島根大学地質学研究報告 8.7~16ページ(1989年6月) Geol. Rept. Shimane Univ., 8. p. 7~16(1989)

山陰地方中部の第四紀後期火山ガラス

大 西 郁 夫*·西 田 史 朗**·渡 辺 正 巳***

Late Quaternary Volcanic Glass in Central San'in District

Ikuo ONISHI, Shiro NISHIDA and Masami WATANABE

図1 試料採取地点(×印)

後期更新世や完新世の泥質堆積物に,しばしば,広 域火山灰層に由来する火山ガラスが含まれていて,そ

* 島根大学理学部地質学教室

れを同定・対比することにより,堆積年代の推定が行われてきた.火山灰の同定には,従来から,岩相と鉱物組成,斑晶鉱物やガラスの形態や屈折率などが注目されている.しかし,最近では,火山ガラスのエネルギー分散型マイクロアナライザー(EDX)分析の利用もさかんになってきた.EDX分析は,1試料から10個

^{**} 奈良教育大学教育学部地学教室

^{***} 川崎地質株式会社

A:国土地理院25,000分の1地形図「下横田」を使用 B:大西(1986 b)を改修.

表 1	大谷峠火山ガラスの化学組成	(化学組成は%)

241 260	N = Diske	N = 2U 813/OHTANITOGE DISKET: T#14								
	NA20	MGO	AL203	S I 02	K20	CAO	T102	FEO		
Minimum	1.790	0.430	10.680	76.630	2.210	1.140	0.030	1.520		
Maximun	3.720	1.370	13.040	80.350	3.070	1.780	0.170	2.540		
Range	1.930	0.940	2.360	3.720	0.860	0.640	0.140	1.020		
Mean	2.550	0.945	11.537	79.057	2.491	1.490	0.102	1.829		
Sum of sqs.	6.389	1.193	6.721	21.507	0.761	0.385	0.016	0.882		
Variance	0.319	0.060	0.336	1.075	0.038	0.019	0.001	0.044		
Std. dev.	0.565	0.244	0.580	1.037	0.195	0.139	0.029	0.210		

以上のガラス片を選び,1個毎に,Na,Mg,Al,Si, K,Ca,Ti,Feの8元素の量を測定し,それらの酸化物 の組成を,各試料毎に,最高値(Maximum),最低値 (Minimum),変動範囲(Range),平均値(Mean), 平方和(Sum of square),分散(Variance)および標 準偏差(Standard deviation)を計算し,その結果を, すでに分析同定ずみの火山灰のデーターと,VAIS

(Volcanic Ash Identification System)を経て比較し、
類似火山灰のリストを得るという方法である(西田ほか, 1986;西田・原田, 1987).

山陰地方中部においても,数ヶ所において火山ガラ スを含む堆積物が発見されている.今回,4地点(図 1)の4試料の火山ガラスについて,EDX分析を行 い,その起源が推定できたので,ここに報告する.

山陰地方中部の第四紀後期火山ガラス

表2 大谷峠火山ガラスと既知試料との比較

	NA20	MGO	AL203	SI02	K20	CAO	T102	FE0	ID-val
813/OHTANITOGE	2.55	0.95	11.54	79.06	2.49	1.49	0.10	1.83	
TSUMAYA/109	2.63	0.90	10.75	79.84	2.58	1.40	0.10	1.81	0.2698
AIRA/396	2.89	0.96	10.82	79.38	2.56	1.43	0.10	1.86	0.2951
ITO/081	2.73	0.90	10.77	79.69	2.62	1.35	0.10	1.85	0.3550
AIRA/094	2.89	1.00	10.78	79.45	2.57	1.42	0.10	1.79	0.3577
AIRA/003	2.39	1.00	10.84	80.25	2.37	1.34	0.10	1.70	0.4110
AIRA/490	2.38	0.88	10.46	80.39	2.65	1.39	0.10	1.76	0.4204
KOBAYASHI/754	2.95	1.03	10.66	79.46	2.61	1.48	0.10	1.72	0.4374
AIRA/007	2.30	0.96	10.87	80.21	2.44	1.29	0.09	1.84	0.4409
AIRA/270	2.82	1.11	11.30	79.15	2.42	1.38	0.10	1.73	0.4528
AIRA/062	2.82	1.00	11.84	78.55	2.47	1.45	0.08	1.78	0.4532

. 島根県仁多郡横田町大谷峠

仁多から下横田に通ずる道路の,大谷峠付近の切割 りに露出する後期更新統の,基底部に挟まれる厚さ 10cmの,火山灰質泥層(813/OTANITOGE)である (図2;大西,1986 b).

EDX 分析により表1・図3の化学組成が測定され た. これまでのデーターと比較すると姶良火山灰(A-T)の化学組成と類似する(表2).

大西(1986 b)は、この更新統の花粉分析を行い、 堆積年代を1万数千年前と推定している.この推定年 代は AT の噴出年代(24500±700y.B.P.;松本,198 5)と一致しない.

この火山灰質泥層の重鉱物組成は、普通角閃石>シ

ソ輝石>酸化角閃石であり(大西,1986 b), AT の重 鉱物組成(シソ輝石>角閃石;町田・新井,1970)と 異なっている.火山ガラスは,下位の砂まじり泥層や 上位の泥炭質泥層にも含まれている.火山ガラスの含 有量が少ないほど,普通角閃石の量が多くなり,シソ 輝石の量は少なくなる.普通角閃石の一部には火山灰 起源でないものが含まれていると考えられる(大西, 1986 b).火山ガラスが AT 起源とすると,火山灰そ のものも一次的なものでなく,砕屑性の角閃石などと 共に,周辺から二次的に供給されたものと考えられ る.

Ⅱ. 松江市西川津町西川津遺跡

松江市西川津町の朝酌川流域の地下には縄文時代以 後の遺物が含有され,西川津遺跡と呼ばれている.朝

9

A 国土地理院25,000分の1地形図「松江」を使用
Ⅱ:西川津遺跡 Ⅲ:西川津遺跡海崎地区
B 西川津遺跡の試料採取層準 大西(1985)を改修

酌川の河川改修工事に伴い,発掘調査が行われてきた、川津小学校北側(図4−Ⅱ;大西,1985)では、 地表下約2mの小礫まじり砂層から、縄文式土器、古 式土師などの遺物を産出した.この砂層の下位には層 厚30cm以上の泥層があり、火山ガラス(815/ NISHIKAWAZU-03)が含まれている(大西,1985).

この火山ガラスの EDX 分析の結果を表3・図5に 示す. SiO₂ の分析値は,75.99から80.84の範囲にあ り,その標準偏差は1.67と高く,図5にみられるよう に,2つの火山灰が混合しているものと考えられる. SiO₂ の値が79.0以上の12個(A)と,78.0以下の8個 (B)とに分けて集計すると,両方とも良くまとま り,Aは姶良火山灰と類似し(表4,表5),Bはアカ ホヤ火山灰と類似する(表6,表7). 大西(1985)の花粉分析結果からみると、火山ガラ スを含む泥層はカシーシイ花粉帯(大西ほか、1989) に属し、縄文時代中期〜晩期のものである、火山ガラ スは周辺地域に堆積していたこれら2つの火山灰層か ら再堆積したものと考えられる。

Ⅲ. 松江市西川津町西川津遺跡海崎地区

前遺跡のやや上流の海崎地区では,弥生時代の貝層 や木製品が発掘されている(図4A-II).発掘現場 の壁画には,2層準の火山灰層が発見されている(大 西ほか,1989).

上位の火山灰層は,縄文時代早期末~前期初頭の遺物包含層の上位にある黒色土中に挟まれている層厚 lcmの2枚の白色火山灰層(814/JOMON ASH)から

i.

なり,島根県土木部河川課ほか(1987)には白色土と 記載されている(図6). ここでは, "縄文火山灰"と 遺物包含層に, 不整合におおわれる黒〜灰色の泥質堆 仮称する. EDX 分析を行ったが、ガラスが少なく、 データーが得られなかった.

下位の火山灰層は、縄文時代晩期~弥生時代前期の **積物中に挟まれている層厚1㎜のガラス質火山灰層で** (図7;816/NISHIKAWAZUGLASS),前記の縄文

表3 西川津遺跡火山ガラスの化学組成

261 ~ 280	N = 20	815/ _{NI}	SHIKAWAZU-0	3	
	NA20 MG0	AL203	SI02	K20 CA0	TIO2 FEO
Minimum Maximun Range Mean Sum of sqs. Variance Std. dev.	1.730 0.600 3.300 1.430 1.570 0.830 2.565 1.011 4.241 0.792 0.212 0.040 0.460 0.199	10.300 11.440 1.140 10.820 1.663 0.083 0.288	75.990 2. 30.840 2. 4.850 0. 78.608 2. 55.656 1. 2.783 0. 1.668 0.	.050 1.320 .690 3.140 .640 1.820 .391 1.859 .023 5.829 .051 0.291 .226 0.540	0.080 1.440 0.480 4.690 0.400 3.250 0.218 2.524 0.363 19.555 0.018 0.978 0.135 0.989
NA20 5 10 15 5 70 15 5 70 15 5 70 15 5 70 15 5 70 15 5 70 15	MGO AL	203	K20 C 5 10 0 6 7 7 7 7 7	AØ TIØ2 5 100 1	FE0 0 10 15/T+14/261-280 1 1
FE0+MC 5 5 5 5 10 6 5 5 10 7 5 6 6 5 7 10 7 5 8 8 8 8	30 NA 15 20 0 5 1	20+K20 0 15 20	25 27 2 1 2 1 7 2 4 7 0 8 10	MG0 5 100 7 ~~~~	CAØ 5 10

図 5 西川津遺跡の火山ガラスの EDX 分析値散布図

表4 西川津遺跡火山ガラス(A)の化学組成

261 - 272	N =	12	815/	815/ NISHIKAWAZU-03A							
	DISKE	T: T#14									
	NA20	MGO	AL203	\$102	K20	CAO	T102	FEO			
 Minimum	1.730	0.600	10.300	79.390	2.330	1.320	0.080	1.440			
Maximun	3.300	1.110	10.990	80.840	2.690	1.590	0.140	1.920			
Range	1.570	0.510	0.690	1.450	0.360	0.270	0.060	0.480			
Mean	2.593	0.933	10.665	79.917	2.560	1.454	0.112	1.757			
Sum of sas.	2.204	0.214	0.545	2.654	0.126	0.088	0.005	0.206			
Variance	0.184	0.018	0.045	0.221	0.010	0.007	0.000	0.017			
Std dev	0.429	0.133	0.213	0.470	0.102	0.086	0.021	0.131			

表5 西川津遺跡火山ガラス(A)と既知試料との比較

	NA20	MGO	AL203	SI02	K20	CAO	TI02	FEO	ID-val
NISHIKZ-03A	2.59	0.93	10.67	79.92	2.56	1.45	0.11	1.76	
TSUMAYA/109	2.63	0.90	10.75	79.84	2.58	1.40	0.10	1.81	0.2178
AIRA/490	2.38	0.88	10.46	80.39	2.65	1.39	0.10	1.76	0.3279
AIRA/396	2.89	0.96	10.82	79.38	2.56	1.43	0.10	1.86	0.3304
IT0/081	2.73	0.90	10.77	79.69	2.62	1.35	0.10	1.85	0.3330
AIRA/094	2.89	1.00	10.78	79.45	2.57	1.42	0.10	1.79	0.3398
AIRA/K23	2.32	0.83	10.44	80.26	2.65	1.55	0.11	1.85	0.3928
AIRA/395	2.48	0.74	10.90	79.77	2.64	1.54	0.11	1.83	0.4033
KOBAYASHI/754	2.95	1.03	10.66	79.46	2.61	1.48	0.10	1.72	0.4071
AIRA/554	2.74	1.11	10.74	79.78	2.57	1.47	0.11	1.48	0.4366
AIRA/494	2.52	0.91	10.79	80.02	2.56	1.56	0.09	1.55	0.4380

表6 西川津遺跡火山ガラス(B)の科学組成

273 280 N = 8 815/NISHIKAWAZY-038 DISKET: T#14

	NA20	MGO	AL203	S102	K20	CAO	T102	FEO
Minimum	1.740	0.780	10.720	75.990	2.050	2.010	0.310	3.250
Maximun	3.280	1.430	11.440	77.250	2.260	3.140	0.480	4.690
Range	1.540	0.650	0.720	1.260	0.210	1.130	0.170	1.440
Mean	2.522	1.128	11.051	76.645	2.136	2.466	0.378	3.675
Sum of sqs.	2.013	0.398	0.402	1.624	0.036	0.824	0.018	1.685
Variance	0.252	0.050	0.050	0.203	0.004	0.103	0.002	0.211
Std. dev.	0.502	0.223	0.224	0.450	0.067	0.321	0.048	0.459

表7 西川津遺跡火山ガラス(B)と既知試料との比較

	NA20	MGO	AL203	S102	K20	CAO	TI02	FEO	ID-val
NISHIKZ-03B	2.52	1.13	11.05	76.65	2.14	2.47	0.38	3.68	
AKAHOYA/451N	2.59	1.08	10.80	76.75	2.22	2.61	0.38	3.56	0.2226
AKAHOYA/252	2.36	1.09	11.13	76.42	2.22	2.57	0.41	3.81	0.3013
ATA/116	2.72	1.18	11.35	76.38	2.20	2.40	0.37	3.42	0.3076
K30	2.54	1.15	11.35	76.99	2.17	2.20	0.35	3.25	0.3763
AKAHOYA/433	2.61	1.11	10.72	76.70	2.49	2.31	0.41	3 65	0 3994
AKAHOYA/059	2.97	1.20	11.24	75.68	2.09	2.60	0.39	3.84	0 4162
AKAHOYA/431	2.61	1.01	10.81	76.22	2.25	2.60	0.39	4 12	0.4192
AKAHOYA/658	2.26	1.09	10.83	76.59	2.14	2 80	0 41	3 88	0 4262
AKAHOYA/005	2.61	1.37	11.44	76.13	1.96	2 39	0.30	3 73	0.4202
AKAHOYA/491	2.84	1.27	10.94	76.32	2.19	2.28	0.36	3.81	0.4534

t

.

火山灰の約 165cm 下位にある (大西ほか, 1989). EDX 分析の結果 (表8,表9,図8),火山ガラスの 化学組成はアカホヤ火山灰と類似する.

花粉分析の結果,両火山灰は共にマツーモミ花粉帯 に属し,一連の地層中に挟まれているものと考えられ ている(大西ほか,1989).縄文時代早期末~前期初頭 の遺物包含層はガラス層火山灰層の上位にあるから, ガラス質火山灰層の堆積年代は縄文時代前期初頭以前 となり,6000~6500年前とされているアカホヤ火山灰 の噴出年代(町田・新井,1978)と矛盾しない.

Ⅳ. 鳥取県米子市目久美町目久美遺跡

この遺跡は,弥生時代の水田跡が発見され注目を集 めたが,その下位には,縄文時代前期初頭〜晩期の堆 積物が確認された(米子市教育委員会ほか,1985).分 析した試料は完新統の基底部付近から得られた(図 9;817/MEGUMI-76).

EDX 分析の結果,火山ガラスの化学組成は姶良火山 灰と類似する (表10,表11,図10).

試料採取層準から縄文時代前期初頭の遺物が産出し,6180±170y. B.P. という¹⁴ C年代が測定されてい

Ashl: ガラス質火山灰 大西ほか(1989)より

表8 西川津遺跡海崎地区ガラス質火山灰の化学組成

N = 20

816/NISHIKAWAZU-GLASS DISKET: T#14

	NA20	MGO	AL 203	\$102	K20	CAO	TI02	FEO
Minimum	1.220	0.340	10.700	73.050	1.870	2.140	0.310	3.050
Maximun	3.850	1.620	11.710	77.710	2.340	3.650	0.550	5.020
Range	2.630	1.280	1.010	4.660	0.470	1.510	0.240	1.970
Mean	2.418	1.025	10.999	76.382	2.162	2.589	0.422	4.002
Sum of sqs.	6.407	1.708	0.932	16.281	0.210	2.191	0.045	3.879
Variance	0.320	0.085	0.047	0.814	0.010	0.110	0.002	0.194
Std. dev.	0.566	0.292	0.216	0.902	0.102	0.331	0.047	0.440

図8 西川津遺跡海崎地区ガラス質火山灰の EDX 分析値散布図

	NA20	MGO	AL 203	\$102	K20	CAO	T102	FE0	ID-val
NISHIKZ-GL/816	2.42	1.03	11.00	76.38	2.16	2.59	0.42	4.00	
****/398	2.46	1.04	10.73	76.34	2.25	2.79	0.41	3.97	0.2015
AKAHOYA/252	2.36	1.09	11.13	76.42	2.22	2.57	0.41	3.81	0.2022
AKAHOYA/431	2.61	1.01	10.81	76.22	2.25	2.60	0.39	4.12	0.2643
AKAHOYA/658	2.26	1.09	10.83	76.59	2.14	2.80	0.41	3.88	0.2867
AKAHOYA/660	2.15	0.90	10.72	76.83	2.19	2.77	0.42	4.02	0.3575
AKAHOYA/498	2.38	0.92	10.73	76.19	2.22	2.91	0.42	4.23	0.3592
AKAHOYA/486	2.08	0.99	10.73	77.06	2.33	2.45	0.42	3.94	0.3605
AKAHOYA/451N	2.59	1.08	10.80	76.75	2.22	2.61	0.38	3.56	0.3826
AKAHOYA/678	1.95	0.94	10.68	77.05	2.18	2.76	0.42	4.02	0.3994
****/721	2.20	1.13	10.29	77.08	2.31	2.73	0.41	3.85	0.4465

t

表9 西川津遺跡海崎地区ガラス質火山灰と既知試料との比較

る(米子市教育委員会ほか,1986).大西(1986 a)は 花粉分析の結果からこの層準を NIb 帯(大西,197 7)と対比したが、マツ属の産出率からみると大西ほ か(1989)のマツーモミ花粉帯に対比されるものと考 えられ、年代的には、約5500年前以前となる.アカホ ヤ火山灰のガラスが含まれないことからみて、その降 灰以前に、縄文時代前期初頭の遺物包含層が堆積した もので、アカホヤ火山灰の噴出年代は約6千年前と考 えられる.

V.まとめ

山陰地方中部の4地点5試料について, EDX 分析 による火山ガラスの同定を行い, 次の結果を得た.

①西川津遺跡(海崎地区)の縄文火山灰を除く4試 料からは,十分な火山ガラスが得られ,姶良火山灰ま たはアカホヤ火山灰と同定された.

②しかし,その堆積年代が噴出年代と矛盾せず,一次的と考えられるのは,西川津遺跡海崎地区のガラス 質火山灰層のみであった.この火山灰層は層厚わずか 1 mmではあるが,はっきりした層をなしている.

表10 目久美遺跡火山ガラスの化学組成

301	-	320	N =	20		817/	MEGUMI-76
			DISK	ET:	T#14		

	NA20	MGO	AL203	S102	K20	CAO	T102	FEO
Minimum	2.050	0.510	10.250	78.830	2.440	0.890	0.060	0.850
Maximun	3.390	1.180	11.660	80.890	2.990	1.650	0.160	1.970
Range	1.340	0.670	1.410	2.060	0.550	0.760	0.100	1.120
Mean	2.535	0.885	10.651	80.004	2.686	1.448	0.094	1.698
Sum of sqs.	3.053	0.630	1.819	5.707	0.243	0.480	0.011	1.119
Variance	0.153	0.031	0.091	0.285	0.012	0.024	0.001	0.056
Std. dev.	0.391	0.177	0.302	0.534	0.110	0.155	0.023	0.237

表11 目久美遺跡火山ガラスと既知試料との比較

	NA20	MGO	AL 203	S102	K20	CAO	TI02	FEO	ID-val
MEGUMI/817	2.54	0.89	10.65	80.00	2.69	1.45	0.09	1.70	
AIRA/555	2.27	0.82	10.45	80.50	2.71	1.46	0.09	1.71	0.2302
AIRA/494	2.52	0.91	10.79	80.02	2.56	1.56	0.09	1.55	0.2562
AIRA/490	2.38	0.88	10.46	80.39	2.65	1.39	0.10	1.76	0.2996
TSUMAYA/109	2.63	0.90	10.75	79.84	2.58	1.40	0.10	1.81	0.3093
AIRA/297	2.39	0.82	10.31	80.20	2.79	1.52	0.09	1.88	0.3635
OHSUMI/120	2.85	0.89	10.79	79.73	2.57	1.44	0.08	1.58	0.3718
AIRA/019	2.28	0.82	10.80	80.23	2.50	1.42	0.09	1.86	0.3834
IT0/081	2.73	0.90	10.77	79.69	2.62	1.35	0.10	1.85	0.3955
AIRA/489	2.28	0.85	10.28	80.48	2.72	1.42	0.10	1.86	0.4251
AIRA/618	2.35	0.79	10.43	80.37	2.65	1.46	0.10	1.86	0.4394

③その他の火山ガラスは,噴出年代より後に,周辺 地域から再堆積したものと考えられる.

④目久美遺跡では,アカホヤ火山灰の噴出年代は,約6千年前の縄文時代前期と推定される.

文 献

- 町田 洋・新井房夫,1976:広域に分布する火山灰-姶良 Tn 火山灰の発見とその意義-. 科学,46, 339-347.
- 町田 洋・新井房夫,1978:南九州鬼界カルデラから 噴出した広域テフラーアカホヤ火山灰.第四紀研 究,17,143-163.
- 松本英二,1985:六甲アイランド地下試料の "C 年代. 月刊地球,7,312-324.
- 西田史朗・原田憲一,1987:熊野灘のアカホヤ火山 灰.奈良教育大学紀要,36(2),29-37.
- 西田史朗・横山卓雄・石田志朗, 1986: 近畿の遺跡と 関わる火山ガラスの特性.考古学と自然科学, 18, 93-110.
- 大西郁夫,1977:出雲海岸平野下第四紀堆積物の花粉 分析,地質学雑誌,83,603-616.

t

- 大西郁夫,1985:中海・宍道湖湖底およびその周辺地 域の最上部完新統の花粉分析.島根大学地質学研究 報告,4,115-126.
- 大西郁夫,1986 a:米子市目久美遺跡の花粉分析.目 久美遺跡(加茂川改良工事に伴う埋蔵文化財発掘調 査報告書),68-77.
- 大西郁夫,1986 b:中国地方の第四紀後期植物・花粉 群ーその1.島根県横田町小峠および下横田の後期 更新世花粉フロラー.島根大学地質学研究報告, 6,1-9.
- 大西郁夫・原田吉樹・渡部正巳,1989:松江市・西川 津遺跡の花粉分析.山陰地域研究(自然環境),5, 45-54.
- 島根県土木部河川課・島根県教育委員会,1987:朝酌 川河川改修工事に伴う西川津遺跡発掘調査報告書Ⅲ (海崎地区1).283p.
- 米子市教育委員会(加茂川改良工事関係埋蔵文化財発 掘調査団)・鳥取県河川課,1985:目久美遺跡(加 茂川改良工事に伴う埋蔵文化財発掘調査報告書). 158p.