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Criteria for the existence of a minimum contrast estimate from a pooled grouped data 

are discussed. The minimum contrast estimate from the pooled grouped data covers both 

the maximum likelihood estimate and the minimum chi-square estimate from the grouped 

data as a special case. These criteria can be drived by a method called probability 

contents boundary analysis. This method gives systematically sufficient, or necessary and 

sufficient conditions for the existence of minimum contrast estimates for a wide class of 

families of distributions. Resulting criteria do not depend ' on the form of underlying 

distribution function. 

1. Imtroductiom 

A criterion for the existence of a maximum likelihood estimate (MLE) from 

grouped data was given by Rao (1957) when the size of sample is large. To drive 

criteria for the existence of an MLE when the parameter space is an interval of the 

real line R, the method of Kulldorff (1962) and the method of successive 
approximation of Carter et al. (1971) are known to be efficient. Since these methods 

require some restriction on the parameter space, it seems to be difficult to generalize 

any one of them to the case where the sample space is a subset of Euclidean n-space 

R"(n ~ 2), or a discrete set. The probability contents boundary (p. c.b.) analysis 

proposed by Nakamura (1984) overcomes the demerits of these methods. In this 

analysis no restriction is imposed on the parameter space and on the form of 

distribution function 

On the other hand, a criterion for the existence of a minimu~l chisquare 

estimate (MCSE) from a grouped data was also given by Rao (1955) when the 
sample size is large. But, in the case where the sample size is not large, there seems 

to be no systematic approach to finding criteria for the existence of MCSE's 

One of our purposes of this paper is to propose a unified approach for driving 

criteria for the existence of a minimum contrast estimate (MCE) from a pooled 

grouped data, which will be introduced in Section 2, and to give practical criteria for 

the existence of an MCE. In order to obtain practival criteria for the existence of 
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an MCE, a method called the p.c.b. analysis, is stated in Section 3. A practical 

criterion for the existence of an MCE is given in Section 4. The k-regularity of the 

underlying family of distributions is introduced in Section 4. In case the underlying 

family of distributions is k-regular, the above criteria is expressed by the observed 

frequencies only. Practical criteria for the 1-regular case (resp. 2-regular case) are 

grven m Section 5. (resp. Section 6) . In the case where the pooled grouped data is a 

binary response data, a practical criterion for the 2-regular case is given in Section 7. 

The theoretical background of the p.c. b. analysis is given in the appendix. 

2. Problem settimg 

Let T' and T be given constants with - oo ~ T' 
vanable with values in the open interval (T', T) and the distribution of X belong to 

a family ~~ = {Po ; 6 e ~~} of probability measures on (T', T), where the parameter 

space (9 rs an arbrtrary nonempty set. Let (Xhl""'Xh~^), I ~ h. ~ f, be a random 

sample from the distribution of X and suppose that information available for Xhi is 

only that its value lies in a set ~~hi e { [xho' xhl)" " ' [xh.^, xh..+ 1)}' where the positive 

integers rh's of observed times and the group limits xhi's are pre-assigned and 

mdependent of the size nh and of O, and xhO = T' 

= T. The collection ~~ = {Chi ; O ~,i ~ nh, I ~ h ~ f} is called a pooled grouped 

data of size n., where n. = ~~=1nh. We assume that 

(2. I ) there exists no ~~hi such that Po(~~hi) E O or I on ~. 

Let S(t) be a finite-valued and positive function on (O, oo) and let D(z, p) be a 

finite-valued function on (O, I] x [O, I] such that D(z, p), as a function of z, is 

continuous on (O, I] for every fixed p e [O, I] and that D(z, O) is independent of 

z e (O, I]. Assume that, for every p e [O, I], there exists an extended real number 

KD(P) with - oo 

(2.2) li_,mo D(z, p) = KD(P) , for all p e [O, I]. 

Consider the following minimizing problem 

(P) Find inf{ ~ ~ S(nh)D(P ([xhk, xhk+1)' nhklnh) , ee ~,} ." 

h= I k=0 

where nhk, I ~ h ~ / ; O ~ k ~ rh, is the number of ~~hj, I ~ j ~ nh, such that ~~hj 

= [xhk, xhk+1)' The objective function of Problem (P) is called a contrast 
function. In computing the contrast function, the following rules are used : D (O, p) 

= KD(P) for all pe [O, I], t. (~ oo) = ~ oo for all t > O and co + co 
= oo. Following the definition of Grossmann (1982), we say an optimal solution of 
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Problem (P) a minimum contrast estimate (MCE) of the unknown true parameter of 

the distribution of X. 

We shall give the four examples of the measure D(z, p) (see Berkson (1980)) 

Example 2. I (Mimmum chi-square estimation). Let S(t) = t and let D (z, p) 
= (z - p)2/z for (z, p) e(O, I] and D(z, O) = O for ze(O, I]. In this case, KD(P) = co 

for all p e (O, I] and the MCE is called a minimum chi-square estimate (MCSE) 

Example 2.2 (Maximum likelihood estimation). Let S(t) = 2t and let D(z, p) 

= p ' Iog(p/z) for (z, p)e(O, I] x (O, I] and D(z, O) = O for ze(O, I]. In this case, 

KD(P) = oo for all p e (O, I] and the MCE is called a maximum likelihood estimate 

(MLE) 

Example 2.3 (Minimum logit chi-square estimation). Let S(t) = t and let 
D(z, p) = p(1 - p)(logp(1 - p)~1 - Iogz(1 - z)~1)2 for (z, p)e(O, 1) x (O, 1) and 

D(z, p) = O for (z, p)e(O, I] x {1}U{1} x [O, I] U(O, I] x {O}.' In this case, KD(P) 

= oo for all p e (O, 1), KD(1) = O and the MCE is called a minimum logit chi-square 

estimate (MLCSE) 

Example 2.4 (Kullback-Leibler estimation). Let S(t) = 2t and let D(z, p) 

= zlog(z/p) for (z, p)e(O, I] x (O, I] and D(z, O) = O for ze(O, I]. In this case, 

KDCp) = O for all p e (O, I] and the MCE is called Kullback-Leibler estimate (KLE) 

3. Probability contemts boumdary analysis 

Our aim is to find criteria for the existence of an MCE. To do this we shall 

propose an approach, which rs called the probabilrty contents boundary (p.c.b.) 

analysis. Before stating this approach, we need some notation and definitions. Put 

F(x, 6) = Po([T', x)). The two points x and x' of [T', T] are said to be equivalent 

(with respect to the family ~~) if F(x', O) E F(x, 6) on (9. Let R (resp. ~) denote the 

set of extended real numbers (resp. the closure of a subset of R*), and for subsets q) 1 

and q)2 Of R', q)1 - (p2 denote the diffe_rence between epl and ep2' Put Z. 
= {(zl""'z.)eR'; O 

(z, p)e(O, I] x [O, I] and by ~(z, p) = KD(P) if (z, p)e{O} x [O, I]. The p.c.b. 

analysis consists of the following four steps : 

Step I : Find a positive integer m and a set {xi} of (m + 2) points of [T', T] with the 

following properties : 

xo = T' 

The points xi and xj are not equivalent whenever i ~ j. 

Each extreme point of ~~hk, I ~ h ~ f ; I ~ k ~ nh is equivalent to some xi, 

O 
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Each x,, I 

1 ~ k ~ nh. 

Step 2 : Definite nonnegative integers nhij, I ~ h ~ f ; O ~ i ~ j ~ In + 1, a mapping 

F : ~ ~ Z~ and a function L: Z~ ~' R by 

nhij = number of ~~hk, I ~ k ~ n.h such that xi(resp. xj) is equivalent to the small 

(resp, Iarge) one of extreme points of ~~hk, 

F(6) = (F(,xl, 6), . . . , F(x~, 6)), 

(3.1) L(.z) = ~ S(n ) D(z - Zi, Ph,J), 
h = I o ~ i 

where zo = O, z~+1 = I and phij = nhijlnh. 

Step 3 : Determine the probability contents inner boundary (p. c. i. b) of the family ~~ 

(for the pooled grouped data ~~) 

aF(~)) = F(~~) - F(~)). 

Step 4 : Find a sufficient condition which implies the following condition : 

(3.2) There exists z' e F(6))) such that L(z') ~ Mb E inf{L(z) ; z e aF(6~)}, 

where the infimum of a function over the empty set (~) is defined to be oo 

Steps I and 2 can be easily perforemed. Determination of the structure of the 

p.c.i.b. aF(~) is very important in the p.c.b. analysis. For detailed discussions on 

the structure of aF(~), see Nakamura (1985b, 1985c). After the performance of Step 

3, the ' procedure in Step 4 can be performed without difficulty. A sufficient 

condition obtaiped in Step 4 becomes a criterion for the existence of an MCE. This 

fact is due to the following theorem. The proof is given in the appendix 

THEOREM 3.1. An MCE exists tf and only tf condition (3.2) is satisfied 

As an immediate consequence of Theorem 3.1, we have 

COROLLARY 3.1. If Mb = oo, then an MCE exists 

In case aF((~) = ~ then Mb = co and by Corollary 3.1, an MCE always 
exists. Hereafter, unless otherwise stated, we assume that eF(~) ~ ~ and m ~ 2. It 

should be noted that, because of (2.1), nh = ~J~=+11 ~i=~ nhij, I ~ h ~ l. 

4 Evaluatlom of the value of Mb 

A criterion for the existence of an MCE is obtained by seeking a sufficient 

condition for the statement (3.2). For this reason, it is important to find the value 

of Mb (see Step 4 for its definition). For many of the well-known estimations in the 
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statistical inference (see Berkson (1980)), there are, possibly, two cases 

Case I. KD(P) = ao for all p e(O, 1). 

Case II. KD(P) 

In case II, the value of Mb does depend on an estimation, while in Case I, that of Mb 

does not so depend on an estimation as Case II. To apply the p.c.b. analysis 

systematically, we shall concentrate our attention to Case I. A detailed discussion 

for Case 11 are to be given in a forthcoming paper 

To find the value of Mb in terms of the p.c.i.b. aF((~) and the observed relative 

frequencies phij's, express L(z) as 

(4.1) L(z) = ~ S(nh)( z,, ph,j) + ~ D(1, phij)) ~ D(zj - . 
h = I (i, j)=~(h;') (i,j)=~'r*(h;') 

+ ~ S(nh) ~ (* ¥ KD ¥Phij) , 

h = I (i,j)~Jro(h;') 

where z = (zl , . . . , z~) e Z~ and 

(4.2) jr(h; z) = {(i, j); O ~ i 

(4.3) jrl(h; z) = {(i, j); O ~ i 

(4.4) JVlo(h; z) = {(i, j); O ~ i 

Here we use the rule : oo ' O = O, and the sum over the empty set is defined to be O 

We have 

THEOREM 4 1 Let KD(P) oo for all p e (O I] Then Mb = co tf and only tf 

(4･5) ~ ~ ph,J > O for all z e aF(6)). 
h = I (i,j)=Jr*(h;') 

PROoF. If (4.5) is satisfied, then for 'each z e aF(~)), there exists a triple (h, i, j) 

such that (i, j) e JV:o(h ; z). Hence, KD(Phij) = oo and the last term of the right-hand 

side of (4.1) is equal to oo. This, together with (4.1), implies Mb = co. To prove 

the converse, assume that (4.5) is not satisfied. Then for every h, I ~ h ~ f, and for 

every zeaF(~), ~h=1 ~ (i,j)=Jro(h;') Phij = O. This implies that Jro(h ; z) = ~ for all h, 

1 ~ h ~ f and L(z) 
proof . 

Similarly we have 

THEOREM 4.2. Let KD(P) = co for al/ p e(O, 1) and KD(1) 

tf and only tf 

(4･6) ~ ~ phij > O for all z e aF(~) 
h = I (i,j)~Jroo(h;") 
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vvhere JV:oo(h ; z) = {(i, j) e JV:o(h ; z) ; phij ~ 1}. 

Both condition (4.5) and condition (4.6) are sufficient conditions for the existence 

of an MCE (see Corollary 3.1). But they are not practical themselves unless the 

structure of the p.c,i.b. aF(6~) is expressed in a precise form. A good many families 

of distributions used in the statistical analysis have, commonly, some kind of 

structure called the k-regurarity (see Nakamura (1985b, 1985c)), which will be 

defined below. The family ~~ rs said to be k-regular if, for any (zl,...,z~) e aF(6,), 

the number of distinct zj's (i = 1,...,m) values such that O 

to k-1. In the case where the family ~~ is k-regular, the left-hand sides of (4.5) and 

(4.6) can be expressed by the observed relatrve frequencies only, that is, those 

conditrons turn out to be a practical criterion for the existence of an 
MCE. Henceforth, to proceed a systematic argument, we assume that the family ~~ 

is 1-regular or 2-regular and that KD(P) = oo for all p e (O, I] (the argument in the 

case where KD(P) = oo for all p e (O, 1) and KD(1) 

same argument as the case just stated and by Theorem 4.2). It should be noted 

that the p.c.b, analysis also derives practical criteria for the existence of an MCE in 

non-regular cases (see Nakamura (1985a, 1990)). 

5. Practical criteria for the 1-regular case 

In thrs section we shall give practical criteria for the existence of an MCE in the 

case where KD(P) = co for all p e (O, I], and the family ~~ is 1-regular, i.e., 

(5.1) aF(~P) c {ao' " " a~} , 

~~ where a (O ...,O, 1,...,1). Note that O ~~ (O,....O) = a~ and I E (1,...,1) = ao 

~+ 1 Define phi. and p.i. by phi. = ~j=i+1Phij and by p.i. = ~~=1Phi. respectively. The 

notation ph.j and p..j can be defined analogously. It follovys from (4.2~(4･4) that for 

each k, o ~ k ~ m and for each h, I ~ h ~ f, 

(5.2) Jr(h ; ak) = ~ 

(5.3) jrl(h; ak) = {(i, j); O ~ i ~ k 

(5.4) Jro(h; ak) = {(i, j); o ~ i 

From this and (4.1) 

(5.5) L(ak) = ~ S(nh) ~ D(1, phij) + ~ S(nh) ~ K (p . .) 
(i,j)=~*(h;**) (i,j)~Jr*(h;*k) 

where the symbol ~h denotes the summation from h = I to /. Note that the last 

term of the right-hand side of (5.5) is equal to O if JVlo(h ; ak) = ~ for all h = 1,...,f 

We have 
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THEOREM 5.1. An MCE exists tf the following condition is satisfied 

(5.6) ak~aF(~~) or ~ p..j + ~ p.1.~0, k = O,...,m. ~ 

j= I i=k+ 1 

+ ~~_ p .. and ~h~(i j)=Jr.(h ..)Ph,J ' ~j=1Ph.j PROOF. The expression (5.4) derives that ~(i,j)=Jro(h;")Phij = 

･･=~j-1p..j + ~~ p . . This together 
*-k+1 h' - *=1k+1 "' with (5.1) and(5.6), yields t~at condition (4.5) is satisfied. Because of Theorem 4. 1 

and Corollary 3.1, an MCE exists. 

Remark 5.1. Condition (5.6) does not depend on the form of F(x, 6) but on the 

p.c.i.b. eF(~)). 

The following theorem shows that under some restrictions, condition (5.6) is 

necessary for the existence of an MCE. 

THEOREM 5.2. Assume that: 

(5.7) O 

(5.8) D(1, 1) 

Then an MCE exists tf and only tf condition (5.6) is satisfied. 

PROOF Because of Theorem 5 1 rt suffices to show the "only if" part of the 

theorem. Suppose that akeeF(~)) and ~j=1P..1 + ~i"=k+1P.i. = O for some k, 

o ~ k ~ m. Then ~j=1Ph.j + ~i"=k+1Phi. = O for all h = 1,...,f. This implies that, 

for each h, I ~ h ~ /, there exists a unique pair (ih,jh) of integers with O ~ ih ~ k 

Jrl (h ; ak) = {(ih,jh)} for all h = 1,...,/. This, together with (4.1), (5.5), (5.7) and 

(5.8), yields that for each z = (zl,...,z~) e F((9), 

L(z) = ~hS(nh)~(zj^ - Zi., 1) 

= ~hS(nh)~(i,j)=Jr,(h;'k) ~f(zj - Zi, 1) 

> ~hS(nh)~(i,j)=J(,(h;") D(1, 1) = L(ak). 

Hence Mb 

completes the proof. 

case 

(6. I ) 

6 Practncal cnterlla for the 2-regular case (part l~ 

In this section we shall give practical criteria for the existence of an MCE in the 

where KD(P) = oo for all p e(O, I], and the family ~~ is 2-regular, i.e., 

aF(61)) c {ao, "', a~} U ~f U (U~ I d,), 
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~J~1 ~~. ~' where d = {z I ; O 

Note that, if the family ~ is 1-regular, then the family ~~ is 2-regular. It is esay 

to see that : 

(6.2) JV:o(h; z) = {(i, j); O ~ i 

and phij ~ O} tf zedk. 

(6.3) Jro(h; z) = {(i, j); I ~ i 

Put p.ij = ~hPhij. 

We have 

THEOREM 6. 1. An MCE exists tf condition (5.6) and the followmg condltrons are 

satisfied : 

(6.4) aF(~) n d = ~ or ~ p.ij ~ O. 
1~i

k-1 ~ 
(6.5) aF((~)ndk = ~ or ~ p..j + ~ p.i. ~ O k I m 

j= 1 i=k+1 

PROOF. From (6.2) and (6.3), 

~h~(i,j)=Jr~(h )Ph,J - ~1~i~j~~P ,J if ze~nf, 
~; ip J + ~i"=k+1P.,. . if z e dk. 

This, together with (6.1), (6.4) and (6.5), shows that condition (4.5) is satisfied. The 

existence of an MCE follows from Theorem 4.1 and Corollary 3.1. 

Remark 6. 1. Conditions (6.4~(6.5) do not depends on the form of F(x, O). 

Under some restriction, we can give a necessary and sufficient condition for the 

existence of an MCE. 

THEOREM 6.2. Let f = 1. Assume that condition (5.7) and the following 
conditions are satisfied : 

(6.6) dk C aF(~~) whenever eF(~) n dk ~ ~. 

(6.7) d c aF(~) whenever aF((~) n d ~ ~. 

(6.8) For every fixed p e (O, I], the inequality 

D(p, p) + D(1 - p, I - p) 

holds for all (z, z') e [O, I] x [O, I] with z + z' 

Then an MCE exists tf and only tf conditions (5.6), (6.4) and (6.5) are satisfied. 
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PRooF. Because of Theorem 6.1, it suffices to show the "only if" part of the 

theorem. Suppose that (5.6) is not ･satisfied. Notice that (6.8) with p = I is 

equivalent to (5.8). From this and (5.7), we can show, by an argument similar to the 

proof of Theorem 5.2, that Mb 

MCE does not exist. Suppose that (6.5) is not satisfied, i.e., aF((9) n ~(k ~ ~ and 

~;~iplj-1j+~i"=k+1Plii+1 =0 for some k, I ~k~m. Hence plk lk _ + plkk+ 1 
,z~)eF((~) and p = plk_ Ik' = 1. From (3.1), with z = (zl"" ' 

S(nl)D(Zk - zk_1, 1) if p = 1, 
L(z) = S(nl) ~;(Zk if O - zk_1, P) + ~~(Zk+1 ~ zk, I - P) 

S(nl)~;(Zk+1 ~ Zk' 1) _ if p = O. 
Consider the case O 
(6.8), 

L(z) = S(nl)(D(Zk - Zk_ 1, P) + D(Zk+1 ~ zk, I P)) 

> S(nl)(D(p, p) + D(1 - p, I - p)) 

= L(ak(P))' 

On the other hand, (6.6) implies that ak(P) e aF(~). Thus Mb 

and an MCE does not exist. Consider the case p = 1. By (5.7), zk - zk_1 
 S(nl)D(1, 1) = L(ak(1)). From 

(5.7), it follows that ak(1)~F(~). Noting that ak(1)e~rkeaF((~), we see that 

ak(1)eaF(6)). Thus Mb 

same way as before, the non-existence of an MCE for the case p = O 
follows. Suppose that (6.4) is not satisfied. From (3.1), with z = (zl""'z~) e F((~) 

and p = plol' 

S(nl)D(zl, 1) if p = 1, 
L(z) = S(nl)~(zl, p) + D:(z~, I - p) if O 

S(nl)~(1 - z~, 1) if p = O. 

By the same reasonmg as above, we see that an MCE does not exrst 

For f ~ 2, we have 

THEOREM 6.3. Let / ~ 2, ~ p . . ~ O and inf fL(z) ; z e F((~)} 

1~i
(6.9) For every fixed p e (O, I], D(z, p) is strictly decreasing in z on (O, I]. 

Then an MCE exists tf and only tf conditions (5.6) and (6.5) are satisfied 

PROOF. The "if" part of the theorem immediately follows from Theorem 
6. 1. We can show, by the same argument as in the proof of Theorem 5.2, that an 
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MCE does not exist if (5.6) is not satisfied. Suppose that (6.5) is not satisfied, i.e., 

aF((9)ndk ~ ~ and ~;~lp..j + ~i"=k+1P'i' = O for some k, I ~ k ~ m. Choose z 
= (zl,...,z~) e F(~)) so that L(z) 

h = 1,...,f, and by (4.1) and (4.4), Jro(h; z) = ~ for all h = 1,...,f. This, together 

with the equality ~;~1 p j + ~~ p ' = O yields that Jr(h ' z) = {(i, j) ; O ~ i 

'= " '=k+1 "' ' ' 
Phkj ~ O} ~ ~ for all h = 1,...,f. By (4.1) and (6.9), 

L(z) = ~hS(nh) (~ ij~0 D(zj - zi, 1) o~i

+ ~k

+ ~ hik~0 D(Zk - zi, Phik)) 
o~i

0> ~hS(nh)(~ _i 

+ ~ phkj) 
k

+~ o ~ i 
= L(ak(Zk)). 

Because of (5.7) and (6.6), ak(zk) e eF(6)) and the inequality Mb 

by Theorem 3.1, an MCE does not exist. 

7. Practical criteria for the 2-regular case (part 1 1) 

In this section we shall give sufficient conditions for the existence of an MCE 

under the assumption that KD(P) = oo for all p e (O, I], the family ~i is 2-regular 

aF((9) n ~if ~ ~ and the pooled grouped sample ~~ is a binary response data sample, 

~
 

i.e., rh = I for all h = 1,...,f. In this case, 1~i

1 ~ h ~ f, there exists a unique integer ih Such that I ~ ih ~ m and phoi^ + phi^~ + 1 

= 1. Throughout this section, we put ph = phOi^ and qh = I - ph. From (3.1), 

(7 1) L(z) = ~ S(n )D(z,., p ) + ~ S(nh)D(1 - Zi., qh) 1 ~h~ a ; p*~ o h 
l ~h~ e ;q*~0 

For simplicity we put L(z) = L(z) (z = (z, . . . , z) e aF(~)) n d) 

To find a sufficient condition for the existence of an MCE, consider the 

following condition 

(A) For each z e (O, 1) with zl e aF((9) n d, there exist a positive number to, a 

mapping p(t) from (O, to) into ~ and a positive function w(t) defined on (O, to) such 

that : 

(7.2) 1*i+mo F(p(t)) = zl. 
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(7.3) For each i, I ~ i ~ m, F(xi, P(t)) is dlfferentiable on (O, to)' and W(xi ; z) 

= Iimt_o W(t) dF(xi, P(t))/dt exists and is finite. 

We prove 

THEOREM 7, l. Let condition (A) be satisfied. Assume that : 

(7.4) There exi~'ts z*1 e aF(6)) n ~ such that L(z*1) = min {L(z) ; z e aF(~) n ~tf . 

every fixed p e (O, I], D(z, p) is continuousl_y dlffe/'entiable on (O, 1) 

Then an MCE exists tf conditions (5.6) and (6.5), and the follovving condition are 

satisfied : 

(7.6) ~ S(nh)D (z* ph) W(x,. , z*) 
1 ~1'~ e ;p^~0 

1 ~/'~ e ;q^~0 

where D'(z, p) = dD(z, p)Idz. 

PROOF. Let z* be that of (7.4). Because of Theorems 3 1 5 1 and 6 1 it suffices 

to show that th ' . ' ' ' . , with z replacederbeyezx*rst zl e F((~) wrth L(z) ~ L(z*). Let to and p(t) be those of (A) 

. From (7.1) and (7.5), 

limt_o w(t)dL(F(p(t))/dt = ~ z*) 1~h~ 2;p^~0 S(nh)D'(,ph, z*) W(x. ' 

- ~1 ~h~ g;q^~0 S(nh)D'(qk, I - z*) W(xi. ; z*). '^ ' 

Hence (7.6) implies that dL(F(p(t))/dt 

 o. Thus there exists zl e F(~) with L(z) ~ L(z*). This completes the proof. 

Ap pendix 

We shall prove Theorem 3 1 To d h' 
' ･ o t rs, we prepare a theoretical background. To relate the function L(z) (see (3.1) for its definition) to the contrast 

function of Problem (P) (see Section 2), we regard R as a compact metric space with 

the distance 

dist (t, t') = f arctan t - arctan t f t t e R 

where arctan (~00) = ~ 7c/2. Let p e(O I] be fixed. Because of (2.2) and of the 

continuity of D(z, p), D(z, p) can be exten~ed to a continuous function fp(z) on [O, I] 

to ~ by fp(z) = Iim~__D(z~, p), where {z~} is a sequence in (O, I] with the limit 

z e [O, I] (cf. Bourbaki (1965, chap. l)). From the definition of ~(z, p) (cf. Section 

3), we see that ~:(z, p) =fp(z) on [O, I]. It is easily verified that L(z) is continuous 

on ~ and L(F(a)) is equal to the contrast function of Problem (p) up to a 

constant. Hence an MCE exists if and only if L(z) attains its minimum on F(~)). 
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PROOF OF THEOREM 3.1. Put M. = inf{L(z) ; z e F(~)) } We show 

M = M. ~ Mb' (1) 

Because of the relation min (M, Mb) ~ M., it suffices to prove that M ~ M, in case 

M. 

 M. and choose ~ e F(~,) with L(~) = M.. Since L(z) is continuous on F(~) , there exists a neighborhood ~f of ~ such that L(z) 

F(6)) n "~/ ~ ~, M 

 M., we have M ~ M.. The relation (1) proves the "only if" part of the theorem. Let z' be that of (3.2) (see Section 3). If L(z) 

attains its minimum at z = z', then an MCE exists. Assume that M 

(1), L(~) = M and M 

minimum at z = ~. Hence an MCE exrsts 

Ref eremces 

[1] 
[2] 
[3] 

[4] 

[5] 

[6] 

[7] 

[8] 

[9] 

[ I O] 

[1l] 

[ 1 2] 

[13] 

Berkson, J. (1980). Minimum chi-square, not maxnnum likelihood. Ann. Statist. 8, 457~87 

Bourbaki, N. (1965). Topologie G~n~rale, Chap. I et 2. Hermann, Paris 

Carter, W. H., Bowen, J. V., and Myers, R. H.(1971). Maximum likelihood estimation from 

grouped Poisson data. J. Amer. Statist. Ass. 66, 351-353. 

Grossman. W. (1982). On the asymptotic properties of minimum contrast estimates. Probability 

and Statistical Inference, 1 15-127 

Kulldorff, G. (1962). Contribution to the theory of estimation from grouped and partially grouped 

samples. John Wiley and Sons, New York 

Nakamura, T. and Kariya, T. (1975). On the weighted least squares estimation and the existence 

theorem of its optimal solution. Kawasaki Medical J. (Liberal Arts and Science Course), 1, 1-11 

Nakamura. T. (1984). Existence theorems of a maximum likelihood estimate from a generalized 

censored data sample. Ann. Inst. Statist. Math 36, 375-393 

Nakamura, T. (1985a). The probability contents boundary analysis. In Statistical Theory and 

Data Analysis (ed. K. Matushita), 485~!:97. North-Holland 

Nakamura, T. (1985b). The probability contents inner boundary of an interval-censored data 

sample for families of distributions. Technical Report Series of Okayama Statisticians Group, No 

1, Kawasaki Medical School, Japan 

Nakamura, T. (1985c). Probability contents inner boundary of an interval-censored data. Keio 

Science and Technology Reports, 38, 1-13 

Nakamura, T. (1990). Existence of maximum likelihood estimates for interval-censored data from 

some three-parameter models with shifted origin. J. R. Statist. Soc. B, 52, in press 

Rao, C. R. (1955). Theory of the method of estimation by minimum chi-square. Bull. Inst. Inter 

Statist. 35, 25-32. 

Rao, C. R. (1957). Maximum likelihood estimation for the multinomial distribution. Sankhya, 18, 

139-148. 


