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Several extremum problems will be studied with the constraint qualification related to
ideal boundary components of an infinite network. We shall give a generalized inverse
relation between the extremal length and the extremal width of the network relative to
ideal boundary components.

§1. Introduction

In the previous paper [2], we introduced a notion of ideal boundary
components of an infinite network N = {X, Y, K, r}. For a set I" of paths in N, the
extremal length 1,(I") of order p (1 < p < o) is defined by

M)t =inf{H,(W); WeE,(I")},

where H,(w) =) yr(y)lw(y)|? and E,(I') is the set of all WeL*(Y) such that
H,(W) < oo and

Zpr(y)W(y)': ZyeCy(P)r(Y)W(y) > 1

for all PeI". For a set A of cuts in N, the extremal width p,(4) of 4 of order g (1
< g < o0) is defined by

po(A)~1 = inf {H,(W); We E}(A)},
where E}(A) is the set of all We L™ (Y) such that H (W) < oo and
ZQ W(y)= ZyeQ W(y) = 1

for all Qe A. In the preceding paper, we proved the following generalized inverse
relation:

(*) [A(5)1 7] =1 with 1/p+1/g=1 (1 <p <)

for '="P,, (the set of paths from a finite subset A of X to an ideal boundary
component o of N) and 4 = Q, , (the set of cuts between 4 and o). In this paper,
for two ideal boundary components o and B of N, we shall prove the relation (*) in



32 Atsushi MURAKAMI and Maretsugu YAMASAKI

the case where I is the set P, ; of paths from « to f and 4 is the set Q, ; of cuts
between o« and f. The definitions of P, ; and Q, , will be given in §2. We shall
discuss the duality between the min-work problem with respect to P, , and the
related max-potential problem. Several convex programming problems will be
studied with the constraints related to « and S.

For notation and terminology, we mainly follow [2].

§2. Preliminaries

Let p and g be positive numbers such that 1/p+1/g=1 and 1<p
< o0. Assume that G = {X, Y, K} is an infinite graph which is connected, locally
finite and has no self-loop with the countable set X of nodes, the countable set Y of
arcs and the node-arc incidence function K. Let r be a strictly positive real valued
function on Y. We call the pair N = {G, r} an infinite network. For a subset 4 of
X, denoted by i(A) the set of interior nodes of A and by b(A4):= 4 — i(4) the set of
boundary nodes of A. Recall that aci(4) if and only if all neighboring nodes of a
belong to A, i.e., X(a) < A.

Denote by ibc(N) the set of all ideal bundary components of N as in [2]. A
sequence {NF¥} (N} = <X}, Y,*>) of infinite subnetworks of N is called a
determining sequence of aecibe(N) if each N;f is an end (cf. [2]) of N and the
following conditions hold:

2.1) N¥ | is a subnetwork of N} and X} , < i(X));

@2 N XE=¢

It should be noted that each b(X}) is a finite set by definition.

Denote by Z the set of all integers, by Z* the set of all non-negative integers
and put Z~ = —Z* ={—n;neZ"}. We regard them directed sets with respect
to the natural order if we take them as index sets of paths.

To introduce a notion of paths from aeibc(N) to Beibc(N), we begin with

DEerFINITION 2.1. Let J be any one of directed sets Z, Z* and Z~. An infinite
path P in N is a triple {¢, ¥, p} of mappings ¢ and ¥ from J into X and Y
respectively and a function p on Y satisfying the conditions:

(P.1) @ 1(x) is a finite set (possibly, empty set);
(P.2) ¥ is one-to-one and e((i)) = {@(i), ¢(i + 1)} for each i;
(P.3)  pW(@) = — K(p(@), () for each ielJ,
p(y) =0 for yeY—y(J).
For simplicity, we set

@(k) = xi, Y (k) = yi, @(J) = Cx(P) and Y(J) = Cy(P)
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and call the triple {Cx(P), Cy(P), p} a path asin [2]. Incase J =Z", P is called a
path from ¢(0) = x, (the initial node) to the point at infinity co. Denote by P, o
the set of all paths from x, to co. In case J =77, P is called a path from co to
@(0) = x, (the terminal node). Denote by P, ., the set of all paths from oo to
Xo. Incase J=Z, P is called a path from oo to co. Denote by P, ,, the set of all
paths from oo to oo.

For a path P = {¢, Y, p}€P,, ., we define the opposite path P~ of P by P~
= {¢', ¥, p'} such that ¢'(—n) = @(n) for neZ*, Y/'(—n) = Y(n) and p'(Y(—n)) =
— p(Y(n)) for neZ*. Note that P~ eP, . and Cy(P~) and Cy(P") are equal to
Cx(P) and Cy(P) respectively as sets ignoring the order. We define the opposite
path P~ of PeP, . UP, , similarly.

For two paths P, and P,, the sum P, + P, is well-defined in case the terminal
node of P, coincides with the initial nodes of P, (cf. [2]). If P,eP, ., and
P,eP,, ,, then P, + P,eP, .

Hereafter, let o, feibc(N), a # f and {N¥} (N = (X¥, Y*>) and {Nj} (N}
= (X*, ¥*>) be determining sequences of « and B respectively such that X#nX#

A path PeP,  is called a path from.x to o if Cx(P)— X, is a finite set
(possibly, empty set) for each n. Denote by P, , the set of all paths from x to « and
put P, , = UsesPr,, for a subset 4 of X. Let P, =Py ,.

DErFINITION 2.2. A path PeP,  is called a path from o to B if there exist
xo€X and paths P, and P, such that

P=P; +P,, P,eP, , and P,eP, ,;.

Denote by P, ; the set of all paths from o to f.
For a finite nonempty subset 4 of X such that AnX§ = ¢, the set of cuts
between 4 and f is defined by

QA,ﬁ = U:O=1 QA,X;‘I:

where Q4 g, is the set of all cuts between 4 and X (cf. [2]). Notice that {Qy; g}
is increasing with respect to both m and n. So we set

Qa,ﬁ = U,f:l(U:O:l Qx;fn,X:) = U:=1 QX:‘“,B
and call its element a cut between o and f. Clearly,
Qa,ﬁ = U:o=1 Qx;,,X:,-

Needless to say, these definitions do not depend on the choice of determining
sequences of o and f.
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§3. Max-potential and min-work problems

Let o and B be distinct ideal boundary components of N and let ce L*(Y). We
shall study the duality between the following min-work problem (MWP) and max-
potential problem (MPP) related to «, § and c:

(MWP)  Minimize ) pc(y) subject to PeP, ;.
(MPP) Maximize 6.(u; o, f)
= inf{u(P); Pel(«)} — sup {u(P); Pel,(B)}
subject to ueS¥
= {ue L(X); | Y xex K(x, y)u(x)] < c(y) on Y}.

Here I',(«) = {PeP,; ) pc(y) < oo} and u(P) for PeP, denotes the limit value of
u(x) as x tends to a along P if it exists. It is clear that u(P) exists for any ue S¥ and
Pel (Ul (p). Note that o.(u; o, ) is the potential drop of u between o and S
relative to c. Denote by N(P, ,;c) and N*(a, B; c) the values of (MWP) and
(MPP) respectively. '

For a subset 4 of X, § and c, let N(P, ;; c) be the value of the min-work
problem as in [2], ie.,

NP, 5 c) =inf{) pc(y); PP, 4}.
By the same argument as in the proof of [2; Lemma 2.1], we obtain
LEMMA 3.1.  {N(Pyxs 4; )} converges increasingly to N(P, z;c) as n— co.
By the relation: N(Pyyy,), 5; ¢) = N(Py; 4; ¢), we have
COROLLARY 3.2. N(Py 4;¢)} = N(P, 4; c) as n— co.
Now we show the following duality theorem for (MWP) and (MPP):

THEOREM 3.3. If I' (%) # ¢ and I',(B) # ¢, then N(P,z; c) = N*(a, B; c) holds
and (MPP) has an optimal solution. '

PrROOF. Let ueS¥ and PeP,; with ) pc(y) < 0. Then there exist x,€X,
P,eP, , and P,eP, , such that P =Py + P,. Let Cx(P,) = {xg, X1, X3,...}»

CX(PZ) = {xo, xi’ xé’---}s CY(Pl) = {yO’ Y1s y25---}a CY(PZ) = {y(/b yi’ y;’}s e(yi)
= {x;, X;+1} and e(y;) = {x{, x{,,} for each ieZ* with x{, = x,. Then

ZPC(.V) = ZP1 c(y) + ZP; c(y)
= )iy {luCe) — ule_ )l + lux)) — u(xi- I}

= u(x,) — u(x,)
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for every n, so that

Yrc(y) = u(Py) — u(Py) = d.(u; o, f).

Hence N(P,5; ¢) = N*(x, B; c).
To prove the converse inequality, define die L(X) by

d(x) =inf{) pc(y); PeP, 5} = N(P, 4; ¢)

for xe X. Notice that #i(x) < oo by our assumption I,(f) # ¢. By the same way as
in the proof of [2; Theorem 2.1], we see that de S¥, 4(P) = 0 for every Pe () and

inf {2(x); xeb(X)} = N(Pyxz), 55 €)

for every m. We shall prove that N(P, z; ¢) < 6.(4; o, f). Let Pel (o) with Cx(P)
= {Xg, X1, X3,...}. Then @(P)=lim,_,,d(x,). For t>i(P), there exists n, such
that #(x,) <t for all n >n,. For each m large enough, there exists j,(> no) such
that x; eb(X}), since PeP,, so that

t>i(x;,) > inf{#(x); xeb(X})} = NPyxs),g5 ©)-
By Lemma 3.1, t > N(P,; ¢) and hence #(P) > N(P, 4; c). Therefore,
N*(a, B; ¢) = 6.(; o, f) = infpry #(P) = N(P, 4; ¢).

It follows that N(P, z; ¢) = N*(«, B; c) and that 4 is an optimal solution of (MPP).

§4. The extremal length A,(P, )

Related to the extremal length A,(P, ;) of P, ; of order p we consider the
following convex programming problem on L(X):

4.1) Minimize D,(u):= H ,(du)
subject to ue L(X), u(e) =1 and u(f) = 0.

Here du(y) = —r(») 'Y «ex K(x, y)u(x) is a discrete derivative of u and u(x) =t
implies that u(P) exists and is equal to ¢ for p-almost every PeP,, i.e., 1,(P, — I')
= oo with I = {PeP,; u(P) exists and u(P) =t}. Denote by d,(«, B) the value of
Problem (4.1). Notice that d,(a, f) < .

We have

THEOREM 4.1. If A (P, ;) < oo, then dy(o, f) = A,(P, )"

ProoF. First we shall prove that 1,(P, 5)~' < d,(«, ). Let ueL(X) such that
D,(u) < o, u(@) =1 and u(f) =0. Put

I'(o; u)={PeP,; u(P) =1},
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I'(B; u)={PePy; u(P)=0},

I'(o, B;u)={PeP,,; P=P; +P,, P,eP,, P,eP;, u(P;) =1, u(P,) = 0}.
Then 4,(P, — I'(«; u)) = 4,(Ps — I'(B; u)) = oo by our assumption, so that 1,(P,,
—I'(o, f;uw)=oc0 by [1;Lemma 23]. Let W=|du|. Then H,(W)< co and

Y pr()W(y) > 1 for all PelI'(a, f;u) by the same reasoning as in the proof of
Theorem 3.3. Namely, WeE,(I'(«, f; u)). Thus by [1; Lemma 2.2]

Ap(Pop) ™! = A,(I(0, B3 u)) ™! < H (W) = Dy (u),

so that A,(P, ,)~ ' <d, (o p).
Next we prove the converse inequality. Let WeE,(P, ;). Then,

Y pr(W(y) < o for p-almost every PeP,UP,

(cf. [2; Lemma 1.1]). Take c=rW. Then I.(x)# ¢ and I'.(f)# ¢ by our
assumption A,(P, ) < 0. We can find ueL(X) such that u(f) =0, ueS¥* and
O.(u; o, p) = N(P, 5; ¢) > 1 by Theorem 3.3. Define ve L(X) by v(x) = min(u(x), 1).
Then v(P) = 1.for every Pe (), v(f) = 0 and |dv(y)| < |du(y)| < W(y) on Y. Since
A,(P, — I'.(¢)) = 0o, we have v(x) =1 and

d,(@, B) < D,(u) < H,(W).

Therefore, d (o, f) < A,(P, 5~ ".
By the same reasoning as in the proof of [2; Theorem 2.4] with Lemma 3.1, we
obtain the following property (stability) of extremal length:

THEOREM 4.2. For every determining sequence {N}}(N¥ =<{(X}¥, Y*>) of
o, Ap(Pb(X’:"),ﬁ) — A’p(Pa,B) as n— 0.

§5. Extremal width p,(Q, )
We prepare

LemMMA 5.1. Let A and B be mutually disjoint nonempty subsets of X and
Beibc(N) such that AnXf{ =¢. Then EF(Q, p) = EF(Quuy.p) and EF(Q, p)
= E: (Qb(A), ,e)-

Proor. By the obvious relations Q, 5 < Qy4y,p and Q4 5 = Qp(4), 5, We have
E¥(Q4,8) © Ef(Qp),p) and EF(Q,4 g) © Ef(Qpu), ). For the proof of the converse
relation, it suffices to note that every Qe Qyy) p (resp. Q5 contains Q' €Q,
(resp. Qy,p). For QeQyy),p With Q = Q(b(4)) © Q(B), let Q'(4) = Q(b(4))UA and
Q(B)=Q(B)—A. Then Q' =Q(4)©Q(B)eQ,p and Q' = Q. For QeQyy 4,
there exists n such that QeQyu), x:- By the above observation, we can find
0"€Q 4 x:(= Q4 p) such that Q" < Q.
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COROLLARY 5.2. The following equalities hold:
(1) :u'q(QA,B) = py(Qpa), B = g(Qua), 58>
2 Nq(QA,ﬂ) = ﬂq(Qb(A),ﬂ)-

In order to study some properties of ;1,(Q,, 4), we need the notion of flows. For
weL(Y) and a subset A of X, let

I(W9 X) = ZerK(xa J’) W(.V)g
I(W; A) = erAI(W; X)

provided that ) ., |I(w; x)| < c0.
For mutually disjoint nonempty subsets A and B of X, the set F(4, B) of flows
from A to B is the set of we L(Y) such that

I(w; x)=0 for all xeX — A — B and I(w; A) + I(w; B)=0.

Denote by Lo(Y) the set of weL(Y) with finite support and by F,(4, B) the
closure of Fy(4, B):= F(4, B)nLo(Y) in the Banach space L, (Y;r):={weL(Y);
H,(w) < oo} with the norm [H,(-)]"".

In case there exists n, such that AnX} = ¢, we have

Fq(Aa X:‘) = Fq(Aa ‘X_":k+l)’

so we put Fy(4, f) = N,~,, F,(A, X¥) and call its element a flow from 4 to f. This
set does not depend on the choice of the determining sequence of f.

Let & be any one of Fy(A4, B), F (A, B) and F (4, f) and consider the following
extremum problem:

Find d}(#):=inf{H,(w); weF and I(w; 4) = — 1}.

LemMa 5.3. Let N* = (X* Y*)> and N* = (X*, Y*) be ends of N such that
X*nX*=¢. Then d¥(Fo(X* X*) = d¥(Fo(b(X*), X*)).
PrOOF. Since Fo(X*, X*) o Fo(b(X*), X*),
d¥(Fo(X*, X¥) < dF (Fo(b(X*), X*)).
On the other hand, let we Fo(X*, X*) with I(w; X*)= — 1. Define w' e L(Y) by
w(y) =0 on i(Y*):= Useixn Y(x);
w(y) = w(y) on Y—i(Y*).
Then, w eFo(b(X*), X*) and I(w'; b(X*)) = — 1. In fact, clearly
Iw;x)=0 for xei(X*).
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For xe X — (X*UX*), Y(x)ni(Y*) = ¢ and I(w'; x) = I(w; x) = 0. By the relation
Y oxex+ X yeirn K (X, Y)w(y) = 2 yeicr) w(3) Y xex-K(x, y) =0,

we have ’
IOW; BC¥) = T e Dper—icrm K (6 )W) = I0w; X*) = — 1.
Therefore w' is a feasible solution for dj(Fo(b(X*), X*)), and hence
d¥(Fo(b(X#), X*)) < H,(W) < Hy(w).

Thus d(Fo(b(X*), X*)) < d}(Fo(X*, X*)).

It is easily seen that

df(Fo(A, B)) = df(F,(A, B)).

Therefore we obtain

COROLLARY 5.4. d}(Fo(X*, X*)) = d}(F (b(X*), b(X*))).

Now we prove a stability of extremal width:

THEOREM 5.5.  uy(Qxs, xx) = 1g(Qs,p) as n— co.

Proor. Noting that Qy; g < Qx;

LD -

= Q,, 4, we have

ﬂq(Qx:;,X’:,) 2 #q(Qx;H,X;“) > 1,(Q,,p),

so that lim, o p,(Qxs, z:) = 4,(Q,,5). To show the converse inequality, we may
assume that lim,. ., u,(Qxs z) >0 and p,(Q, ) < co. By [3; Theorem 4.1 and
Proposition 4.2] and Corollary 5.2, there exists w,eF,(b(X}), b(X;¥)) such that
I(w,; b(X¥)= —1 and

Hq(wn) = d;(Fq(b(Xr:k)s b(X;k))) = :uq(Qb(Xf,),b(X:))‘ l= :uq(QX;';,Y:)_la
since b(X7) and b(X}) are finite sets. Notice that {H,(w,)} is bounded by our
assumption. For each w,, there exists w, e Fo(b(X ), b(X¥)) such that I(w,; b(X¥))
= —1 and Hy(w,—w;) <1/n. Then w,eF,(X}, X)), I(w,; X¥)= —1 and
L= I(wy; X < Y olwa(y)l
for all Q€Qyy g, Nemely, |w,|€EF(Qx: x:), and hence pu,(Qx: z:) ™ < H,(w;).
Therefore
limn—>oo Hq(wrll) = limn—voqu(Wn) = limn—wo :uq(QX;;,X:‘I)_ ! .

If m > n, then (w, + w,,)/2 is a feasible solution of d}(Fo(X}, X¥)). By Clarkson’s
inequality (cf. [2]) and Corollary 5.4, we see that {w,} is a Cauchy sequence in
L,(Y;r). Thus we can find w e L,(Y; r) such that H,(w, —w)—0 as n—> . On
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the other hand, it follows from [2; Lemma 4.3] that there exist 4 = Q,,; and a
subsequence {w,,} of {w,} such that y,(Q, ;— 4) = co and

Yolwn () —w@|— 0as k— oo  for all Qed.

By [2; Lemma 4.2], p,(A4) = 1,(Q,,5). Let QeA. Then there exists n, such that
Q€Qy; g for all n>n,. By the above observation Y olwi(»)| =1 Thus,

1=Y0W ) < Yolwn 0 = XolWH
< Yolwn ) —w®) — 0
as k— oo, so that 1 <) o|w(y)l, i.e., [w|€E}(4). Consequently,
1(Qu, )™ = p(A) < Hy (W) = lim, ., Hg(wy) = lim,, o, 1 (Qxy, x0) ™"
This completes the proof.
COROLLARY 5.6.  p1y(Qxs 52) = 14,(Qy, p) as m— oo and n— .

By [2; Theorem 4.1 and Corollary 4.1], we have

61 g Quxsy. x2) — Ug(Qoxs,y,p) as B —> 0

(52)  [Ap(Puorgy, 1 7 [H(Quixsy, 911 = 1.
Combining Theorems 4.2 and 5.5 with (5.1) and (5.2), we obtain
THEOREM 5.7. [A,(Py, 5) 1P [0y (Qp, p) 112 = 1.
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