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Let G be a Lie group. An analytic local multiplication u at the identity element 1 of
G is associated with a Lie algebra on the tangent space of G at 1. It is shown that pis a
geodesic homogeneous local left loop which is in projective relation with the group
multiplication p° (Theorems 2.1 and 2.16), and that any geodesic homogeneous local left
loop in projective relation with u°® is given by such a u (Theorem 3.3).

Introduction

The theory of analytic local loops was originated by A. I Mal’cev [15] in
1955. He proved that any analytic Moufang loop is characterized by its tangent
algebra which is called Mal’cev algebra. In 1964 the author introduced ([5]) local
loops on any linearly connected manifolds, which are called now geodesic local
loops, by means of parallel displacement of geodesic curves along geodesic
curves. This concept was introduced, independently, by L. V. Sabinin [17] and
developed by him since 1972 (cf. [17], [18], [19]). In [2], M. A. Akivis introduced
the tangent algebra of any analytic local loop as an algebraic system with a bilinear
product and a trilinear product satisfying some algebraic relations (cf. [1], [2], [3],
[18]), which has been named Akivis algebra ([4]). However, the tangent Akivis
algebra does not characterize the local loop in general.

On the other hand, generalizing the concept of Lie triple system of E. Cartan
which is an algebraic system characterizing Riemannian symmetric space in local,
K. Yamaguti [21] introduced in 1958 an algebraic system called general Lie triple
system. It is also defined by a bilinear product and a trilinear product satisfying
those relations which are presented by K. Nomizu [16] as relations of torsion tensor
and curvature tensor of the canonical connection on reductive homogeneous
spaces. In 1975, the concept of homogeneous Lie loops was introduced by the
author [6] (cf. L. Sabinin [18]). It is a class of loops on differentiable manifolds
characterized by their tangent algebras, called the tangent Lie triple algebras. The
latter is a general Lie triple system on the tangent space at the identity which is
given by the value of the torsion tensor and the curvature tensor of the canonical
connection evaluated at the identity (cf. Definition 1.3). In 1986, K. H. Hofmann
and K. Strambach [4] clarified the interrelation between the tangent Akivis algebra
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and the tangent Lie triple algebra of any homogeneous Lie loop. The theory of
homogeneous Lie loops is a complete generalization of the theory of (real) Lie
groups and Lie algebras to loop theory (cf. [6], [7]). Although this theory treats of
global loop multiplications on manifolds, it was motivated by the local theory of
geodesic loops in linearly connected manifolds. In this paper, we shall turn back to
the theory of local loops and consider projective changes of group multiplication on
any Lie group into homogeneous local loops, in a neighborhood of the identity
element. Here, the word “projective” means that the system of geodesic curves
(regarded as straight lines) is preserved. The changes are also restricted to preserve
“homogeneity” of multiplications (cf. Definition 1.5).

After preparing some terminology and results for local left loops in §1, we
introduce in §2 an analytic local left loop p on a Lie group G. Each local
multiplication y is associated with some Lie algebra £ on the tangent space Tp(G) at
the identity 1 (cf. (2.2)). It is shown that the local multiplication p is a geodesic
homogeneous local left loop (Theorem 2.1), and that it is in projective relation with
the group multiplication u° of G (Theorem 2.16). In §3, it is proved that any
geodesic homogeneous local left loop on a Lie group which is in projective relation
with the group multiplication is reduced to the multiplication u given above
(Theorem 3.3). Finally, in §4, we shall remark that the construction of u has an
algebraic interpretation, by comparing the results developed in Part T ([14]).

§1. Homogeneous local left loops

In this section, we look at the theory of analytic homogeneous left loops
developed in [6], [10], [11], [12] and [13] again from local point of view.

Let G be an analytic manifold of dimension n. For some fixed element 1 in G,
we consider a local multiplication around 1.

DerFiniTION 1.1, Let W be an open neighborhood of (1, 1) in G x G. An
analytic mapping

ww—aG

will be called a homogeneous local left loop at 1 if it satisfies the followings:
(i) u(l, x) = x, u(x, 1) = x whenever (1, x)(resp. (x, 1)) belongs to W.
(ii) If (x, 1) belongs to W, then there exists an open subset V of G containing 1,
such that the left translation L,: V— G; L,y = u(x, y) is a diffeomorphism onto
an open subset of G containing 1.
(iii) The multiplication u has the left inverse property, that is, L;* = L.-, holds
for x™'=L;'1, and the map

L™t (x, ) — Lty
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is analytic in its domain.
(iv) Any left inner mapping L, , satisfies

,u(nyyZ, Lx,yw) = Lx,y:u(z, W)

whenever the left and the right sides of the equality are defined. Here, we call

the map L, ,:z+— L, L.L, a left inner mapping if it is well-defined.

In the following, we denote by T,(G) the tangent space of G at the identity
element 1. Since any left inner mapping L, , is a local difftomorphism leaving the
identity 1 fixed, its differential dL, , is an invertible linear endomorphism of T,(G).

Let u: W— G be a homogeneous local left loop in G at the identity 1, where W
is an open submanifold of G x G containing (1, 1). In any connected open
submanifold U of G such that 1eU and U x U is contained in W, we can give a
linear connection V associated with u. 1In fact, for any vector fields X and Yon U,

set
(1.1) (7 Y), = X, Y—dL.dpdLS ' X, AL YY)

at each point x in U, where du: Ty(G) x To(G) — To(G) is the bilinear map whose
value du(X,, Y,) for X, and Y, in To(G) is given by differentiating u(u, v) in the
direction (X, Yy) at (u, v) = (1, 1). Then, the vector field FyY on U satisfies the
conditions for covariant differentiation, which defines a linear connection F; on
U. Moreover, if V is another open submanifold such that (1, 1)e V' x Vin W, the
associated linear connection F, coincides with F; on their common domain.

DEeriNITION 1.2.  The linear connection associated with u which is given on any
open submanifold U with (1, 1)e U x U in W will be called the canonical connection
of the homogeneous local left loop u at 1.

ReEMARK. It is evident that if (G, u) is a homogeneous Lie loop, then it is a
homogeneous local left loop at its identity and the canonical connection defined
above is reduced to the global one in the sense of [6] and [10].

We can see that the extensive theory of the canonical connection of
homogeneous Lie loops and left loops developed in the articles [6]-[12] is still valid
in analogous way for homogeneous local left loops, and that the theory of tangent
Lie triple algebras of homogeneous left loops is available for local ones. For
instance, if p is a homogeneous local left loop at 1, the torsion tensor field S and the
curvature tensor field R of the canonical connection V are defined in some
neighborhood of 1 and they satisfy 7S = 0 and PR = 0, respectively, whose values S,
and R, evaluated at 1 are given by

(12) So(X, Y) = du(X, Y) — du(¥, X),
(13) Ro(X, Y) = dL(X, Y) — dL(Y, X)
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for any X and Y in Ty(G) (cf. [11]). Here dL(X, Y) denotes the endomorphism of
T5(G) obtained by differentiating the linear endomorphism dL,, of Ty(G) in the
directions (X, Y) at (u, v) = (1, 1).

ProrosiTiON 1.1. The tangent space T,(G) at 1 forms a Lie triple algebra
(general Lie triple system of K. Yamaguti [21]) with the operations,

<X’ Y> = SO(X’ Y)a

(X, Y,Z>=RyX, Y)Z
Jor X, Y and Z in Ty(G).

Proor. It is obvious because F'S=0 and FR=0 hold in a neighbourhood of 1.
g.e.d.

DermNiTION 1.3, The Lie triple algebra obtained in Proposition 1.1 above will
be called the tangent Lie triple algebra of the homogeneous local left loop p at 1.

DEerFINITION 1.4. (cf. [6]) A homogeneous local left loop p at the identity 1 in G
is said to be geodesic if, for each geodesic curve x(t) of the canonical connection
passing through x(0) = 1, the differential dL,: T(G) = T, (G) of the left translation
L, induces the parallel displacement along the geodesic curve.

It is easy to show;

ProrosITION 1.2.  Every geodesic curve x(t) through the identity x(0) = 1 in the
geodesic homogeneous local left loop p is a 1-parameter local subgroup (i.e., associative
local subloop) of u, that is,

x(t +5) = u(x(1), x(s))

as far as both sides are well-defined.
In the same way as Theorem 7.8 in [6], we can show;

THEOREM 1.3. Let p (resp. fi) be a geodesic homogeneous local left loop at 1
(resp. 1) in an analytic manifold G (resp. G) and assume that dim G = dimG. Then,
there exists a local isomorphism ¢: U — U of u to ji if and only if there exists an
automorphism @: T,(G) — To(G) of the tangent Lie triple algebras of p and fi such that
D is equal to the differential d¢ of ¢ at the identity 1.

In the theory of homogeneous (left) loops, it is very useful to associate the
homogeneous system # with each homogeneous loop u (cf. [8]) by

(L4) n(x, y,z) = Lou(L;'y, L' 2).

For any homogeneous local left loop u in this paper, we will consider the same
operation # given by (1.4) as far as the right hand side is well-defined, and it will be
called the homogeneous system associated with the local left loop p. The
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fundamental equalities for homogeneous system hold also for this # in a
neighborhood of 1 (cf. [9], [10]).

In [13] we have introduced the concept of projective relation in geodesic
homogeneous left loops, and investigated how the relation holds on R". Now, we
consider two geodesic homogeneous local left loops u and i in the same analytic
manifold G at the same identity 1. In the following, their canonical connections will
be denoted by V and ¥, respectively.

DerFNITION 1.5. Two geodesic homogeneous left loops u and ji at the same
identity 1 are said to be in projective relation if they satisfy the following conditions
(i) and (ii) in some neighborhood U of 1:

(i) Any geodesic curve of V is a geodesic curve of V7, and vice versa.

(ii) The following mutual equalities are valid in U;

(1.5) (X, v, 7w, v, W) = n(i(x, v, w), i(x, y, v), {i(x, y, w))
(1.6) n(u, v, 7(x, y, 2)) = i, v, x), n(u, v, y), Ny, v, 2)).

§2. Construction of homogeneous local left loops on Lie groups

Let G be a real Lie group with the group multiplication xy = u°(x, y). Then,
1° can be regarded as a homogeneous Lie loop. It is geodesic since the canonical
connection is reduced to the (—)-connection of E. Cartan, whose curvature tensor R°
vanishes identically while the tosion tensor S° gives the Lie bracket of the Lie
algebra & of G. In the following we denote the Lie bracket of ® by [,1°. Then,
we have

So(x, V) =[X, Y1°
R°(X,Y)Z=0 for any X, Y, Z in G.

Thus, the tangent Lie triple algebra of u® is reduced to the Lie algebra ® of G.

In this section, we construct in G another homogeneous local left loop p at the
identity element 1 of G, and show that u is in projective relation with u°. Here, we
regard @ as a Lie algebra on the tangent space To(G) at 1 with the Lie bracket [,1°,
that is, ® = (T,(G), [,]°). Following the notation in Varadarajan [20] (cf. Th.
2.154, p. 119) we denote the exponential map at 1 by exp: T,(G)—» G and the
product of expX and expYin G by

expXexpY=expC(X:7Y)

for any X and Y contained in some neighborhood % of O in Ty(G) so that C: A x A
— Ty(G) is an analytic map.

Now, assume that there is given another Lie algebra £ on 7T5(G) whose Lie
bracket, denoted by the usual bracket [,], satisfies a relation to ®;
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(2.1) [X, [¥, Z1°] = [[X, Y], Z1° + [Y, [X, Z]1°,

that is to say, every adjoint operation ade X of 2 is a derivation of . We denote
the exponential of the endomorphism ad, X of T,(G) by

AX) = %X X e T (G).

For the later use we show here some lemmas on A(X) and C(X: Y) above. In these
lemmas all letters X, Y, Z denote arbitrary elements of Ty(G).

LemMA 1. A(X) is an automorphism of the Lie algebra ® and A(X)™ 1= A(—X).
LemMa 2. A(tX)sX =sX for s, teR, A(X)X = X.
LemMma 3. A(AX)Y) = AX)A(Y)AX)™.
LemMa 4. C(sX:tX)=(+1)X, C(X:0)=C(0: X)=X,
C(—X:-Y)=—-C(Y: X),
C(X:C(Y:2))=C(C(X:Y): 2),
C(—Y:Z)=C(—C(X:Y): C(X: 2Z)).
LeMMa 5. AX)C(Y: Z)=CAX)Y: AX)2),
CX:AX)Y)=AX)C(X:Y).

For the proof of Lemma 5 we use the following formula (Baker-Campbell-
Hausdorff formula in Varadarajan [20] Lemma 2.15.3, p. 118):

CX:Y)=)",C(X:7),
where
C,X:V)=X+Y,
m+1)C (X:Y)=4[X-Y,C(X:Y)]°
+ Zpgl,ngnKZpZﬁl ko LG (X Y), [ [Cp(X:Y), X + Y1°...1°

1’:0-“-’-'+kp=n
and K,,’s are rational numbers. The proofs of the other lemmas are omitted.
We associate with the Lie algebra £ = (T,(G), [,]) an analytic multiplication u
around the identity element 1 of the Lie group G as follows: For any normal
neighborhood U of 1, set

2.2) ulx, y)=expC(X: AX)Y) for x=expX,y=cexp},

whenever x, y, exp A(X) Yand exp X exp A(X) Ybelong to U. Since the exponential
map is an analytic diffeomorphism and since 4(X)Y and C(X: Y) are analytic in X



Projectivity of Homogeneous Left Loops on Lie Groups II 7

and Y, we see that the multiplication u is analytic in a neighborhood Wof (1, 1) in G
x G. Tt is clear that u does not depend on the choice of the normal neighborhood

U.
Hereafter, all equalities on u should be understood to be assumed that both

sides of the equalities are well-defined.

THEOREM 2.1. Let G be a Lie group with the identity element 1. Assume that a
Lie algebra L on the tangent space Ty(G) at 1 is given and satisfies the relation
(2.1). Then, the analytic local multiplication p around 1, given by (2.2), is a geodesic
homogeneous local left loop at 1.

To prove this theorem we show the following propositions:

ProprosITION 2.2. The identity 1 of G is a (two-sided) identity of the
multiplication u, that is,

uix, )=p(l,x)=x  for x =expX.
Proor. This is trivial by setting X =0 or Y= 0 in (2.2). g.e.d.

PrROPOSITION 2.3. Every l-parameter subgroup x(t) = exptX(teR) of G is a 1-
parameter subgroup of u too, that is,

ulx(@), x(s)) =x@t+s)  for s, teR.
Proor. Lemma 2 shows this immediately. g.e.d.
COROLLARY 2.4. The element x~ ! = exp(— X) is the (two-sided) inverse of x
= exp X, with respect to p.
PROPOSITION 2.5. The multiplication p has the left inverse property, that is,
pix~t plx, )=y  for x=expX,y=expl

ProoF. By applying Lemmas 5, 2 and 4 to the left-hand side of the equation
above, we have

p(exp(— X), pexp X, exp Y)) = plexp(— X), exp C(X: A(X)Y))
=expC(— X: A(— X)C(X: A(X)Y))
=expC(—X: CA(— X)X: A(— X)A(X)Y))
=expC(C(— X:X):Y)
=exp Y. g.e.d.

PROPOSITION 2.6. The left inner mapping for x =exp X, y =exp Y is given by

L, ,z=expAX)A(— C(X: Y)A(Y)Z  for z=expZ.
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Proor. From the definition of u and Lemmas above we obtain;
exp YLyt ,)LiL,z)=C(—C(X: AX)Y): A(— C(X: AX)Y))C(X: A(X)
C(Y: A(Y)2)))
=AX)C(—C(X:Y): A(— C(X: Y)C(X: C(Y: A(Y)Z)))
=AX)A(-CX: Y)C(—C(X:Y): C(C(X:Y): A(Y)Z))
=AX)A(— C(X: Y)A(Y)Z. g.e.d.
COROLLARY 2.7. Ly Ly = Lyg+s for x(t) =exptX.

ProOF. Proposition 2.6 for x() and x(s) shows L., .,=1id since
A(X)A(— C(sX:tX))A(X) =1 (The identity map on T;(G)). g.e.d.

ProposiTion 2.8. L, ,u(z, w) = u(L, ,z, L, ,w) for x=expX, y=exp},
z=expZ and w =exp W.

ProoF. Set L(X, Y)=A(X)A(—C(X: Y))A(Y). Then we get exp™ 'L, u(z, w)
=LX, Y)C(Z: A(Z)W) = C(L(X, Y)Z: L(X, Y)A(Z)W) by Proposition 2.6. On
the other hand, by Lemma 3, we have

L(X, Y)A(Z) = A(L(X, Y)Z)L(X, Y),

which shows

L, ,uz, w)=expC(L(X, Y)Z: A(L(X, Y)Z)L(X, Y)W)
= p(exp L(X, Y)Z, exp L(X, Y)W)
= pu(Ly, 2, L, ). g.e.d.

Summing up Propositions 2.2, 2.3, 2.5 and 2.8, we see that the local
multiplication u is a homogeneous local left loop at 1.

PROPOSITION 2.9. The homogeneous local left loop u is geodesic.

Proor. Choose a normal coordinate system of the Lie group G at 1, so that
x =exp X has its i-th coordinate x' = X' for any X = X799 in a neighborhood of
0 in Ty(G), where {07} is the natural basis of Ty(G) with respect to this coordinate
system. Then, by Proposition 2.2, the 1-parameter subgroup x(t) = exptX, teR,
satisfies %(f) = X, X(t) = O and

ﬂ(x(t), Xx(t)9 Xx(t)) = de(t)d.u(de(—t)Xx(t), de(—t)Xx(t))
62
= dudv 0.0

= 0.

(u+ov—1
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Hence every l-parameter subgroup x(f) =exptX, teR, is a geodesic curve of the
canonical connection V. Let Y(t)=dL,,Y be a vector field along the geodesic
curve x(t) given by left translations of any Y= Y(0) in T,(G). Then we have

n(x(2), x(t + u), Y(¢t)) = Lyqu(xw), ¥)
=dL,ydL,Y
=Yt +u

by Corollary 2.7. Hence we get
ay .
Ve Y0) = — — n(x(1), X(1), Y(1)) = O

along the geodesic curve x(t), that is, the left translation L, induces the parallel
displacement of Y along the geodesic curve x(f) with respect to the canonical
connection V' of u. g.e.d.

Since p is homogeneous, we can show

ay
dL, - = n(p. dL,(0), dL,Y)

for any point p. This means

COROLLARY 2.10. The parallel displacement of tangent vectors at 1 along the
geodesic curve x(t) = exptX is preserved by any left translation L,.

The proof of Theorem 2.1 is completed by Proposition 2.9 above.

REMARK. In [5] we have introduced a local multiplication in any differentiable
manifold with a linear connection, which is called a geodesic local loop. Proposition
2.9 above shows that the homogeneous local left loop u considered here is a geodesic
local loop at 1 with respect to its canonical connection V. Moreover, Corollary 2.10
shows that the local multiplication p, at p given by

tp(X, ) = 1(p, X, y)
is a geodesic local loop at p with respect to V.

Now, we are at the stage of showing that the geodesic homogeneous local left
loop u at 1 is in projective relation with the group multiplication u® of the Lie group
G. We denote the group multiplication u° by juxtaposition as usual, that is, ul(x, y)
= xy. The homogeneous system n° associated with ul is given by

n°(x, y, 2) = yx "1z

On the other hand, the homogeneous system # associated with the homogeneous
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local left loop u is given by (1.4) in a neighborhood of 1, that is,
(2.3) n(x, y, 2) = pCx, p(u(x", ), p(x71, 2))).
ProposSITION 2.11.  The homogeneous system n is given by
nex, y, 2) = xpu(x "'y, x"'z).
Proor. For x =expX, y=expY and z = exp Z, (2.3) implies
exp tu(x, y,z) = C(X: AX)A(A(— X)C(= X:Y))
CA(—X)C(— X: V) A(-X)C(— X: 2))
=CX:AC(—X: V)C(C(—X:Y)C(— X: 2)).
Hence, we get
n(x, y, z) = exp X p(exp(— X)exp ¥, exp(— X)exp Z)
= xu(x"1y, x"1z). q.e.d.
ProrosiTION 2.12.
n°(u, v, n(x, y, 2)) = n(°(u, v, x), 1°, v, y), 1°w, v, 2))
Proor. If we set w=vu~?, then it is sufficient to show that the equation
(2.4) wi(x, y, z) = n(wx, wy, wz)
holds in a neighborhood of 1. By Proposition 2.11 above, we have
n(wx, wy, wz) = wxp((wx) ™ (wy), (wx)~ ! (wz))
=wxu(x"ty, x 'z)
= wu(x, y, z). g.e.d.
PROPdSITION 2.13.
px, n°(u, v, w)) = n°(p(x, u), pu(x, v), ulx, w)

Proor. For x =exp X, u=expU, v=-expVand w = exp W, we have by using
Lemma 4,

exp” tu(x, n°(u, v, w)) = C(X: AX)C(V: C(— U: W)))
= C(X: C(AX)V: C(— AX)U: A(X)W)))
= C(C(X: AX)V): C(— AX)U: A(X)W))
= C(C(X: AX)V): C(— C(X: AX)U): C(X: AX)W)))
= exp” pulx, v)ulx, u) ™t p(x, w)
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=exp” 'n°(u(x, u), u(x, v), pix, w) q.e.d.

ProrosITION 2.14.

0, v n°(w, v, w) = 1°(@(x, y, u), n(x, y, v), 1(x, y, w))
Proor. By Proposition 2.11 we have
n(x, y, 1%, v, w)) = xp(x =1y, x™ ' n°(w, v, w))
=xp(x"ty, n°(x " tu, x "o, x71w)),
and, by Proposition 2.13,

n°(Gx, y, u)s n(x, y, v), n(x, y, w))
=nC0ep(x "1y, x 7 u), xp(x Ty, x 7o), xp(x Ty, X7 w))
=xn°(u(x "'y, x7tu), pe Ty, x 7o), p(x Ty, x7THw)
=xp(x "y, n°(x " tu, x" o, x"1w)). g.e.d.

PROPOSITION 2.15. Any geodesic of u through 1 is a geodesic of u°, and vice
versa.

ProoF. By Proposition 2.3 and the proof of Proposition 2.11, we see that all 1-
parameter subgroups are the system of geodesic curves through the identity 1, with
respect to both of the canonical connections of y and u°, respectively. g.e.d.

From Propositions 2.12, 2.14 and 2.15 we obtain the following;

THEOREM 2.16. Let G be a Lie group with the Lie algebra ®. Assume that a
Lie algebra L is given on the tangent space Ty(G) at the identity 1, such that the
relation (2.1) is satisfied. Then, the geodesic homogeneous local left loop p at 1, given
by (2.2), is in projective relation with the group multiplication of the Lie group G.

§3. Projectivity of Lie groups as homogeneous loops

Let G be a Lie group and G = (Ty(G), [,]°) its Lie algebra, where T(G) denotes
the tangent space at the identity 1. Assume that there exists a Lie algebra £
= (Ty(G), [,]) on Ty(G) satisfying (2.1), that is,

ado XY, Z1° = [ade X ¥, Z1° + [Y, adg X Z]°

for X, Y, Z in Ty(G). In §2, we have seen that the local multiplication u given by
(2.2) is a geodesic homogeneous local left loop at 1 (Theorem 2.1) and that u is in
projective relation with the group multiplication of G (Theorem 2.16). In this
section, we will show that any geodesic homogeneous local left loop at 1 which is in



12 Michihiko KIKKAWA

projective relation with the group multiplication must be given by (2.2) associated
with some Lie algebra L.

Choose a normal coordinate neighborhood at 1 in G, so that any element x
=exp X in it has the coordinate x' = X', with respect to the natural basis. By
Baker-Campbell-Hausdorff formula in Lemma 5, we have

wexp X, expY) = C{(X:Y)
=X"+ Y + (3[X, YIO +---.
Since the local multiplication y is given by (2.2), we have
pi(expsX, exptY) = Ci(sX: A(sX)tY)
=sX'+ t(A(sX)Y) + 3st([X, A(sX) YO + ---.
=sX'+tY' + st[X, YT + Lst([X, YI°) + O54s, 1),
from which the value of the bilinear m.ap du: Ty(G) x Ty(G) — Ty(G) follows;

82
(3.1 du(X, Y) = 3507 (. 0#(x(), () = [X, Y] + 30X, Y1°
On the other hand, Proposition 2.6 implies, for x(s) = expsX and y(t) = exptY,

dL ), 0 = ABSX)A(— C(sX: tY))A(tY)
t
={l +sadoX + ..} {I — ad,3<sX +tY+ %—[X, Y]°> + } {I+tadg Y+ -}
=1 —st(hade[X, Y] + adg X -adyY) — s?ado X -ade X
- tzadﬂ Y‘ ads Y+ 03(8, t)
By differentiating this once in s and ¢, respectively, and evaluating at (0, 0) we get
(3.2) dL(X, Y) = —$ady[X, Y]° —ady X -ad, Y.

Let S and R denote the torsion tensor and the curvature tensor, respectively, of the
canonical connection ¥ of p. Then, by (1.2) and (1.3), we have;

PROPOSITION 3.1.  The value S, and R, of the torsion and the curvature of V at 1
are given, respectively, by

(3.3) SoX, V)=[X, Y]°+2[X, Y],
(34) RO(X9 Y)Z = —[[X’ Y]0> Z] - [[X9 Y]a Z]&

where [,1° and [,] denote the Lie bracket of ® and L, respectively.
In [13], projectivity of geodesic homogeneous left loops is investigated and
shown that if two geodesic homogeneous left loops 1 and /i are in projective relation,
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then the (1, 2)-tensor fields T=FV — ¥ and — T=F —F are affine homogeneous
structures of the canonical connections V' and I, respectively (Proposition 1 in
[13]). In this case, T satisfies PT=0, PT= 0 and the following equations for the
torsion S and the curvature R of V' (cf. Corollary to Proposition 1 in [13]);

(G5 TX, X)=0

(36) T(X, S(Y, 2) = S(T(X, Y), Z) + S(Y, T(X, Z))

(37  TX, R(Y, Z)W) = R(T(X, Y), ZYW+ R(Y, T(X, Z))W+ R(Y, Z)T(X, W)
(G8)  T(X, T(Y, 2) = T(T(X, Y), Z) + T(Y, T(X, Z))

(39) R(X, Y)T(Z, W)= TR(X, Y)Z, W) + T(Z, R(X, Y)W).

Moreover, it has been shown (cf. Proposition 1.1 in [12]) that the torsion tensor S
and the curvature tensor R of ¥ are given, respectively, by

(3.10) S(X,V)=58(X, )+ 2T(X, Y),

(3.11) R(X,Y)Z=R(X, Y)Z — T(S(X, Y), Z) — T(T(X, Y), Z).

If 1 and fi are geodesic homogeneous local left loops at the same point, say 1, in an
analytic manifold G, then we can apply those results mentioned above in a

neighborhood of 1. Especially, we can assert that all equalities (3.51+3.11) above are
valid at 1. From these facts the following theorem is obtained:

THEOREM 3.2. Let G be a Lie group with the multiplication p°. Assume that, in
a neighborhood of the identity 1, there is given a local multiplication ji which is a
geodesic homogeneous local left loop at 1. If i is in projective relation with u°, then,
there exists a bilinear map T: Ty(G) x To(G) — To(G) such that the values at 1 of the
torsion § and the curvature R of the canonical connection V' of fi are given respectively
by

(3.12) S(X,Y)=[X, Y]°+ 2T(X, Y),
(3.13) RX,V)Z=—-T(X, Y19 - T(T(X, Y), Z)

for X, Y, Z in the tangent space Ty(G) at 1, where [,]° denotes the Lie bracket of the
Lie algebra of G.
Moreover, the bilinear map T satisfies the following equalities:

(3.14) T(X, X) =0
(3.15) TX, T(Y, Z)) + T(Y, T(Z, X)) + T(Z, T(X, Y)) = 0
(3.16) T(X, [Y, Z1°) = [T(X, Y), Z1° + [Y, T(X, Z)1°.
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ProOF. Since the canonical connection F° of the Lie group u° is reduced to the
(—)-connection of Cartan, its curvature vanishes identically and the torsion S° has its
value at 1 as

SOX, Y)=[X, Y]° for X, Yin T,(G).

The (local) affine homogeneous structure T= F® — 7 should satisfies the equations
(3.5)~3.9) for S = S° and R = O, which are reduced to (3.14)«3.16). Then, (3.12) and
(3.13) follow immediately from (3.10) and (3.11), respectively. q.e.d.

In conclusion of this section, we have the following;

TueoreM 3.3. Let G be a Lie group with the multiplication p° and the identity
element 1. Any geodesic homogeneous local left loop [i at 1 in projective relation with
ul is given by the homogeneous local left loop constructed in Theorem 2.1 for some Lie
algebra on the tangent space Ty(G) of G at 1.

Proor. Apply Theorem 3.2 to fi. Then, from (3.14) and (3.15), it follows that
the bilinear operation T on T,(G) gives a Lie algebra £ = (T;(G), [,]) with the Lie
bracket

[X, Y]=T(X, Y).

Moreover, the equation (3.16) assures the relation (2.1). Let p be the geodesic
homogeneous local left loop given by Theorem 2.1, associated with this Lie algebra
L. By Proposition 3.1, the tangent Lie triple algebra {T5(G); {,><, , >} of p is given
by

X,Y)=[X, Y]°+2[X, 1],

(X, Y,Z)=~[[X, Y1° Z] - [[X, Y], Z].
On the other hand, the equations (3.12) and (3.13) give the tangent Lie triple algebra
{T(G); <, >, <5500} of fi by

KX, V) =[X, Y]° +2T(X, Y),

That is to say, the geodesic homogeneous local left loops u and f have the same
tangent Lie triple algebra. Then, Theorem 1.3 implies that they are locally
isomorphic. Since, in this case, the isomorphism @ in Theorem 1.3 is reduced to the
identity map on the tangent space Ty(G), the corresponding local isomorphism (as an

affine transformation) must be equal to the identity map in some neighborhood of 1,
on which u = ji is valid. g.e.d.
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§4. Final remarks

Let G be a Lie group with the multiplication u°, and u a geodesic homogeneous
local left loop at the identity which is given by Theorem 2.1, associated with a Lie
algebra € satisfying (2.1). We have shown in Proposition 2.3 that each 1-parameter
subgroup x(t) = exptX (teR) of the Lie group G is also a 1-parameter subgroup of y,
that is, the local left loop p is power associative. From a viewpoint of algebraic
projectivity of homogeneous left loops introduced in Part I ([14]), we can conclude
that u® and p are in projective relation too, in algebraic sense, as far as the
homogeneous system # of pu is well-defined, that is;

ProposITION 4.1. Set d.y =expA(X)Y for x=expX and y=expY. Then,
any operation d, is a (local) automorphism of the Lie group G and, d satisfies the
followings (cf. Errata for Part I on the last page of this paper):

(i) dyy =y, where 1 denotes the identity of G.

(il) dyyx(s)=x(s)  for x(1) = exptX, teR.

(il)) degy = dy(—-

(iv) d.d,=d,,d. for x=expX, y=expY

PrOOF. (i) is clear. (ii) and (iii) are obtained from Lemmas 1 and 2 in
§2. Also, Lemma 3 in §2 implies

AX)A(Y) = A(AX) Y)A(X),

which proves (iv). From Lemma 5 in §2, it follows that any d, is a local
automorphism of the group G, i.e.,

(4.1) d.(yz) = (d.y)(d.2)
holds for x =expX, y=expY and z =expZ. g.e.d.

The main theorem in Part I ([14]) asserts that any abstract homogeneous left
loop (G, u) which is algebraically in projective relation with the group (G, p°) is
completely determined by those operations d’s which satisfy (4.1) and the algebraic
conditions (i)iv) in [14], the conditions corresponding to those in Proposition 4.1
above on whole G. In that case, the multiplication p is given by

1(x, y) = p°(x, d.y)

which is coincident with (2.2) when x =exp X and y =exp Y. Thus, we see that
Theorem 3.3 means the analytic local version of the main theorem in Part I

An example of global analytic homogeneous left loop on a Lie group which is in
projective relation with the group has been given in [13] when the Lie group is the
abelian group R". Further examples of geodesic homogeneous local left loops on
Lie groups would be presented elsewhere.
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Errata for Part I

In the paper “Projectivity of homogeneous left loops on Lie groups I (Algebraic
Framework), Mem. Fac. Sci., Shimane Univ. 23 (1989)” ([14]);

p.19 |4 “d.x = x” should read “d..x = x for any positive integer m”.
p.19 13 “L,,=d3l,d,” should read “L, , = dz} ,d.d,”.

p.21 |1 “xF*ly y~P” should read “xP*ly x7?”.

p-21 116 “dyX = X” should read “d, y X = X".
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