$ implies $a \in V_P(a^+)$, (iii) $V_P(e) \subseteq E$, (iv) $p \in V_P(p)$.

The next statement can be found in [2].

RESULT 1.2. Let ρ be a \mathcal{P} -congruence on S(P) and $a, b \in S(P)$. Then $a\rho b$ if and only if

 $ba' \in \ker \rho$, $aa'\rho bb'aa'$, $b'b\rho b'ba'a$

for some $a' \in V(a)$ and $b' \in V(b)$.

Strong \mathcal{P} -congruences on \mathcal{P} -regular semigroups were studied in [4]. In this paper, a generalization of [4] is presented.

In §2, for a given \mathcal{P} -congruence ρ on a \mathcal{P} -regular semigroup S(P), the maximum and the minimum \mathcal{P} -congruences on S(P) whose traces coincide with tr ρ are determined, and the properties for these \mathcal{P} -congruences are given.

The concept introduced in §3 is " \mathcal{P} -congruence pairs". This concept is a characterization of the pair $(\operatorname{tr} \rho, \ker \rho)$ associated with a given \mathcal{P} -congruence ρ on S(P), and the pair uniquely determines the \mathcal{P} -congruence κ such that $\operatorname{tr} \kappa = \operatorname{tr} \rho$

22

and ker $\kappa = \ker \rho$.

In the last two sections, orthodox \mathscr{P} -congruences and strong orthodox \mathscr{P} -congruences on \mathscr{P} -regular semigroups are investigated by the similar argument in §2 and §3.

We use the notation and terminology of [3] and [8] unless otherwise stated.

§2. *P*-congruences with the same trace

Let S(P) be a \mathscr{P} -regular semigroup. For any \mathscr{P} -congruence ρ on S(P), define a relation ρ_{\max} on S(P) as follows:

$$\rho_{\max} = \{(a, b): \text{ there exist } a^+ \in V_P(a) \text{ and } b^+ \in V_P(b) \}$$

such that $aea^+\rho beb^+aea^+$, $beb^+\rho aea^+beb^+$,

 $a^+ea\rho a^+eab^+eb$ and $b^+eb\rho b^+eba^+ea$ for all $e \in P$.

REMARK. Suppose that $a\rho_{\max}b$. Then there exist $a^+ \in V_P(a)$ and $b^+ \in V_P(b)$ such that $aea^+\rho beb^+aea^+$, $beb^+\rho aea^+beb^+$, $a^+ea\rho a^+eab^+eb$ and $b^+eb\rho b^+eba^+ea$ for every $e \in P$. Let $a^* \in V_P(a)$ and $b^* \in V_P(b)$. Note that $ae = aea^+ae$ and $be = beb^*be$. Then

 $aea^* = (aea^+) aea^* \rho beb^+ aea^+ aea^*$ $= beb^* (beb^+ aea^+) aea^* \rho beb^* aea^+ aea^* = beb^* aea^*.$

Similarly we have

 $beb^* \rho aea^* beb^*$, $a^* ea \rho a^* ea b^* eb$, $b^* eb \rho b^* eb a^* ea$.

Thus

$$\rho_{\max} = \{(a, b): aea^+ \rho beb^+ aea^+, beb^+ \rho aea^+ beb^+, a^+ ea\rhoa^+ eab^+ eb and b^+ eb\rhob^+ eba^+ eafor any a^+ \in V_P(a), b^+ \in V_P(b) and e \in P\}.$$

LEMMA 2.1. Let ρ be a \mathcal{P} -congruence on S(P) and $a, b \in S(P)$. If $a\rho_{\max}b$, then

$$aa^{+}\rho bb^{+}aa^{+}, bb^{+}\rho aa^{+}bb^{+}, a^{+}a\rho a^{+}ab^{+}b, b^{+}b\rho b^{+}ba^{+}a$$

for any $a^+ \in V_P(a)$ and $b^+ \in V_P(b)$.

PROOF. Suppose that $a\rho_{\max}b$. Let $a^+ \in V_P(a)$ and $b^+ \in V_P(b)$. Since $aea^+\rho beb^+aea^+$ for any $e \in P$ by Remark above, we have

$$aa^{+} = a(a^{+}a)a^{+}\rho b(a^{+}a)b^{+}a(a^{+}a)a^{+} = ba^{+}ab^{+}aa^{+},$$

so that

$$bb^{+}aa^{+}\rho(bb^{+})(ba^{+}ab^{+}aa^{+}) = ba^{+}ab^{+}aa^{+}\rho aa^{+}$$

By the similar argument, we have the remainder.

THEOREM 2.2. For any \mathcal{P} -congruence ρ on a \mathcal{P} -regular semigroup S(P), ρ_{max} is the greatest \mathcal{P} -congruence on S(P) whose trace coincides with tr ρ .

PROOF. Obviously ρ_{\max} is an equivalence. Suppose that $a\rho_{\max}b$ and $c \in S(P)$. Let $a^+ \in V_P(a)$, $b^+ \in V_P(b)$, $c^+ \in V_P(c)$ and $e \in P$. Then, by Remark above,

$$acec^{+}a^{+} = a(cec^{+})a^{+}\rho b(cec^{+})b^{+}a(cec^{+})a^{+} = bcec^{+}b^{+}acec^{+}a^{+}$$

and

$$c^{+}a^{+}eacc^{+}b^{+}ebc = c^{+}(a^{+}ea)cc^{+}b^{+}ebcc^{+}c$$

$$\rho \quad c^{+}a^{+}ea(b^{+}ebcc^{+})(b^{+}ebcc^{+})c$$

$$= c^{+}(a^{+}eab^{+}eb)c$$

$$\rho \quad c^{+}a^{+}eac.$$

Likewise, $bcec^+b^+\rho acec^+a^+bcec^+b^+$ and $c^+b^+ebc\rho c^+b^+ebcc^+a^+eac$. Thus ρ_{max} is right compatible. Similarly, ρ_{max} is left compatible, so that ρ_{max} is a \mathscr{P} -congruence on S(P).

Next we shall show that tr $\rho = \text{tr } \rho_{\text{max}}$. Let $e, f \in E$. Suppose that $e\rho f$. Then $ep \ \rho \ fp$ for every $p \in P$, which implies

$$((epe^+)\rho, (fpf^+)\rho) \in \mathscr{R} \text{ in } S(P)/(\rho)_{\mathscr{P}},$$

where $e^+ \in V_p(e)$ and $f^+ \in V_p(f)$. So we have

$$epe^+ \rho fpf^+ epe^+, fpf^+ \rho epe^+ fpf^+.$$

Dually, $e^+ pe\rho e^+ pef^+ ef$ and $f^+ pf\rho f^+ pfe^+ pe$. Thus $e\rho_{\max} f$. Conversely, assume that $e\rho_{\max} f$. It follows from Lemma 2.1 that, in $S(P)/(\rho)_{\mathscr{P}}$,

$$(e\rho)\mathcal{R}((ee^+)\rho)\mathcal{R}((ff^+)\rho)\mathcal{R}(f\rho), (e\rho)\mathcal{L}((e^+e)\rho)\mathcal{L}((f^+f)\rho)\mathcal{L}(f\rho)$$

for any $e^+ \in V_P(e)$ and $f^+ \in V_P(f)$. Thus two idempotents $e\rho$ and $f\rho$ of $S(P)/(\rho)_{\mathscr{P}}$ are \mathscr{H} -equivalent, so that $e\rho f$. Therefore tr $\rho = \operatorname{tr} \rho_{\max}$.

Finally, let σ be any \mathscr{P} -congruence on S(P) such that $\operatorname{tr} \sigma = \operatorname{tr} \rho$. Suppose that $a, b \in S(P)$ and $a\sigma b$. Let $a^+ \in V_P(a), b^+ \in V_P(b)$ and $e \in P$. Since $ae\sigma be$, we have $((aea^+)\sigma, (beb^+)\sigma) \in \mathscr{R}$ in $S(P)/(\sigma)_{\mathscr{P}}$, so that

$$aea^+ \sigma beb^+ aea^+$$
, $beb^+ \sigma aea^+ beb^+$.

Therefore we have

 $aea^+ \rho beb^+ aea^+, beb^+ \rho aea^+ beb^+$

since $\operatorname{tr} \sigma = \operatorname{tr} \rho$. Dually,

$$a^+ea\rho a^+eab^+eb$$
, $b^+eb\rho b^+eba^+ea$.

Thus $a\rho_{\max}b$, and hence ρ_{\max} is the greatest \mathscr{P} -congruence on S(P) whose trace is tr ρ . So we have the theorem.

COROLLARY 2.3. For any orthodox \mathcal{P} -congruence ρ on a \mathcal{P} -regular semigroup S(P), ρ_{\max} is the greatest orthodox \mathcal{P} -congruence on S(P) whose trace coincides with tr ρ .

PROOF. Let ρ be an orthodox \mathscr{P} -congruence on S(P). It is sufficient to show that ρ_{\max} is an orthodox \mathscr{P} -congruence on S(P). Let $e, f \in E, e^+ \in V_P(e), f^+ \in V_P(f)$ and $p \in P$. Since ρ is an orthodox \mathscr{P} -congruence on S(P), we have

$$(ef)p(f^+e^+)\rho(ef)^2p(f^+e^+)^2, (f^+e^+)p(ef)\rho(f^+e^+)^2p(ef)^2.$$

So $(ef, (ef)^2) \in \rho_{\max}$, and hence ρ_{\max} is an orthodox \mathscr{P} -congruence on S(P).

From now on, denote the maximum idempotent separating congruence on a semigroup T by μ_T .

COROLLARY 2.4 (compare with [7, Proposition 4.1]). The maximum idempotent separating \mathcal{P} -congruence $\mu_{S(P)}$ on a \mathcal{P} -regular semigroup S(P) is given as follows:

$$\mu_{S(P)} = \{ (a, b): there exist \ a^+ \in V_P(a) and \ b^+ \in V_P(b) \\ such that \ aea^+ = beb^+ aea^+, \ beb^+ = aea^+ beb^+, \\ a^+ ea = a^+ eab^+ eb, \ b^+ eb = b^+ eba^+ ea \ for \ all \ e \in P \} \\ = \{ (a, b): aea^+ = beb^+ aea^+, \ beb^+ = aea^+ beb^+, \\ a^+ ea = a^+ eab^+ eb, \ b^+ eb = b^+ eba^+ ea \\ for \ any \ a^+ \in V_P(a), \ b^+ \in V_P(b) \ and \ e \in P \}.$$

Let S be an orthodox semigroup and E the band of idempotents of S. Then it is easy to check that S(E) is a \mathcal{P} -regular semigroup with a C-set E in S. So we have immediately

COROLLARY 2.5 ([1, Theorem 4.2]). Let ρ be a congruence on an orthodox semigroup S with the band E of idempotents of S. Then

 $\rho_{\max} = \{(a, b): there exist a' \in V(a) and b' \in V(b)$ such that aea' pbeb' aea', beb' paea' beb', Yosuke Окамото and Teruo Імаока

 $a'eapa'eab'eb, b'ebpb'eba'ea for any e \in E$ $= \{(a, b): aea'pbeb'aea', beb'paea'beb',$ a'eapa'eab'eb, b'ebpb'eba'ea $for any a' \in V(a), b' \in (b) and e \in E$

is the greatest congruence on S whose trace coincides with $tr \rho$.

On the other hand, the minimum \mathcal{P} -congruence on S(P) with the same trace is given as follws:

THEOREM 2.6. For any \mathcal{P} -congruence ρ on a \mathcal{P} -regular semigroup S(P), define a relation ρ_0 on S(P) by

> $\rho_0 = \{(a, b): there exist x, y \in S(P)^1 and e, f \in E$ such that a = xey, b = xfy and $e\rho f\}.$

Then $\rho_{\min} = \rho_0^t$, the transitive closure of ρ_0 , is the least \mathcal{P} -congruence on S(P) whose trace coincides with tr ρ . In other words, the least \mathcal{P} -congruence on S(P) with tr ρ as its trace is the \mathcal{P} -congruence on S(P) generated by tr ρ .

PROOF. It is obvious that ρ_{\min} is a \mathscr{P} -congruence on S(P) whose trace is tr ρ . Let σ be any \mathscr{P} -congruence on S(P) such that tr $\sigma = \operatorname{tr} \rho$. Suppose that $a, b \in S(P)$ and $a\rho_0 b$. Then there exist $x, y \in S(P)^1$ and $e, f \in E$ such that a = xey, b = xfy and $e\rho f$. Since tr $\sigma = \operatorname{tr} \rho$, we have $e\sigma f$, so that $a\sigma b$. Hence $\rho_0 \subseteq \sigma$, and so $\rho_{\min} \subseteq \sigma$. Therefore ρ_{\min} is the least \mathscr{P} -congruence on S(P) whose trace is tr ρ . Thus we have the theorem.

The following corollary gives us the characterization, which is different from both [1, Theorem 4.1] and [6, Theorem 3.3], of the least congruence on an orthodox semigroup with the same trace.

COROLLARY 2.7. For any congruence ρ on an orthodox semigroup S, the congruence generated by tr ρ is the least congruence on S whose trace coincides with tr ρ .

Several properties of ρ_{max} and ρ_{min} are presented.

PROPOSITION 2.8. Let ρ be a \mathcal{P} -congruence on S(P) and $e \in E$. Then we have

 $e\rho = e\rho_{\max} \cap \ker \rho.$

PROOF. Let ρ be a \mathscr{P} -congruence on S(P) and $e \in E$. Suppose that $a \in e\rho_{\max} \cap \ker \rho$. Then $a\rho_{\max} e$ and $a\rho f$ for some $f \in E$. Since $a\rho_{\max} e$, by using Lemma 2.1, in $S(P)/(\rho)_{\mathscr{P}}$,

 $(a\rho) \mathscr{R}((aa^+)\rho) \mathscr{R}((ee^+)\rho) \mathscr{R}(e\rho), (a\rho) \mathscr{L}((a^+a)\rho) \mathscr{L}((e^+e)\rho) \mathscr{L}(e\rho)$

for any $a^+ \in V_P(a)$ and $e^+ \in V_P(e)$. So two idempotents $a\rho = f\rho$ and $e\rho$ of $S(P)/(\rho)_{\mathscr{P}}$ are \mathscr{H} -equivalent, and hence $a\rho e$. Thus $e\rho_{\max} \cap \ker \rho \subseteq e\rho$. The reverse inclusion obviously holds.

PROPOSITION 2.9. For any \mathcal{P} -congruence ρ on S(P), $\rho = \rho_{max}$ if and only if $S(P)/(\rho)_{\mathcal{P}}$ is a fundamental \mathcal{P} -regular semigroup.

PROOF. As was seen in Corollary 2.4, the maximum idempotent separating \mathscr{P} -congruence $\mu_{T(Q)}$ on a \mathscr{P} -regular semigroup T(Q) is given by

$$\mu_{T(Q)} = \{(a, b): aea^+ = beb^+ aea^+, beb^+ = aea^+ beb^+, a^+ ea = a^+ eab^+ eb, b^+ eb = b^+ eba^+ eafor any a^+ \in V_Q(a), b^+ \in V_Q(b) and e \in Q\}.$$

Suppose that $\rho = \rho_{\max}$. Then $(a\rho, b\rho) \in \mu_{S(P)/(\rho), \varphi}$ implies, for any $e \in P$,

$$(a\rho)(e\rho)(a^{+}\rho) = (b\rho)(e\rho)(b^{+}\rho)(a\rho)(e\rho)(a^{+}\rho),$$

$$(b\rho)(e\rho)(b^{+}\rho) = (a\rho)(e\rho)(a^{+}\rho)(b\rho)(e\rho)(b^{+}\rho),$$

$$(a^{+}\rho)(e\rho)(a\rho) = (a^{+}\rho)(e\rho)(a\rho)(b^{+}\rho)(e\rho)(b\rho),$$

$$(b^{+}\rho)(e\rho)(b\rho) = (b^{+}\rho)(e\rho)(b\rho)(a^{+}\rho)(e\rho)(a\rho),$$

where $a^+ \in V_P(a)$ and $b^+ \in V_P(b)$. So, for any $e \in P$

$$aea^+ \rho beb^+ aea^+$$
, $beb^+ \rho aea^+ beb^+$,
 $a^+ ea\rho a^+ eab^+ eb$, $b^+ eb\rho b^+ eba^+ ea$,

and hence $(a, b) \in \rho_{\max} = \rho$, that is, $a\rho = b\rho$. Thus $\mu_{S(P)/(\rho)_{\mathscr{P}}}$ is the identity relation on $S(P)/(\rho)_{\mathscr{P}}$. Therefore $S(P)/(\rho)_{\mathscr{P}}$ is fundamental. Conversely, suppose that $S(P)/(\rho)_{\mathscr{P}}$ is fundamental. Let $a\rho_{\max}b$. Then $(a\rho, b\rho) \in \mu_{S(P)/(\rho)_{\mathscr{P}}}$ from the definition of ρ_{\max} . Since $\mu_{S(P)/(\rho)_{\mathscr{P}}}$ is the equality relation on $S(P)/(\rho)_{\mathscr{P}}$, we have $a\rho = b\rho$, so that $\rho_{\max} \subseteq \rho$. Therefore $\rho = \rho_{\max}$.

For any \mathscr{P} -congruences ρ and σ on S(P) such that $\rho \subseteq \sigma$, define a relation σ/ρ on $S(P)/(\rho)_{\mathscr{P}}$ by

$$\sigma/\rho = \{(a\rho, b\rho) \colon (a, b) \in \sigma\}.$$

PROPOSITION 2.10. For any \mathcal{P} -congruence ρ on S(P), ρ_{\max}/ρ is the maximum idempotent separating \mathcal{P} -congruence on $S(P)/(\rho)_{\mathcal{P}}$.

PROOF. Clear.

Let Λ be the lattice of all \mathcal{P} -congruences on S(P). Define a relation Θ on

 Λ as follows: for any $\rho, \sigma \in \Lambda$,

 $\rho \Theta \sigma$ if and only if tr $\rho = \text{tr } \sigma$.

It immediately follows from Theorems 2.2 and 2.6 that $\rho\Theta$, the Θ -class containing $\rho \in \Lambda$, is the interval $[\rho_{\min}, \rho_{\max}]$ of Λ .

PROPOSITION 2.11 (5, Theorem 5.1]). If \mathcal{P} -congruences ρ and σ on S(P) are Θ -equivalent, then $\rho\sigma = \sigma\rho$. Therefore, for any $\rho \in \Lambda$, $\rho\Theta$ is a complete modular sublattice of Λ .

PROOF. Suppose that $\operatorname{tr} \rho = \operatorname{tr} \sigma$. Let $(a, b) \in \rho \sigma$. Then there exists $c \in S(P)$ such that $a\rho c$ and $c\sigma b$. Choose $a^+ \in V_P(a)$, $b^+ \in V_P(b)$ and $c^+ \in V_P(c)$. Then $aa^+\rho cc^+aa^+$ and $b^+b\sigma b^+bc^+c$, which imply that $aa^+\sigma cc^+aa^+$ and $b^+b\rho b^+bc^+c$ since $\operatorname{te} \rho = \operatorname{tr} \sigma$. Also $c^+a\rho c^+c$ and $cc^+\sigma bc^+$. Then

$$a = (aa^+)a\sigma cc^+ aa^+ a = (cc^+)a\sigma bc^+ a,$$

$$b = b(b^+b)\rho bb^+ bc^+ c = b(c^+c)\rho bc^+ a,$$

and so $(a, b) \in \sigma \rho$. Hence $\rho \sigma \subseteq \sigma \rho$. Likewise $\sigma \rho \subseteq \rho \sigma$.

PROPOSITION 2.12. Let $\xi \in A$, and let Γ be the lattice of all idempotent separating \mathscr{P} -congruences on $S(P)/(\xi_{\min})_{\mathscr{P}}$. Then the mapping $\rho \mapsto \rho/\xi_{\min}$ is a complete isomorphism of $\xi \Theta$ onto Γ .

PROOF. Clear.

§3. *P*-congruence pairs

LEMMA 3.1. Let ρ be a \mathcal{P} -congruence on S(P) and $a, b \in S(P)$. Then $a\rho b$ if and only if

$$ab^+ \in \ker \rho, aa^+ \rho bb^+ aa^+, b^+ b\rho b^+ ba^+ a$$

for some $a^+ \in V(a)$ and $b^+ \in V(b)$,

PROOF. Noting that ker ρ is a \mathcal{P} -subset of S(P) by Result 1.1 (iii), this is trivial from Result 1.2.

Let ξ be an equivalence on E. Then ξ is called a *normal equivalence* on E if it satisfies the following: for any $a \in S(P)$ and $e, f, g, h, i, j, k \in E$,

- (a) if $e\xi f$ and aea^+ , $afa^+ \in E$ for some $a^+ \in V_P(a)$, then $aea^+ \xi afa^+$,
- (b) if $e\xi f$, $g\xi h$ and eg, $fh \in E$, then $eg\xi fh$,
- (c) if $\Box \neq (e\xi)(f\xi) \cap E \subseteq h\xi$, $\Box \neq (f\xi)(g\xi) \cap E \subseteq i\xi$ and $\Box \neq (e\xi)(i\xi) \cap E \subseteq j\xi$ $[\Box \neq (h\xi)(g\xi) \cap E \subseteq k\xi]$, then $\Box \neq (h\xi)(g\xi) \cap E [\Box \neq (e\xi)(i\xi) \cap E]$ and $j\xi k$.

28

Let ξ be a normal equivalence on E. Define a partial binary operation \circ on E/ξ as follows: for any $e, f, g \in E$,

$$e\xi \circ f\xi = g\xi$$
, where $\Box \neq (e\xi)(f\xi) \cap E \subseteq g\xi$.

It is easy to verify that the partial binary operation \circ is well-defined. The partial groupoid E/ξ satisfies the following:

(w) if $e\xi \circ f\xi$, $f\xi \circ g\xi$ and $e\xi \circ (f\xi \circ g\xi) [(e\xi \circ f\xi) \circ g\xi]$ are defined in E/ξ , then $(e\xi \circ f\xi) \circ g\xi [e\xi \circ (f\xi \circ g\xi)]$ is defined in E/ξ and $(e\xi \circ f\xi) \circ g\xi = e\xi \circ (f\xi \circ g\xi)$. In this case, the element $e\xi \circ (f\xi \circ g\xi) (= (e\xi \circ f\xi) \circ g\xi)$ is simply denoted by $e\xi \circ f\xi \circ g\xi$.

Let K be a weakly closed full \mathcal{P} -subset of S(P) and ξ a normal equivalence on E. Then the pair (ξ, K) is called a \mathcal{P} -congruence pair for S(P) if it satisfies the following: for any $a, b, c \in S(P), c^+ \in V_P(c), e, f, g \in E$ and $p \in P$,

- (C1) $a \in K$ implies $a^+ a \xi a^+ a^+ a a$ for any $a^+ \in V_P(a)$,
- (C2) $aefb \in K$ and $e\xi \circ f\xi = (a^+a)\xi$ for some $a^+ \in V_P(a)$ imply $ab \in K$,
- (C3) $ab^+ \in K$ and $aa^+ \xi bb^+ aa^+$, $b^+ b\xi b^+ ba^+ a$ for some $a^+ \in V_P(a)$ and $b^+ \in V_P(b)$ imply $apb^+ \in K$ and $apa^+ \xi bpb^+ apa^+$, $b^+ pb\xi b^+ pba^+ pa$,
- (C4) $a, b \in K$, $aa^+ \xi ee^+ aa^+$, $ee^+ \xi aa^+ ee^+$, $a^+ a\xi a^+ ae^+ e$, $e^+ e\xi e^+ ea^+ a$, $bb^+ \xi ff^+ bb^+$, $ff^+ \xi bb^+ ff^+$, $b^+ b\xi b^+ bf^+ f$, $f^+ f\xi f^+ fb^+ b$ and $e\xi \circ f\xi = g\xi$ for some $a^+ \in V_P(a)$ $b^+ \in V_P(b)$, $e^+ \in V_P(e)$ and $f^+ \in V_P(f)$ imply $ab \in K$,
- (C5) $ap \in K$ and $aa^+ \xi paa^+$, $p\xi pa^+ a$ for some $a^+ \in V_P(a)$ imply $cac^+ \in K$.

For any \mathscr{P} -congruence pair (ξ, K) for S(P), define a relation $\kappa_{(\xi,K)}$ on S(P) as follows:

(4) $\kappa_{(\xi,K)} = \{(a, b): ab^+ \in K \text{ and } aa^+ \xi bb^+ aa^+, \\ bb^+ \xi aa^+ bb^+, a^+ a\xi a^+ ab^+ b, b^+ b\xi b^+ ba^+ a \\ \text{for some } a^+ \in V_P(a) \text{ and } b^+ \in V_P(b)\}.$

The following lemma enables us to substitute "some" in the definition above by "any".

LEMMA 3.2. Let (ξ, K) be a \mathcal{P} -congruence pair for S(P) and $a, b \in S(P)$. Suppose that $(a, b) \in \kappa_{(\xi,K)}$. Then $ab^* \in K$ and

for any $a^* \in V_P(a)$ and $b^* \in V_P(b)$. Further

for any $a^* \in V_P(a)$ and $b^* \in V_P(b)$.

PROOF. Suppose that $(a, b) \in \kappa_{(\xi, K)}$. Then $aa^+ \xi bb^+ aa^+$ and $ab^+ \in K$ for some $a^+ \in V_P(a)$ and $b^+ \in V_P(b)$. Choose $a^* \in V_P(a)$ and $b^* \in V_P(b)$. Since K is a \mathscr{P} -subset of S(P), $ab^+ \in K$ implies $ab^* \in K$. Also

$$aa^* = (aa^+) aa^* \xi bb^+ aa^+ aa^*$$
$$= bb^* (bb^+ aa^+) aa^* \xi bb^* aa^+ aa^* = bb^* aa^*$$

since ξ is a normal equivalence on *E*. Similarly, $bb^*\xi aa^*bb^*$, $a^*a\xi a^*ab^*b$ and $b^*b\xi b^*ba^*a$. The second statement is easily verified.

Now we can determine \mathcal{P} -congruences on S(P) by \mathcal{P} -congruence pairs.

THEOREM 3.3. Let S(P) be a \mathcal{P} -regular semigroup. For any \mathcal{P} -congruence pair (ξ, K) for S(P), $\kappa_{(\xi,K)}$ is a \mathcal{P} -congruence on S(P) such that $\operatorname{tr} \kappa_{(\xi,K)} = \xi$ and $\ker \kappa_{(\xi,K)} = K$. Conversely, for any \mathcal{P} -congruence ρ on S(P), $(\operatorname{tr} \rho, \ker \rho)$ is a \mathcal{P} -congruence pair for S(P) and $\rho = \kappa_{(\operatorname{tr}_{\rho}, \ker \rho)}$.

PROOF. Let (ξ, K) be a \mathscr{P} -congruence pair for S(P) and $\kappa_{(\xi,K)} = \kappa$. Obviously, κ is reflexive and symmetric. Suppose that $a\kappa b$ and $b\kappa c$. Let $a^+ \in V_P(a)$, $b^+ \in V_P(b)$ and $c^+ \in V_P(c)$. Set

$$x = ab^{+} \in K, \ x^{+} = ba^{+} \in V_{P}(x), \ y = bc^{+} \in K,$$
$$y^{+} = cb^{+} \in V_{P}(y), \ e = bb^{+}, \ f = cc^{+}.$$

Note that $e \in V_P(e)$ and $f \in V_P(f)$. Then, by Lemma 3.2,

$$xx^{+}e = ab^{+}ba^{+}bb^{+}\xi aa^{+}bb^{+}\xi bb^{+} = e,$$

$$exx^{+} = bb^{+}ab^{+}ba^{+}\xi bb^{+}aa^{+}\xi aa^{+}\xi xx^{+},$$

$$x^{+}xe = ba^{+}ab^{+}bb^{+} = x^{+}x,$$

$$ex^{+}x = bb^{+}ba^{+}ab^{+} = x^{+}x\xi bb^{+} = e$$

and

$$yy^{+}f = bc^{+}cb^{+}cc^{+}\xi bb^{+}cc^{+}\xi cc^{+} = f,$$

$$fyy^{+} = cc^{+}bc^{+}cb^{+}\xi cc^{+}bb^{+}\xi bb^{+}\xi yy^{+},$$

$$y^{+}yf = cb^{+}bc^{+}cc^{+} = y^{+}y,$$

$$fy^{+}y = cc^{+}cb^{+}bc^{+} = y^{+}y\xi cc^{+} = f.$$

Also $e\xi \circ f\xi = (bb^+)\xi \circ (cc^+)\xi = (cc^+)\xi = f\xi$. So, by (C4), we have $xy = ab^+bc^+ \in K$. Since $ab^+bc^+ = a(a^+ab^+b)c^+ \in K$ and $a^+a\xi a^+ab^+b$, we have $ac^+ \in K$ by using (C2). Further, since ξ is a normal equivalence on E,

$$aa^+cc^+\xi bb^+(aa^+bb^+)cc^+\xi bb^+bb^+cc^+ = bb^+cc^+\xi cc^+.$$

Similarly, $aa^+\xi cc^+aa^+$, $a^+a\xi a^+ac^+c$ and $c^+c\xi c^+ca^+a$. Thus $a\kappa c$, so that κ is transitive.

To prove that κ is left compatible, suppose that $a\kappa b$ and $c \in S(P)$. Choose $a^+ \in V_P(a), b^+ \in V_P(b)$ and $c^+ \in V_P(c)$. Set

$$x = ab^+ \in K, \ x^+ = ba^+ \in V_P(x).$$

Then

$$x = xbb^+ \in K,$$

$$bb^+ xx^+ = bb^+ ab^+ ba^+ \xi bb^+ aa^+ \xi aa^+ \xi xx^+ \qquad \text{(by Lemma 3.2),}$$

$$bb^+ x^+ x = bb^+ ba^+ ab^+ = ba^+ ab^+ \xi bb^+ \qquad \text{(by Lemma 3.2),}$$

so that $cxc^+ = cab^+c^+ \in K$ by (C5). It immediately follows from (C3) that $b^+c^+cb\xi b^+c^+cba^+c^+ca$. Since $ba^+ \in K$ and $a^+a\xi a^+ab^+b$, $bb^+\xi aa^+bb^+$, we have $a^+c^+ca\xi a^+c^+cab^+c^+cb$, again by (C3). Moreover, in the partial groupoid E/ξ satisfying (w),

$$(c^+c)\xi \circ (bb^+)\xi \circ (c^+c)\xi \circ (aa^+)\xi$$

= $[(c^+c)\xi \circ (bb^+)\xi] \circ [(c^+c)\xi \circ (bb^+)\xi] \circ (aa^+)\xi$
= $(c^+c)\xi \circ [(bb^+)\xi \circ (aa^+)\xi]$
= $(c^+c)\xi \circ (aa^+)\xi$,

so that $c^+ caa^+ \xi c^+ cbb^+ c^+ caa^+$, which implies $caa^+ c^+ \xi cbb^+ c^+ caa^+ c^+$ since ξ is a normal equivalence on *E*. Likewise $cbb^+ c^+ \xi caa^+ c^+ cbb^+ c^+$. Hence we have *cakcb*, and thus κ is left compatible. Also it is easy to prove that κ is right compatible by using (C3). Therefore κ is a \mathscr{P} -congruence on S(P).

Next we show that $\xi = \operatorname{tr} \kappa$. Let $e, f \in E$ and $e^+ \in V_P(e)$, $f^+ \in V_P(f)$. Suppose that $e\xi f$. Then

$$(ff^+ee^+)\xi = (ff^+)\xi \circ e\xi \circ e^+\xi$$
$$= (ff^+)\xi \circ f\xi \circ e^+\xi = f\xi \circ e^+\xi = (ee^+)\xi.$$

Similarly, $ff^+\xi ee^+ff^+$, $e^+e\xi e^+ef^+f$, $f^+f\xi f^+fe^+e$. Since K is full, $ee^+ff^+\in K$. Also $e^+\xi \circ f\xi = e^+\xi \circ e\xi = (e^+e)\xi$. Therefore, by (C2), $ef^+\in K$, so that $e\kappa f$. Conversely, suppose that $e\kappa f$. Then, since Yosuke Окамото and Teruo Імаока

$$(ee^+)\xi = (ff^+)\xi \circ (ee^+)\xi,$$

we have

$$e\xi = (ff^+)\xi \circ e\xi$$

by multiplying $e\xi$ from the right. So

$$f\xi \circ e\xi = [f\xi \circ (ff^+)\xi] \circ e\xi = (ff^+)\xi \circ e\xi = e\xi$$

By the similar argument, $f\xi \circ e\xi = f\xi$. Therefore $e\xi = f\xi$, that is, $e\xi f$. Hence $\xi = \operatorname{tr} \kappa$.

Finally, we proceed to prove that $K = \ker \kappa$. Suppose that $a \in \ker \kappa$. Then *ake* for some $e \in E$. Let $a^+ \in V_P(a)$ and $e^+ \in V_P(e)$. Set

$$x = ae^+ \in K, \ x^+ = ea^+ \in V_P(x), \ f = ee^+$$

By using Lemma 3.2,

$$xx^{+}f = ae^{+}ea^{+}ee^{+}\xi aa^{+}ee^{+}\xi ee^{+} = f,$$

$$fxx^{+} = ee^{+}ae^{+}ea^{+}\xi ee^{+}aa^{+}\xi aa^{+}\xi xx^{+},$$

$$x^{+}xf = ea^{+}ae^{+}ee^{+} = x^{+}x,$$

$$fx^{+}x = ee^{+}ea^{+}ae^{+} = x^{+}x\xi ee^{+} = f,$$

$$f\xi \circ e\xi = (ee^{+})\xi \circ e\xi = e\xi,$$

so that $xe = ae^+ e \in K$ by (C4). Also set

$$y = ae^+ e \in K, \ y^+ = e^+ ea^+ \in V_P(y), \ z = a^+ a = z^+,$$

 $g = a^+ ae^+ e \in E, \ g^+ = e^+ ea^+ a \in V_P(g).$

From Result 1.1 (iv), $z^+ \in V_p(z)$. Then, by simple calculations,

$$yy^+ \xi ee^+ yy^+$$
, $ee^+ \xi yy^+ ee^+$, $y^+ y\xi y^+ ye^+ e$, $e^+ e\xi e^+ ey^+ y$,
 $zz^+ \xi gg^+ zz^+$, $gg^+ \xi zz^+ gg^+$, $z^+ z\xi z^+ zg^+ g$, $g^+ g\xi g^+ gz^+ z$.

Further, $(ee^+)(e^+ea^+ae^+e) \in P^2 \subseteq E$ and

$$[(ee^{+})(e^{+} ea^{+} ae^{+} e)] \xi = (ee^{+})\xi \circ (e^{+} ea^{+} ae^{+} e)\xi$$
$$= [(ee^{+})\xi \circ (e^{+} e)\xi] \circ (a^{+} ae^{+} e)\xi$$
$$= e\xi \circ g\xi.$$

So we have $yz = ae^+ ea^+ a \in K$ by (C4). Since

$$ae^+ea^+a = a(a^+ae^+e)a^+a \in K, a^+a\xi a^+ae^+e,$$

32

it follows from (C2) that $a = a(a^+a) \in K$. Thus ker $\kappa \subseteq K$. Conversely, suppose that $a \in K$. Let $a^+ \in V_P(a)$. Then $a^+ \in K$ since K is a \mathscr{P} -subset of S(P). By (C1), we have

$$aa^+\xi aaa^+a^+, a^+a\xi a^+a^+aa.$$

Set

$$e = aa^+a^+a \in E, \ e^+ = a^+aaa^+ \in V_P(e),$$

 $x = a^+a^+ \in K, \ x^+ = aa \in V_P(a^+a^+).$

Then it is easily verified that

$$aa^{+}\xi ee^{+}aa^{+}, ee^{+}\xi aa^{+}ee^{+}, a^{+}a\xi a^{+}ae^{+}e, e^{+}e\xi e^{+}ea^{+}a,$$

 $xx^{+}\xi e^{+}exx^{+}, e^{+}e\xi xx^{+}e^{+}e, x^{+}x\xi x^{+}xee^{+}, ee^{+}\xi ee^{+}x^{+}x,$

and $e\xi \circ e^+\xi = (ee^+)\xi$, so that $a(a^+a^+) \in K$ by (C4). Thus $a\kappa a^2$, and hence $K \subseteq \ker \kappa$. Therefore $K = \ker \kappa$.

Conversely, let ρ be a \mathscr{P} -congruence on S(P). Then $(\operatorname{tr} \rho, \operatorname{ker} \rho)$ is a \mathscr{P} -congruence pair for S(P), and it follows from Lemma 3.1 that $\rho = \kappa_{(\operatorname{tr}_{\rho}, \operatorname{ker}_{\rho})}$. Thus we have the theorem.

Let \overline{C} be the set of \mathscr{P} -congruence pairs for S(P). Define an order \leq on \overline{C} by

 $(\xi_1, K_1) \leq (\xi_2, K_2)$ if and only if $\xi_1 \subseteq \xi_2, K_1 \subseteq K_2$.

COROLLARY 3.4. The mappings

$$(\xi, K) \longmapsto \kappa_{(\xi,K)}, \rho \longmapsto (\operatorname{tr} \rho, \operatorname{ker} \rho)$$

are mutrually inverse order-preserving mappings of \overline{C} onto Λ and of Λ onto \overline{C} , respectively. Therefore \overline{C} forms a complete lattice.

§4. Orthodox *P*-congruences

For a given orthodox \mathscr{P} -congruence ρ on S(P), the maximum orthodox \mathscr{P} -congruence ρ_{\max} on S(P) whose trace is tr ρ was presented in Corollary 2.3. On the other hand, we have

THEOREM 4.1. For any othodox \mathcal{P} -congruence ρ on a \mathcal{P} -regular semigroup S(P), define a relation ρ_0 on S(P) by

$$\rho_0 = \{(a, b): there \ exist \ x, \ y, \ u, \ v \in S(P)^1 \ and \ e, f \in E$$

such that $a = xey, \ b = ufv, \ x\eta u, \ y\eta v \ and \ e\rho f \},$

where η is the least orthodox \mathcal{P} -congruence on S(P). Then $\rho_{\min} = \rho_0^t$, the transitive closure of ρ_0 , is the least orthodox \mathcal{P} -congruence on S(P) whose trace coincides with tr ρ .

PROOF. Obviously, ρ_0 is reflexive, symmetric and compatible, so that $\rho_{\min} = \rho_0^t$ is a \mathscr{P} -congruence on S(P). Let $e, f \in E$ and $e^+ \in V_P(e), f^+ \in V_P(f)$. Then we have

$$(ef)^2 = e(eff^+e^+)(ef)^2, ef = e(eff^+e^+)(ef), (ef, (ef)^2) \in \eta.$$

Thus $((ef)^2, ef) \in \rho_0$, and $((ef)^2, ef) \in \rho_{\min}$. Hence ρ_{\min} is an orthodox \mathscr{P} -congruence on S(P). Obviously, ρ_{\min} is the least orthodox \mathscr{P} -congruence on S(P) whose trace is tr ρ .

Let Λ_1 be the lattice of all orthodox \mathscr{P} -congruences on S(P), and define a relation Θ_1 on Λ_1 as follows: for any $\rho, \sigma \in \Lambda_1$,

 $\rho \Theta_1 \sigma$ if and only if $\operatorname{tr} \rho = \operatorname{tr} \sigma$.

Of course, the results corresponding to Propositions 2.8-2.12 hold.

We now proceed to the next stage.

Let ξ be a normal equivalence on E. Then ξ is called an *orthodox normal* equivalence on E if it satisfies

(d) $(e\xi)(f\xi) \cap E \neq \Box$ for any $e, f \in E$.

In this case, E/ξ is a band under

$$e\xi \circ f\xi = g\xi$$
, where $\Box \neq (e\xi)(f\xi) \cap E \subseteq g\xi$.

Let K be both a \mathcal{P} -subset and a \mathcal{P} -full, \mathcal{P} -self-conjugate subsemigroup of S(P)(therefore K is full). Also let ξ be an orthodox normal equivalence on E. Then the pair (ξ, K) is called an *orthodox* \mathcal{P} -congruence pair for S(P) if it satisfies the conditions (C1), (C3) in §3 and

(C2)' $aeb \in K$ and $e\xi a^+ a$ for some $a^+ \in V_P(a)$ imply $ab \in K$,

for any $a, b \in S(P)$ and $e \in E$.

For any orthodox \mathscr{P} -congruence pair (ξ, K) for S(P), define a relation $\kappa_{(\xi,K)}$ on S(P) by (4) in §3. Of course, we can substitute "some" in (4) by "any".

Now we have

THEOREM 4.2. Let S(P) be a \mathcal{P} -regular semigroup. For any orthodox \mathcal{P} -congruence pair (ξ, K) for S(P), $\kappa_{(\xi,K)}$ is an orthodox \mathcal{P} -congruence on S(P) such that tr $\kappa_{(\xi,K)} = \xi$ and ker $\kappa_{(\xi,K)} = K$. Conversely, for any orthodox \mathcal{P} -congruence ρ on S(P), (tr ρ , ker ρ) is an orthodox \mathcal{P} -congruence pair for S(P) and $\rho = \kappa_{(tr_{\rho}, ker_{\rho})}$.

Let \overline{C}_1 be the set of orthodox \mathscr{P} -congruence pairs for S(P), and Λ_1 the lattice

of all orthodox \mathscr{P} -congruences on S(P). Define an order \leq on \overline{C}_1 by

$$(\xi_1, K_1) \leq (\xi_2, K_2)$$
 if and only if $\xi_1 \subseteq \xi_2, K_1 \subseteq K_2$.

Then we have

COROLLARY 4.3. The mappings

 $(\xi, K) \longmapsto \kappa_{(\xi,K)}, \qquad \rho \longmapsto (\operatorname{tr} \rho, \ker \rho)$

are mutually inverse order-preserving mappings of \overline{C}_1 onto Λ_1 and of Λ_1 onto \overline{C}_1 , respectively. Therefore \overline{C}_1 forms a complete lattice.

§5. Strong orthodox *P*-congruences

Firstly, strong orthodox \mathcal{P} -congruences on a \mathcal{P} -regular semigroup with the same \mathcal{P} -trace are discussed.

THEOREM 5.1. Let ρ be a strong orthodox \mathcal{P} -congruence on a \mathcal{P} -regular semigroup S(P). Then we have the following:

(i) The greatest strong orthodox \mathcal{P} -congruence ρ_{max} on S(P) whose \mathcal{P} -trace coincides with \mathcal{P} -tr ρ is given by

 $\rho_{\max} = \{(a, b): there \ exist \ a^+ \in V_P(a) \ and \ b^+ \in V_P(b)$ $such \ that \ aea^+ \rho beb^+, \ a^+ ea\rho b^+ eb \ for \ all \ e \in P\}$ $= \{(a, b): aea^+ \rho beb^+, \ a^+ ea\rho b^+ eb$ $for \ any \ a^+ \in V_P(a), \ b^+ \in V_P(b) \ and \ e \in P\}.$

(ii) Define a relation ρ_0 on S(P) by

 $\rho_0 = \{(a, b): there exist x, y, u, v \in S(P)^1 and e, f \in P \\ such that a = xey, b = ufv, x\tau u, y\tau v and e\rho f \}$

where τ is the least strong orthodox \mathscr{P} -congruence on S(P). Then $\rho_{\min} = \rho_0^t$, the transitive closure of ρ_0 , is the least strong orthodox \mathscr{P} -congruence on S(P) whose \mathscr{P} -trace coincides with \mathscr{P} -tr ρ .

PROOF. Obvious.

Let Λ_2 be the lattice of all strong orthodox \mathscr{P} -congruences on S(P). Define a relation Θ_2 on Λ_2 as follows: for any $\rho, \sigma \in \Lambda_3$,

$$\rho \Theta_2 \sigma$$
 if and only if \mathscr{P} -tr $\rho = \mathscr{P}$ -tr σ .

Several properties of ρ_{max} and ρ_{min} are introduced without proof.

PROPOSITION 5.2. Let ρ be a strong orthodox \mathcal{P} -congruence on S(P) and $e \in P$. Then we have

$$e\rho = e\rho_{\max} \cap \mathscr{P}$$
-ker ρ .

PROPOSITION 5.3. For any strong orthodox \mathscr{P} -congruence ρ on S(P), $\rho = \rho_{\max}$ if and only if $S(P)/(\rho)_{\mathscr{P}}$ is a fundamental orthodox *-semigroup.

PROPOSITION 5.4. Let ρ be a strong orthodox \mathscr{P} -congruence on S(P). Then ρ_{\max}/ρ is the maximum idempotent separating \mathscr{P} -congruence on $S(P)/(\rho)_{\mathscr{P}}$.

PROPOSITION 5.5. Let $\xi \in \Lambda_2$, and let Γ_2 be the lattice of all idempotent separating \mathscr{P} -congruences on $S(P)/(\xi_{\min})_{\mathscr{P}}$. Then the mapping $\rho \mapsto \rho/\xi_{\min}$ is a complete isomorphism of $\xi \Theta_2$ onto Γ_2 .

These propositions hold for strong \mathcal{P} -congruences on S(P).

Next, the concept of strong orthodox P-congruence pairs is introduced.

An orthodox normal equivalence ξ on E is called a *strong orthodox normal* equivalence on E if it satisfies

(e)

 $e\xi p$ for any $e \in E$ and $p \in P$ implies $e^+\xi p$ for any $e^+ \in V_P(e)$.

LEMMA 5.6. Let ξ be a strong orthodox normal equivalence on E. Then $aa^+\xi aa^*$ and $a^+a\xi a^*a$ for any $a \in S(P)$ and $a^+, a^* \in V_P(\mathbf{a})$.

PROOF. Let $a \in S(P)$ and a^+ , $a^* \in V_P(a)$. Then $aa^+ \xi aa^+$, $aa^* \in V_P(aa^+)$ and $aa^+ \in P$. So $aa^+ \xi aa^*$ by using (e). Likewise, $a^+ a\xi a^* a$.

Let K be both a \mathcal{P} -subset and a \mathcal{P} -full, \mathcal{P} -self-conjugate subsemigroup of S(P). Also let ξ be a strong orthodox normal equivalence on E. Then the pair (ξ, K) is called a *strong orthodox* \mathcal{P} -congruence pair for S(P) if it satisfies the conditions (C1) in §3 and

(C2)" $aeb \in K$ and $e\xi a^+ a$ for some $a^+ \in V_P(a)$ imply $ab \in K$,

(C3)" $ab^+ \in K$ and $aa^+ \xi bb^+$, $a^+ a\xi b^+ b$ for some $a^+ \in V_P(a)$ and $b^+ \in V_P(b)$ imply

 $aeb^+ \in K$ and $aea^+ \xi beb^+$, $a^+ ea\xi b^+ eb$,

for any $a, b \in S(P)$ and $e \in P$.

For any strong orthodox \mathscr{P} -congruence pair (ξ, K) for S(P), define a relation $\kappa_{(\xi,K)}$ on S(P) as follows:

$$\kappa_{(\xi,K)} = \{(a, b): aa^+ \xi bb^+, a^+ a\xi b^+ b \text{ and } a^+ b, ab^+ \in K \text{ for some } a^+ \in V_P(a) \text{ and} \\ b^+ \in V_P(b)\}.$$

REMARK. We can substitute "some" by "any".

Now we have the following theorem.

THEOREM 5.7. Let S(P) be a \mathcal{P} -regular semigroup. For any strong orthodox \mathcal{P} -congruence pair (ξ, K) for S(P), $\kappa_{(\xi,K)}$ is a strong orthodox \mathcal{P} -congruence on S(P) such that $\operatorname{tr} \kappa_{(\xi,K)} = \xi$ and $\ker \kappa_{(\xi,K)} = K$. Conversely, for any strong orthodox \mathcal{P} -ongruence ρ on a \mathcal{P} -regular semigroup S(P), $(\operatorname{tr} \rho, \ker \rho)$ is a strong orthodox \mathcal{P} -congruence pair for S(P) and $\rho = \kappa_{(\operatorname{tr}_{\rho}, \ker \rho)}$.

Let \overline{C}_2 be the set of strong orthodox \mathscr{P} -congruence pairs for S(P). Define an order \leq on \overline{C}_2 by

$$(\xi_1, K_1) \leq (\xi_2, K_2)$$
 if and only if $\xi_1 \subseteq \xi_2, K_1 \subseteq K_2$.

COROLLARY 5.8. The mappings

 $(\xi, K) \longmapsto \kappa_{(\xi, K)}, \qquad \rho \longmapsto (\operatorname{tr} \rho, \ker \rho)$

are mutually inverse order-preserving mappings of \overline{C}_3 onto Λ_3 and of Λ_3 onto \overline{C}_3 , respectively. Therefore \overline{C}_3 forms a complete lattice.

References

- [1] R. Feigenbaum, "Kernels of orthodox semigroup homomorphisms", J. Austral. Math. Soc. 22 (Series A) (1976), 234-245.
- [2] Gracinda M.S. Gomes, "Orthodox congruences on regular semigroups", Semigroup Forum 37 (1988), 149-166.
- [3] J.H. Howie, "An introduction to semigroup theory", Academic Press, London, 1976.
- [4] T. Imaoka and Y. Okamoto, "Congruences on P-regular semigroups", Proc. of the 1990 International Symposium on the Semigroup Theory and its Related Fields (1990), 109–123.
- [5] F. Pastijn and M. Petrich, "Congruences on regular semigroups", Trans. Amer. Math. Soc. 11 (1986), 607-633.
- [6] J. Meakin, "Idempotent-equivalent congruences on orthodox semigroups", J. Austral. Math. Soc. 11 (1971), 221-241.
- [7] M. Yamada and M.K. Sen, "P-regularity in semigroups", Mem. Fac. Sci., Shimane Univ. 21 (1987), 47-54.
- [8] M. Yamada and M.K. Sen, "P-regular semigroups", Semigroup Forum 39 (1989), 157-178.