高山カルクアルカリ貫入岩体の石英閃 緑岩中の磁鉄鉱ーチタン鉄鉱

山口佳昭*

On magnetite-ilmenite in quartz diorite of the Koyama calc-alkaline intrusive, Susa, southwest Japan

Yoshiaki YAMAGUCHI

はじめに

高山カルクアルカリ貫入岩体はカンラン石ハンレイ 岩から石英閃緑岩まで岩相変化し、いずれの岩相に も多量の磁鉄鉱を含んでいる(YAMAZAKI, 1967; YAMAGUCHI, 1985).磁鉄鉱は輝石と斜長石の粒間を 埋めて角閃石,黒雲母,石英およびカリ長石と共にマ グマの固結過程の最終末期に生じた(YAMAGUCHI, et al. 1974).輝石の累帯構造から見るかぎり、マグマ の固結過程では残液の組成変化はFeが増加するトレン ドを示し、多量の磁鉄鉱がマグマから直接に晶出した 可能性は考えにくい(山口,1987).筆者はこれら粒間 に共生している鉱物の共生関係と化学組成を詳しく調 べて、その多くがサブソリダス条件下での再平衡によ って生じた可能性を検討している(準備中).

この報告では、岩体の周縁部をなす石英閃緑岩中の 磁鉄鉱とチタン鉄鉱の化学組成について述べ、その生 成条件を考察する。その共生組織や他の鉱物との共生 関係については詳しい報告を現在準備中である。

磁鉄鉱ーチタン鉄鉱の産状

磁鉄鉱は、1) チタン鉄鉱と連晶する比較的粗粒な 結晶(-0.5mm)、および2) 結晶粒間やへき開に散 点状に生じている極めて細粒なものに2分される.こ の報告では前者についてのみ述べる.磁鉄鉱-チタン 鉄鉱の生成条件を知る上で、この岩石における輝石の 累帯構造と長石の共生関係を調べることが重要である.

輝石 (1-3 mm) は強い累帯構造を示し, コア (Ca40 Mg50 Fe10) からリム (Ca38 Mg35 Fe27) へ著し く Feを増加させる.しかし最外殻部にはきわめて薄い (-50 µm) 逆累帯を示すリムを有し、ここでは Fe が 減少し Ca が増加する (→Ca45 Mg35 Fe20). Lindsley
(1983) の輝石温度計を用いると、輝石の晶出は 900 1000°C で開始してこの条件で Fe を増加しつづけた.
最外殻リムが形成された条件は約 600°C である.

斜長石 (-4 mm) は累帯構造を示し (Anss→Ans2), 薄い再平衡リム (-50 μ m) をもつことが多い. この リムの組成は An23-31 で,しばしば粒間を充てんするカリ 長石 (Ab7-12 と共存している. WHITNEY and STORMER (1977) によるその平衡温度は 590-490°C (1 Kb) で ある.

磁鉄鉄-チタン鉄鉱はつねに輝石と斜長石の粒間に 生成し,特に輝石の周囲に生じることが多い.磁鉱鉱 -チタン鉄鉱は複合結晶をなし,黒雲母と連晶するこ とが一般的である.輝石に包有されることはなく(へ き開に生じた2次的な散点状の磁鉄鉱をのぞいて), また直接に接することもない.輝石の最外殻リムには 多くの場合に緑色角閃石が生じている.

磁鉄鉱ーチタン鉄鉱の化学組成

連晶する磁鉄鉱とチタン鉄鉱について、JXA-733 マイクロアナライザーにより、反射電子線像を観察し ながら化学分析を行った。分析方法および補正法はす でに報告した方法によった (KAWAKATSU and YAMA-GUCHI, 1987).

第1表に共存する磁鉄鉱-チタン鉄鉱の5つの対の 化学組成を示す.両鉱物ともに結晶内部は均質で,両 相の界面付近とそれから離れた中心部との間で組成の 違いはみとめられない.磁鉄鉱中のウルボスピネル成 分含量は全般的に低く,またチタン鉄鉱中のR₂O₃成分 も低い値を示している.MnO含量は1.40-3.81wt% であり,パイロファナイト成分にすると3.0-8.2%の

^{*} 島根大学理学部地質学教室

	1		2		3		4		5	
	Mag	Ilm	Mag	Ilm	Mag	Ilm	Mag	Ilm	Mag	Ilm
SiO2	0.07	0.03	0.11	0.05	0.10	0.04	0.11	0.04	0.12	0.04
TiO2	2.00	50.19	2.63	49.69	2.59	50.43	2.69	50.16	1.36	49.74
Al ₂ O ₃	0.66	0.03	0.73	0.03	0.67	0.03	0.89	0.03	0.52	0.03
FeO*	90.13	48.23	89.27	48.17	89.83	45.36	88.73	45.09	91.29	46.47
MnO	0.22	1.40	0.22	1.41	0.25	3.59	0.33	3.81	0.25	2.96
MgO	0.03	0.13	0.03	0.12	0.03	0.08	0.05	0.10	0.02	0.10
CaO	0.01	0.01	0.01	0.00	0.01	0.00	0.02	0.00	0.03	0.02
Total	93.12	100.02	93.00	99.47	93.48	99.53	92.82	99.23	93.59	99.36
Recalculated										
Fe ₂ O ₃	64.03	5.25	62.46	5.63	62.99	4.16	62.06	4.42	65.72	5.44
FeO	32.52	43.51	33.06	43.10	33.15	41.62	32.89	41.12	32.16	41.57
Total	99.53	100.55	99.26	100.03	99.79	99.95	99.04	99.67	100.17	99.91
Mol.%USP	6.09		8.09		7.89		8.28		4.39	
Mol.%R₂O₃		4.99		5.38		3.98		4.24		5.21
Temp.°C	595		610		580		595		590	
$log_{10}fo_2$	-20.0		-19.2		-21.0		-20.5		-19.7	

第1表 磁鉄鉱ーチタン鉄鉱の化学組成

* Total iron expressed as FeO

範囲にある.

この5つの磁鉄鉱-チタン鉄鉱の組成対に対して SPENCER and LINDSLEY (1981)の方法によって求めた 平衡温度は580-610°Cの範囲にあり、fo2 は 10⁻¹⁹-10⁻²¹である.これは Ouartz-magnetite-fayalite バツ ファー付近に相当する (HEWITT, 1978).

一方,結晶粒間やへき開に生じている微細な磁鉄鉱 はチタン鉄鉱と共存せず,しばしばスフェーンを伴っ ている.このことは、サブソリダス条件での交代作用 の後期には酸素分圧がいっそう上昇して,磁鉄鉱+ス フェーンで特徴づけられる(CZAMANSKE and MIHALIK, 1972) 高酸素分圧条件に至ったことを示している.

討 論

磁鉄鉱ーチタン鉄鉱の平衡温度は、先に検討したように、約600°Cである。これは先に述べた輝石の最外 殻リムが形成された時期の温度条件とほぼ同じである。 斜長石の最外殻リムーカリ長石の平衡温度はこれより もやや低い。これらの平衡温度は、いずれにしてもマ グマのソリダス温度よりも低い。花こう岩質マグマの ソリダスは、高山岩体のような浅所貫入岩では700°C程 度以下に下ることは考え難い(TUTTLE and BOWEN, 1958; BURNHAM and NEKVASIL, 1986). 輝石は、その累帯構造から見ると、900-1000℃の 条件で晶出し始めてFeを増加させるトレンドを示して いる.しかしその最外殻リムにおける逆累帯構造はサ ブソリダス条件(600℃)で形成され、この段階で磁 鉄鉱-チタン鉄鉱が生成し始めたと考えねばならない. これは、マグマの固結直後に酸素分圧が急激に上昇し たことを示している。その原因としては、一般的に、 1)母岩との混成作用、2)マグマの混合、3)マグ マの secondary boiling によるH2の逃散が考えられる。 しかし、高山岩体においては母岩との混成作用の証拠 はない。またサブソリダス条件であるかぎりマグマの 混合の可能性はない。

高山岩体では結晶とマグマとの分離がきわめて不完 全であり、基本的には、粒間の残液から晶出する結晶 が粒間を充てんしながら固結を完了した(YAMAGUCHI et al, 1974). 固結完了時に残液が secondary boiling を起して流体相が分離して、そのはたらきによって輝 石と斜長石の周縁部が交代されて磁鉄鉱ーチタン鉄鉱 が生したと考えられる. この過程では、H₂の逃散を伴 い(CZAMANSKE et al., 1981)、酸素分圧が累進的に 上昇したであろう.

高山岩体にみられるような比較的低い平衡温度を示 す磁鉄鉱ーチタン鉄鉱は山陰帯の花こう岩類からも報 報告されている(田結庄, 1982; KAWAKATSU and YAMAGUCHI, 1987). これらの場合でも高山岩体と同 様な成因をもつと考えて,目下検討中である.

謝 辞

この研究に際して,島根大学の川勝和哉氏と北海道 大学の榊原正幸氏に鉄チタン酸化物の産状について討 論していただいた。この研究の一部には文部省科学研 究費(課題番号57540477)を使用した。

文 献

- BURNHAM, C. W. and NEKVASIL, H.(1986)Equilibrium properties of granite pegmatite magmas. *Amer. Mineral.* **71**, 239-263.
- CZAMANSKE, G. K. and MIHALIK, P. (1972) Oxidation buring Magmatic differentiation, Finnmarka complex, Oslo Area, Norway: Part 1, The opaque oxides. J. Petrol. 13, 493-509.
- CZAMANSKE, G. K., ISHIHARA, S. and ATOKIN, S. A. (1981) Chemistry of rock-forming minerals of the Cretaceous-Paleocene batholith in southwestern Japan and implications for magma genesis. J. Geophys. Res. 86, 10431-10469.
- HEWITT, D. A. (1978) A redetermination of the fayalite-magmetite-quartz equilibrium between 650°C and 850°C, Amer. J. Sci. 278, 715-724.
- KAWAKATSU, K and YAMAGUCHI, Y. (1987) Successive zoning of amphiboles during progressive oxidation in the Daito-Yokota granitic complex, San-in belt, southwest Japan. *Geoch. Cosmoch. Acta* 51, 535-540.

- LINDSLEY, D. H. (1983) Pyroxene thermometry. Amer. Mineral. 68, 477-493.
- SPENCER K. J. and LINDSLEY D. H. (1981) A solution model for coexisting iron-titanium oxides. Amer. Mineral. 66, 1189-1201.
- 田結庄良昭(1982)東中国および近畿地域の後期中生 代~古第三紀花崗岩類中のFe-Ti酸化鉱物,岩鉱 77, No.11, 387-402.
- TUTTLE, O. F. and BOWEN, N. L. (1958) Origin of granite in Light of experimental studies in the system NaAlSi₃O₈-KAlSi₃O₈-SiO₂-H₂O. Geol. Soc. Amer. Mem. 74.
- WHITNEY, J. A. and STORMER J, C. (1977) The distribution of NaAlSi₃O₈ between coexisting microcline and plagioclase and its effect on geothermometric calculations. *Amer. Mineral.* 62, 687-691.
- YAMAGUCHI, Y. (1985) Hornblende-cummingtonite and hornblende-actinolite intergrowths fom the Koyama calc-alkaline intrusion, Susa, southwest Japan, Amer, Mineral, 70, 980-986.
- 山口佳昭(1987)高山カルクアルカリ貫入岩体の inverted pigeonite. 山陰地域研究 No.**3**, 149-155.
- YAMAGUCHI, Y., TOMITA, K. and SAWADA, Y (1974) Crystallization trend of zoned pyroxenes in quartz gabbro from the Koyama intrusive complex at Mt. Koyama, Yamaguchi prefecture, Japan. Mem, Geol, soc, Japan, 11, 69-82.
- YAMAZAKI, T (1967) Petrology of the Koyama calcalkaline intrusive complex, Yamaguchi prefecture, Japan, Sci, Rep, Tohoku Univ, ser, 3, 10, 99-150.