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One of the purposes of this paper is to characterize congruences on & -regular
semigroups by using 2-congruence pairs, which is the 2-regular version of congruence pairs for
regular semigroups. The other is to study congruences on a #-regular semigroup S with the
same trace, the restriction of a congruence to the set of idempotents of S. Also the special
types of congruences on #-regular semigroups are observed.

§1. Introduction

Let S be a regular semigroup and E the set of idempotents of S. Let P< E. If
S satisfies the following, it is called a P-regular semigroup and P is called a C-set
in S:

(1) P*ceE,

(2) gPq < P for any geP,

(3) for any ae$, there exists a* e V(a) (the set of all inverses of a) such that
a*Plac P and aP'a* c P.

In such a case, S is denoted by S(P). Let aeS(P) and a*eV(a). If a* satisfies
atPlac P and aP'a® < P, then a* is called a P-inverse of a, and the set of all
P-inverses of a is denoted by Ip(a). An element of a C-set P in § is called a
projection. The class of #-regular semigroups contains both the classes of orthodox
semigroups and regular #-semigroups. A good account of the concept of
P-regularity can be seen in [7] and [8].

Hereafter S(P) means a Z-regular semigroup S with a C-set P in 5. A
congruence on S is sometimes called a Z-congruence on S(P). Let p be a
P-congruence on S(P), and put X = xp for any xeS, S={x:xeS} and P=
{G: qeP}. Then 5(P) is also a P-regular semigroup with a C-set P. So 5(P)
is called the factor P-regular semigroup of S(P) mod. p, and it is denoted by

S(P)/(p)s-
Let p be a 2-congruence on S(P). Then it is called an orthodox 2-congruence
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on S(P) if S(P)/(p), is an orthodox semigroup, and it is called a strong 2-congruence
on S(P) if it saitsfies the condition:

For any aeS(P) and ee P, ape implies a* pe for all a* € W(a).

Also it is called a strong orthodox P-congruence on S(P) if it is both an orthodox
P-congruence and a strong £-congruence on S(P). As was seen in [8], if p is a
strong Z#-congruence on S(P), then S(P)/(p), is a regular x-semigroup with the set
{ep: ee P} of projections;in fact, the #-operation * on S(P)/(p), is given by
(apy* = a* p(aeS(P), a* € T3(a)).

The set {aeS(P): ape for some ee E} is called the kernel of p, and it is denoted
by kerp. Also the set {aeS(P): ape for some ee P} is called the P-kernel of p,
and it is denoted by #-kerp. It is well-known that ker p is the union of idempotent
p-classes (for example, see [3]). The restriction pN(E x E) [pn(P x P)] of p is
called the [#-] trace of p, and it is denoted by [2-] trp.

For any subset 4 of S(P), define the terminology as follows:

A is [2-] full if E< A[P < A],

A is a P-subset if Vy(a) = A for any ac A,

A is a P-self-conjugate if x* Ax = A for any xeS(P) and x* € l(x),
A is weakly closed if a*c A for any ae A.

The following is due to [7] and [8].

ResuLt 1.1. Let a,beS(P), ecE and peP. Then
(i) W®)Vp(a) = Vp(ab),  (ii) a”eTp(a) implies acVp(a®),
(i) Tp(e) < E, (iv) pe¥(p).

The next statement can be found in [2].

ResuLT 1.2. Let p be a P-congruence on S(P) and a, beS(P). Then apb if
and only if

ba' eker p, aa’pbb’aa’, b’bpb’'ba’a
Jor some a’'eV(a) and b’ e V(b).

Strong #-congruences on #-regular semigroups were studied in [4]. In this
paper, a generalization of [4] is presented.

In §2, for a given #-congruence p on a Z-regular semigroup S(P), the maximum
and the minimum Z-congruences on S(P) whose traces coincide with trp are
determined, and the properties for these #-congruences are given.

The concept introduced in §3 is “Z-congruence pairs”. This concept is a
characterization of the pair (tr p, ker p) associated with a given 2-congruence p on
§(P), and the pair uniquely determines the Z-congruence x such that trx =trp
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and kerx = ker p.

In the last two sections, orthodox £-congruences and strong orthodox
P-congruences on Z-regular semigroups are investigated by the similar argument
in §2 and §3.

We use the notation and terminology of [3] and [8] unless otherwise stated.

§2. -congruences with the same trace

Let S(P) be a 2-regular semigroup. For any #-congruence p on S(P), define
a relation p,,, on S(P) as follows:

Pmax = 1(a, b): there exist a* e V;(a) and b™ € l(b)
such that aea® pbeb™ aea™, beb* paea* beb™*,
a*eapa* eab* eb and b* ebpb* eba” ea for all e P}.

REMARK. Suppose that ap,,,.b. Then there exist a* € lp(a) and b* € J3(b) such
that aea* pbeb™ aea™, beb™ paea*beb*, a*eapa®eab*eb and b*ebpb*eba*ea for
every ecP. Let a*eVp(a) and b*e ;(b). Note that ae = aea™ ae and be = beb*be.
Then

aea* = (aea™)aea* pbeb* aea™ aea*
= beb* (beb* aea™) aea* pbeb* aea™ aea* = beb* aea*.
Similarly we have
beb* paeca*beb*, a*eapa*eab*eb, b*ebpb*eba* ea.
Thus
Pmax = 1(a, b): aea™ pbeb™ aea™, beb™ paea™ beb™,
a*eapa*teab®eb and b* ebpb*eba* ea
for any a* eV(a), b* € V;(b) and ee P}.
LemMma 2.1.  Let p be a P-congruence on S(P) and a, be S(P). If apyq:b, then
aa* pbb* aa™, bb* paa*bb*, atapa*tab® b, b* bpb* ba" a
for any a* € Vp(a) and b* € V(D).

PrOOF. Suppose that ap,.b. Let a*elp(a) and b*elp(b). Since
aea” pbeb™ aea® for any ee P by Remark above, we have

aa* = a(a* a)a* pb(a*ta)b*a(a* a)at = ba*abt aa”,
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so that
bb* aa* p(bb*)(ba* ab* aa™) = ba* ab* aa”™ paa™.
By the similar argument, we have the remainder.

THEOREM 2.2. For any P-congruence p on a P-regular semigroup S(P), ppax
is the greatest P-congruence on S(P) whose trace coincides with tr p.

PrROOF. Obviously p,.., is an equivalence. Suppose that ap,,,b and ceS(P).
Let a*t €Wl(a), b* eVp(b), ct €Vp(c) and eeP. Then, by Remark above,

acec*a* = a(cec™)a* pb(cec™)b* a(cec)a* = bcec*b* acect a*
and
cta*teacctbtebc = ct(aTea)cct b ebect ¢
p ctatea(b* ebcct) (bt ebect)e
= c*(a" eab™ eb)c
p ctateac.
Likewise, bcec™b™ pacec* a*bcec*b* and c¢*b* ebcpct bt ebecc at eac. Thus p,,,
is right compatible. Similarly, p,., is left compatible, so that p,,,, is a #-congruence
on S(P).
Next we shall show that trp = trp,,,. Let ¢,f€E. Suppose that epf. Then
ep p fp for every peP, which implies

((epe™*)p, (Jof T)p)e# in S(P)/(0)s,

where et € Vi(e) and f*el4(f). So we have

epe* pfpf tepe®, fof *pepe” fof *.

Dually, e* pepe* pef *ef and f*pfpf * pfe* pe. Thus ep,,f Conversely, assume
that ep,,. /. It follows from Lemma 2.1 that, in S(P)/(p)s,

(ep)Z((ee*)p) R(UIf T)p)R(fP), (ep) £ ((e* €)p) £ ((f " 1)) £ (fp)

for any e*e¥i(e) and T eV(f). Thus two idempotents ep and fp of S(P)/(p)»
are #-equivalent, so that epf. Therefore trp = trp,,.

Finally, let ¢ be any £-congruence on S(P) such that tro =trp. Suppose
that a, be S(P) and ash. Let a* eV(a), b € 4(b) and ee P. Since aecbe, we have
((aea*)a, (beb*)o)e # in S(P)/(0)s, so that

aea® obebt aeat, beb” caea” beb™ .



#-Congruences on 2-Regular Semigroups 25
Therefore we have
aea™ pbeb* aea*, beb™ paea™ beb™
since tro = trp. Dually,
a*eapa®eab* eb, b* ebpb™ eba™ ea.

Thus ap,,,.b, and hence p,,, is the greatest #-congruence on S(P) whose trace is
trp. So we have the theorem.

COROLLARY 2.3. For any orthodox P-congruence p on a P-regular semigroup
S(P), Pmay is the greatest orthodox P-congruence on S(P) whose trace coincides with

trp.

ProOOF. Let p be an orthodox #-congruence on S(P). It is sufficient to show
that p,., is an orthodox Z-congruence on S(P). Let e, feE, et eW(e), f* elp(f)
and peP. Since p is an orthodox #-congruence on S(P), we have

(@ )p(f " e")plef P p(f T e™)?, (fTe)plef)p(f T e*) plef).

So (ef, (ef)*) € pmax> and hence p, .. is an orthodox Z-congruence on S(P).
From now on, denote the maximum idempotent separating congruence on a
semigroup T by ur.

COROLLARY 2.4 (compare with [7, Proposition 4.1]). The maximum idempotent
separating P-congruence pgp, on a P-regular semigroup S(P) is given as follows :

sy = {(a, b): there exist a* € Vp(a) and b* e V(b)
such that aea® = beb* aea*, beb* = aea™* beb™,
atea=a*eab*eb, b*eb=>b"*ebatea for all ecP}
= {(a, b): aea™ = beb* aca*, beb™ = aea™ beb™,
atea=a"eab" eb, bTeb=b"eba™ ea
for any at eVp(a), bt € Vp(b) and ec P}.

Let S be an orthodox semigroup and E the band of idempotents of S. Then
it is easy to check that S(E) is a P-regular semigroup with a C-set E in 5. So
we have immediately

CorOLLARY 2.5 ([1, Theorem 4.2]). Let p be a congruence on an orthodox
semigroup S with the band E of idempotents of S. Then

Pmax = 1(a, b): there exist a'eV(a) and b'eV(b)

such that aea’ pbeb’aea’, beb' paea’beb’,
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a'eapa’eab’eb, b'ebpb’'eba’ea for any ecE}

{(a, b): aea’ pbeb’ aea’, beb' paea’beb’,

a’'eapa’eab’eb, b'ebpb’eba’ ea
Jor any a’€V(a), b'e(b) and ecE}
is the greatest congruence on S whose trace coincides with trp.

On the other hand, the minimum £-congruence on S(P) with the same trace
is given as follws:

THEOREM 2.6. For any P-congruence p on a P-regular semigroup S(P), define
a relation py, on S(P) by

0o = {(a, b): there exist x, yeS(P)* and e, fcE
such that a = xey, b = xfy and epf }.

Then poin = Po, the transitive closure of py, is the least P-congruence on S(P) whose
trace coincides with trp. In other words, the least P-congruence on S(P) with trp
as its trace is the P-congruence on S(P) generated by tr p.

Proor. It is obvious that p,;, is a £-congruence on S(P) whose trace is
trp. Let ¢ be any Z-congruence on S(P) such that tro =trp. Suppose that
a,beS(P) and apy,b. Then there exist x, yeS(P)' and e, feE such that a = xey,
b = xfy and epf. Since tro = trp, we have edf, so that ach. Hence p, < o, and
SO Pmin & 0. Therefore p.;, is the least P-congruence on S(P) whose trace is
trp. Thus we have the theorem.

The following corollary gives us the characterization, which is different from
both [1, Theorem 4.1] and [6, Theorem 3.3], of the least congruence on an orthodox
semigroup with the same trace.

CoOROLLARY 2.7. For any congruence p on an orthodox semigroup S, the
congruence generated by trp is the least congruence on S whose trace coincides with
tr p.

Several properties of p,,, and p.;, are presented.
ProrosiTiON 2.8.  Let p be a -congruence on S(P) and ec E.  Then we have
ep = epma Nkerp.

Proor. Let p be a Z-congruence on S(P) and eeE. Suppose that
aeep Nkerp. Then ap,,.e and apf for some feE. Since ap,,.e, by using
Lemma 2.1, in S(P)/(p)s,
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(ap) Z((aa™)p) Z((ee*) p) R(ep), (ap) Z ((a* a)p) L ((e” e)p) & (ep)

for any a* eV(a) and et e¥(e). So two idempotents ap = fp and ep of S(P)/(p)s»
are s -equivalent, and hence ape. Thus ep,, Nkerp < ep. The reverse inclusion
obviously holds.

ProrosiTiION 2.9. For any P-congruence p on S(P), p = pmax if and only if
S(P)/(p)p is a fundamental P-regular semigroup.

Proor. As was seen in Corollary 2.4, the maximum idempotent separating
P-congruence fire, on a P-regular semigroup T(Q) is given by

B = {(a, b): aea™ = beb* aea™, beb* = aea*beb™,
atea=a%eab eb, b*eb =b*eba" ea
for any a* e¥,(a), b* €¥(b) and ecQ}.
Suppose that p = pn... Then (ap, bp)€ usep)(,, implies, for any eeP,
(ap)(ep)(a* p) = (bp)(ep) (b p)(ap)(ep)(a™ p),
(bp) (ep)(b* p) = (ap)(ep)(a™ p)(bp)(ep) (b p),
(a* p)(ep)(ap) = (a™ p)(ep)(ap)(b™ p)(ep) (bp),
(b7 p)(ep)(bp) = (b™ p)(ep) (bp)(a™ p)(ep) (ap),
where a* eV(a) and b* eV (b). So, for any ecP
aea* pbeb* aea®, beb* paca* beb*,
ateapa*eabteb, b*ebpb*eba® ea,

and hence (@, b) € P = p, that is, ap = bp. Thus ugp)(,,, is the identity relation on
S(P)/(p)p. Therefore S(P)/(p), is fundamental. Conversely, suppose that S(P)/(p)s
is fundamental. Let ap,,b. Then (ap, bp)eusp) ), from the definition of
Pmax- SINCE Ugpy/p), 18 the equality relation on S(P)/(p)s, we have ap = bp, so
that p., & p. Therefore p = p...

For any 2-congruences p and ¢ on S(P) such that p < o, define a relation
o/p on S(P)/(p)s by
o/p = {(ap, bp): (a, b)ea}.
ProrosiTioN 2.10. For any P-congruence p on S(P), pua./p IS the maximum
idempotent separating P-congruence on S(P)/(p)p.

Proor. Clear.
Let A4 be the lattice of all #-congruences on S(P). Define a relation ® on
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A as follows: for any p, o€ 4,
p@g if and only if trp =tro.

It immediately follows from Theorems 2.2 and 2.6 that p®, the @-class containing
pe, is the interval [pin, Pmax] Of 4.

ProrositioN 2.11 (5, Theorem 5.17). If P-congruences p and ¢ on S(P) are
O@-equivalent, then po = ap. Therefore, for any ped, p® is a complete modular
sublattice of A.

Proor. Suppose that trp =tro. Let (a, b)epo. Then there exists ceS(P)
such that apc and cob. Choose a*elp(a), b*elp(b) and ¢ elp(c). Then
aa* pcctaat and btbob*bc*c, which imply that aa*gcc*aa® and b*bpb*bc* ¢
since tep = tro. Also ctapc*c and cc*obct. Then

a = (aa*)accc* aa* a = (cc*)acbc™ a,
b=>bb*b)pbb*bctc=b(ctc)pbcta,
and so (a, b)eop. Hence po = gp. Likewise op S po.

ProrosITION 2.12.  Let E€ A, and let T be the lattice of all idempotent separating
P-congruences on S(P)/(Enin)e. Then the mapping pr—p/Enin is a complete
isomorphism of £@ onto I

Proor. Clear.

§3. 2 -congruence pairs

Lemma 3.1. Let p be a P-congruence on S(P) and a, beS(P). Then apb if
and only if

ab* ekerp, aat pbb* aa*, b*bpb*bata
Jfor some at eV(a) and b* eV (b),

Proor. Noting that kerp is a Z-subset of S(P) by Result 1.1 (iii), this is
trivial from Result 1.2.

Let ¢ be an equivalence on E. Then ¢ is called a normal equivalence on E
if it satisfies the following: for any aeS(P) and e, f, g, h, i, j, ke E,

(a) if eéf and aea®, afa* €E for some a* € Vi(a), then aea™ &afa™,

(b) if e&f, gth and eg, fheE, then eglfh,

(c) if O#E)SONE<hS O#(fE)gHNE i and O # (e E)NE < j¢E
[O # (hd)(gE)NE < k], then [0 # (k) (9N E [O # (e€)(i§)NE] and jik.
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Let ¢ be a normal equivalence on E. Define a partial binary operation o on
E/¢ as follows: for any e, f, geE,

elo f& =g where O #(e&)(fONE < gl

It is easy to verify that the partial binary operation o is well-defined. The partial
groupoid E/& satisfies the following:

(w) if eo fE fEogl and eCo(fEogl)[(efofE)ogL] are defined in E/E, then
(€ fEogllelo(fEogd)] is defined in E/S and (efe fE)ogl =ele
(féog&). In this case, the element el o (fEogé)(= (e fE) o g&) is simply
denoted by efo fEogé.

Let K be a weakly closed full #-subset of S(P) and ¢ a normal equivalence
on E. Then the pair (¢ K) is called a 2-congruence pair for S(P) if it satisfies
the following: for any a, b, ceS(P), ¢t €W(c), e, f, geE and peP,

(C1) aeK implies a*aéa™ a* aa for any a™ € V;(a),

(C2) aefbeK and efo fE = (ata)é for some a* € Vp(a) imply abeK,

(C3) ab*eK and aa*Ebbtaa*, b*béb*bata for some a* €V(a) and b* e
Vp(b) imply apb™ €K and apa™ ébpb* apa*, b* pbéb* pba™ pa,

(C4) a,beK, aatéeetaat, ee*laa*eet, a*talaTaete, e*eleteata,
bb T EfF Y bbT, ff T EDD ST, b DELTLF TS, fYfEf /BT b and efo fE = g
for some a*eW(a) b* eW(b), et eVple) and f+eV,(f) imply abekK,

(C5) apeK and aa™ épaa™, pépa™a for some at €Vp(a) imply cac*™ eK.

For any Z2-congruence pair (¢, K) for S(P), define a relation x g, on S(P) as

follows:

)] Kex = {(a, b):ab” eK and aa™ Ebb* aa™,
bb* Eaat bb*, atatatabt b, bTbébtbat a
for some a* elp(a) and b e 4(b)}.

The following lemma enables us to substitute “some” in the definition above

by “any”.

LemMa 3.2. Let (&, K) be a P-congruence pair for S(P) and a, beS(P).

Suppose that (a, b)e Kk g). Then ab*eK and

aa*Ebb* aa*, bb*Eaa*bb*, a*ala*ab*b, b*béb*ba*a
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for any a*eVp(a) and b*e Vy(b). Further
aa*Eab*ba*, bb*Eba*ab*, a*aéa*bb*a, b*bEb*aa*b
Sfor any a*eVp(a) and b* e Vy(b).

PrOOF. Suppose that (a, b)€ kg Then aa*ébb*aa™ and ab™ eK for some
a® e€V(a) and b eV (b). Choose a*e V(a) and b*eV;(b). Since K is a P-subset
of S(P), ab* €K implies ab*e K. Also

aa* = (aa*)aa*bb™ aa™ aa*
= bb*(bb* aa™) aa* {bb*aa™ aa* = bb* aa*

since ¢ is a normal equivalence on E. Similarly, bb*&aa*bb*, a*afa*ab*b and
b*b&b*ba*a. The second statement is easily verified.
Now we can determine %-congruences on S(P) by £-congruence pairs.

TueOREM 3.3. Let S(P) be a P-regular semigroup. For any P-congruence pair
(& K) for S(P), kex is a P-congruence on S(P) such that trxgg =& and
ker ke gy = K. Conversely, for any P-congruence p on S(P), (trp, kerp) is a
P-congruence pair for S(P) and p = Ky, rer,)-

Proor. Let (¢, K) be a #-congruence pair for S(P) and kg, = k. Obviously,
k is reflexive and symmetric. Suppose that axb and bxe. Let a* e ¥(a), b* e ;(b)
and c*eW(c). Set

x=ab*eK, x* =bate¥(x), y=bct ek,
vyt =cbtel(y), e=bb*, f=cct.

Note that ecTp(e) and feVip(f). Then, by Lemma 3.2,
xxte=ab*ba*bb* EaaT bbT EbbT = ¢,
exxt =bb*ab"bat Ebbt aat Eaat Exxt,
x*xe=batab*bbt = x"x,
extx =bb*batabt = xTx¢bbt =e

and
vy f=bc*cbtect Ebbtcct Ecct =,
fyy* =cctbetch™ EcctbbT EBDT Eyy T,
vy yf=¢cb bctect = yty,
fyty=cctebtbet =yt yéect = f.
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Also e o fE = (bbT)Eo(cct)E = (cct)E = fE.  So, by (C4), we have xy = ab* bc™ e K.
Since ab*bc* =a(a*ab™b)ct €K and atafatab*h, we have ac* €K by using
(C2). Further, since ¢ is a normal equivalence on E,

aa* cct EbbT (aat bbt)ect Ebb bbt cct = bbtcct Eec”.

Similarly, aa® &cctaa®, ataéatactc and c¢*céctcata. Thus akxc, so that x is
transitive.

To prove that x is left compatible, suppose that axb and ceS(P). Choose
ateV(a), b* eV(b) and c* eTp(c). Set

x=ab*eK, xT = ba* e p(x).
Then
x =xbb* €k,
bb* xx™ =bb*ab* ba* EbbT aat Eaat Exx* (by Lemma 3.2),
bb*x*x =bb*ba*ab™ =ba*ab™ bb* (by Lemma 3.2),

so that cxct =cabtcteK by (C5). It immediately follows from (C3) that
btetebébtetebatctea. Since bat €K and ataéaTab* b, bb* Eaat bbt, we have
atctcatat ¢ cabt ¢t ch, again by (C3). Moreover, in the partial groupoid E/¢
satisfying (w),

(c*e)Ee(bb™)Eo(cT c)Eo(aa™)E
=[(cT)¢e(Bb )] [(cT )& (bb™)ET o (aa™)E
=(cT)Eo[(bb™)Eo(aa™)E]
=(c*¢)¢o(aa™)e,

so that c*caa® Ectcbb™ ¢t caa’, which implies caa® ct Ecbb* ¢t caat ¢t since & is
a normal equivalence on E. Likewise chb*c* écaa* ¢ ebb® c*. Hence we have
carch, and thus x is left compatible. Also it is easy to prove that x is right
compatible by using (C3). Therefore x is a Z2-congruence on S(P).

Next we show that ¢ =trx. Let e,feE and e* eW(e), f*eV(f). Suppose
that e£f. Then

(ff Tee) = (ff ")Eoeloe™ L
=(ff")efloe™ &= floe™ {=(ee")L.

Similarly, ff " ee™ff*, eteletef T, fTfEf Tfete. Since K is full, ee*ff T eK.
Also e o fE=etEoel = (ete)l. Therefore, by (C2), ¢ "eK, so that exyf.
Conversely, suppose that exf. Then, since
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(ee®)e = (ST )Eo(ee™)E,
we have
el =(ff")E-el
by multiplying e& from the right. So
JEoel = [fEo(ff T)E]oel = (Jf )Eoel = el

By the similar argument, f€oef = fE. Therefore ef = f& that is, eff. Hence

E=trk.

Finally, we proceed to prove that K = kerx. Suppose that ackerx.

akxe for some ecE. Let a™elp(a) and et eTj(e). Set
x=aet ek, x* =eat eW(x), f=ee".
By using Lemma 3.2,
xx¥f=aeteateet Eaa" eet Eee™ = f,
fxxt =eetaetea” feeT aat Eaat ExxT,
xtxf=eataeteet =x*x,
fxtx=eeteataet = x* xleet =,
fEoel = (ee")Eoel = e,
so that xe = ae*ee K by (C4). Also set
y=aeteck, y* =eteateW(y), z=ata=:z",
g=ataetecE, g* =e*eatacW(g).
From Result 1.1 (iv), z* €Tp(z). Then, by simple calculations,
yy*Eeetyy*, eet Eyytee”, yTylytyeTe, eteleteyTy,
22V EggTzz*, g9 Lz gg”, 27282 29T g, 9T glgT 927 2.
Further, (ee*)(e*ea™ae*e)e P = E and
[(ee)(etea® aete)] & = (eeT)Eo(eTea™ ae™ e)é
=[(ee*)eo(ete)lo(a” ae™ e)
=efogl.
So we have yz =aeteataeK by (C4). Since

aeteata=a(aTaete)atacK, atalatae”e,

Then
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it follows from (C2) that a = a(a*a)e K. Thus kerx = K. Conversely, suppose
that ae K. Let a* €V(a). Then a*eK since K is a #-subset of S(P). By (C1),
we have

aat Eaaa*t a”t, atatata” aa.
Set
e=aa*atacE, et =ataaa® eW(e),
x=a"a"eK, x* =aaeW(ata").
Then it is easily verified that
aa* feeTaat, eet faat eet, atalat aet e, et eleteat a,
xxtéetexx™, etelxxtete, xTxExt xee™, eet Eeet xt x,

and efoet ¢ =(ee*)¢, so that a(a*a*)eK by (C4). Thus axa®?, and hence
K c kerx. Therefore K = kerx.

Conversely, let p be a P-congruence on S(P). Then (trp, kerp) is a
P-congruence pair for S(P), and it follows from Lemma 3.1 that p = K¢, yer,)- Thus
we have the theorem.

Let C be the set of #-congruence pairs for S(P). Define an order < on C by
(¢4, K;) <(&,, K,) if and only if &, € &,, K, € K,.
COROLLARY 3.4. The mappings
(& K)— K gy, pr—(trp, kerp)

are mutrually inverse order-preserving mappings of C onto A and of A onto C,
respectively. Therefore C forms a complete lattice.

§4. Orthodox Z”-congruences

For a given orthodox #-congruence p on S(P), the maximum orthodox
P-congruence pp,, on S(P) whose trace is tr p was presented in Corollary 2.3. On
the other hand, we have

THEOREM 4.1.  For any othodox P-congruence p on a P-regular semigroup S(P),
define a relation p, on S(P) by

po = {(a, b): there exist X, v, u, veS(P)! and e, feE

such that a = xey, b = ufv, xqu, ynv and epf},
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where 1 is the least orthodox P-congruence on S(P). Then py;, = po, the iransitive
closure of po, is the least orthodox P-congruence on S(P) whose trace coincides with
tr p.

Proor. Obviously, p, is reflexive, symmetric and compatible, so that p;, = oo
is a #-congruence on S(P). Lete, feE and et €¥(e), f T €Vp(f). Then we have

(ef 2 = e(eff Te)(ef ), ef = eleff T e™)(ef), (ef. (ef))en.

Thus ((ef )%, ef )€ po, and ((ef)?, ef ) € Pmin- Hence py,;, is an orthodox #-congruence
on S(P). Obviously, p., is the least orthodox #-congruence on S(P) whose trace
is trp.

Let A, be the lattice of all orthodox #-congruences on S(P), and define a
relation ®, on 4, as follows: for any p, ce4;,

p®, ¢ if and only if trp = tro.
Of course, the results corresponding to Propositions 2.8-2.12 hold.

We now proceed to the next stage.
Let & be a normal equivalence on E. Then ¢ is called an orthodox normal
equivalence on E if it satisfies

(d) ) fEONE# [  for any e, f€eE.

In this case, E/¢ is a band under

efofE=g¢ where [J# (e)(fENE S gé

Let K be both a #-subset and a 2-full, Z-self-conjugate subsemigroup of S(P)
(therefore K is full). Also let & be an orthodox normal equivalence on E. Then
the pair (¢, K) is called an orthodox P-congruence pair for S(P) if it satisfies the
conditions (C1), (C3) in §3 and

(C2) aebeK and efaa for some a* €Vp(a) imply abe K,

for any a, beS(P) and e€E.
For any orthodox #-congruence pair (£, K) for S(P), define a relation x g,
on S(P) by (4) in §3. Of course, we can substitute “some” in (4) by “any”.
Now we have

TueoreM 4.2. Let S(P) be a P-regular semigroup. For any orthodox
P-congruence pair (¢, K) for S(P), K, is an orthodox P-congruence on S(P) such
that ttke ) = ¢ and kerk = K. Conversely, for any orthodox P-congruence p
on S(P), (trp, kerp) is an orthodox P-congruence pair for S(P) and p = K, ker,)-

Let C, be the set of orthodox Z-congruence pairs for S(P), and 4, the lattice
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of all orthodox #-congruences on S(P). Define an order < on C, by
(¢, Ky) < (&5, Ky) if and only if & €&, K € K,.
Then we have
CORrROLLARY 4.3. The mappings
(& K)— K xy p+—— (it p, ker p)

are mutually inverse order-preserving mappings of C, onto A, and of A, onto C,,
respectively. Therefore Cy forms a complete lattice.

§5. Strong orthodox Z7-comgruences

Firstly, strong orthodox #-congruences on a Z-regular semigroup with the
same P-trace are discussed.

TuroreM 5.1. Let p be a strong orthodox P-congruence on a P-regular
semigroup S(P). Then we have the following:

(i) The greatest strong orthodox P-congruence P, on S(P) whose P-trace
coincides with P-tr p is given by

Pmax = 1(a, b): there exist a* € Vp(a) and b™ € Vz(b)
such that aea* pbeb™, a*eapb* eb for all ee P}
= {(a, b): aea™ pbeb*, a* eapb™ eb
for any a* e Vy(a), b* € Vp(b) and ec P}.
(i) Define a relation p, on S(P) by
po = {(a, b): there exist x, y, u, veS(P)! and e, feP

such that a = xey, b = ufv, xtu, ytw and epf}

where T is the least strong orthodox P-congruence on S(P). Then pu, = po, the
transitive closure of pg, is the least strong orthodox P-congruence on S(P) whose
P-trace coincides with P-ir p.

Proor. Obvious.
Let A4, be the lattice of all strong orthodox £-congruences on S(P). Define
a relation @, on 4, as follows: for any p, 6e4,,

p@,0 if and only if P-trp = P-iro.

Several properties of p,,, and p... are introduced without proof.
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ProrosITION 5.2. Let p be a strong orthodox P-congruence on S(P) and
ecP. Then we have
ep = ep.. N P-ker p.

ProposITION 5.3. For any strong orthodox P-congruence p on S(P), p = pax
if and only if S(P)/(p)s is a fundamental orthodox s%-semigroup.

PrOPOSITION 5.4. Let p be a strong orthodox P-congruence on S(P). Then
Pmax/P IS the maximum idempotent separating P-congruence on S(P)/(p)gp.

ProrosiTiON 5.5. Let Eed,, and let I', be the lattice of all idempotent
separating P-congruences on S(P)/(&nin)e- Then the mapping pr—>p/épnin s a
complete isomorphism of £©, onto I',.

These propositions hold for strong #-congruences on S(P).

Next, the concept of strong orthodox Z-congruence pairs is introduced.
An orthodox normal equivalence ¢ on E is called a strong orthodox normal
equivalence on E if it satisfies

(e) eép for any ecE and peP implies e* ép for any e e W(e).

LemMMa 5.6. Let & be a strong orthodox mormal equivalence on E. Then
aa* Eaa* and a*tata*a for any aeS(P) and a™, a* € V(a).

Proor. Let aeS(P) and a',a*eVp(a). Then aa™&laa™, aa*eVi(aa*) and
aa* eP. So aa*&aa* by using (¢). Likewise, a*aéa*a.

Let K be both a Z-subset and a £-full, P-self-conjugate subsemigroup of
S(P). Also let & be a strong orthodox normal equivalence on E. Then the pair
(& K) is called a strong orthodox P-congruence pair for S(P) if it satisfies the
conditions (C1) in §3 and

(C2)" aebeK and efa*a for some a* e V(a) imply abeK,
(C3)" ab*eK and aa* &bb*, a aéb* b for some a* € Vp(a) and b™ € V;(b) imply

aebt €K and aea™ Ebebt, atealb™ eb,

for any a, beS(P) and eeP.
For any strong orthodox #2-congruence pair (£, K) for S(P), define a relation
Kex on S(P) as follows:

Kex = {(a, b): aa® Ebb*, a*alb*b and a*b, ab* €K for some a*eV(a) and
b* eVp(b)}.

ReMarRK. We can substitute “some” by “any”.
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Now we have the following theorem.

TuroreM 5.7. Let S(P) be a P-regular semigroup. For any strong orthodox
P-congruence pair (&, K) for S(P), k., is a strong orthodox P-congruence on S(P)
such that trxeg =C¢ and kerkg g = K. Conversely, for any strong orthodox
P-ongruence p on a P-regular semigroup S(P), (trp, kerp) is a strong orthodox
P-congruence pair for S(P) and p = Ky, ker,)-

Let C, be the set of strong orthodox £-congruence pairs for S(P). Define
an order < on C, by

(&1, Ky) < (&5, Ky) if and only if & &5, Ky = K,.
COROLLARY 5.8. The mappings
& K)— ke p— (trp, kerp)

are mutually inverse order-preserving mappings of C, onto Ay and of A, onto Cj,
respectively. Therefore C, forms a complete lattice.
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