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Asymptotic behaviors of solutions of delay differential equations with piecewise 

constant arguments are mainly discussed. In particular, we show stability of the zero 

solution by using Razumikhin-type method, and we generalize two oscillation theorems 

obtained by Aftabizadeh-Wiener-Xu in [1] 

S 1. Introduction 

Recently, many results have been obtained for delay differential equations with 

piecewise constant .arguments concerning stability and oscillation of solutions and 

existence of periodic solutions (for instance, [1, 2, 4, 5] and references cited 

therein) . Though both of linear and nonlinear equations are treated in those 

investigations, those for nonlinear equations are relatively few. In particular, the 

studies for nonlinear equations with general forms seem to be quite few. 

In this paper, we mainly discuss asymptotic behaviors of solutions of delay 

differential equations with piecewise constant arguments. Particularly we study 

stability of solutions of an equation with a general form, and oscillation of solutions 

of linear equations. In S 2, we discuss existence and uniqueness of solutions. In S 3, 

we obtain a few results on stability of solutions by employing a Razumikhin-type 

method. Finally in S 4, we discuss oscillation of solutions of a linear equation which 

is a generalization of the linear equation treated in [1], and we improve two 

oscillation theorems obtained by Aftabizadeh-Wiener-Xu in [1] 

Let R" and I ･ I denote the n-dimensional Euclidean space and its norm 

respectively, and let I denote the interval O ~ t 

instead of R1. For any H (O 
= {(t, x, yo, " ･ , y~) : t el, x e BH, yi e BH (O ~ i ~ m)}, where i and m are nonnegative 

integers. For a function f: D -> R", consider the equation with piecewise constant 

arguments 

~(t) = f(t, x(t), x([t]), . . ., x([t - m])), (1) 

where the superposed dot ,and [ ･ I designate the derivative and the greatest integer 

function, respectively, and f( . , . , yo,"',y~) : I x BH -> R" is a continuous function 

for any fixed yi (O ~ i ~ m). Let n = (yo,･･･,y~) be an (m + 1)n vector 
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S 2. Existemce amd uniquemess of solutions 

The initial value problem (IVP in short) for Equation (1) is 

~e(t) = f(t, x(t), x([t]), . . . , x([t - m])), 

(2) 
x(to) = xo, x([to]) = yo"",x([to ~ m])) = y~, 

where xo = yo if [to] = to' For any A > O, Iet I(to' A) = {[to ~ m],...,[to]} U 

[to' to + A). 

DEFINITION 1. A solution of IVP (2) on [to, to + A) is a function x : I(to' A) 

-> BH that satisfies x(to) = xo' x([to]) = yo, " ' , x([to ~ m]) = y~, and the ,conditions ; 

( i ) x(t) is continuous on [to' to + A), 

( ii ) ~(t) exists at each point t e (to' to + A), with the possible exception of the 

pcunts [t] e (tb, to + A) where one=sided derivatives exist, and right-hand derivative 

exists at to' 

(iii) x(t) satisfies Equation (1) on (to, to + A), with the possible exception of the 

points [t] e(to' to + A). 

Frrst we consider existence of solutions of IVP (2). Let ko = [to] + 1. On the 

interval [to, ko), IVP (2) is reduced to IVP 

~ =f(t, x, n), 

x(to) = xo' (3) 
Smce IVP (3) is an initial value problem for an ordinary differential equation with 

parameters n = (yo,""y~), the continuity of f( . , . , n) assures local existence of 

solutions of IVP (3) for t ~; to' and consequently, solutions of IVP (2) exist locally for 

t ~ to' We denote this solution by x(t, to, xo' n)' 

Next we consider uniqueness of solutions of Equation (1). If uniqueness of 

solutions of Equation (1) does not hold, then there exist solutions xl(t) 
= xl(t, to' xo, n) and x2(t) = x2(t, to' xo, n) of IVP (2) such that xl(tl) ~ x2(tl) for 

some tl > to' Let t2 = sup {t: xl(s) = x2(s) for to ~ s ~ t}. Then to ~ t2 

xl(t3) ~ x2(t3) for some t3 e(kl' kl + 1), where kl = [t2] ' Thus in order to consider 

umqueness of solutions of Equation (1), it is sufficient to consider uniqueness of 

solutions on [k, k + 1) with integral endpoints. Here we state a uniqueness 

theorem. Since the proof is similar to the one of Theorem 1.4 in [6] , we omit the 

proof . 

THEOREM 1. Suppose that f( . , . , n) of (1) is continuous on D1 : k ~ t 

x eBH for any yi eBH (O ~ i ~ m). In order that every solution of Equation (1) 

through a point in D I is unique to the right, it is necessary and sufficient that for any 

(To' ~o) e D1 and any yi e BH (O ~ i ~ m), there exists a neighborhood Un of (To, ~o) 
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which has the following property : Let Wn = { (t, x, ~) : (t, x) e Un' (t, ~) e Un} ' Then 

there exists a real-valued continuous function Vn(t, x, ~) on Wn' which satisfies the 

conditions (i) Vn(t, x, ~) = O if x = ~, (ii) Vn(t, x, ~) > O' if x ~ ~, (iii) Vn(t, x, ~) 

satisfies locally a Lipschitz condition in x and ~, and 

V(In)(t, x ~) lihm_~~P;{V(t + h x + hf(t x n) ~ + hf(t, ~, n)) - V(t, x, ~)} ~ O. 

EXAMPLE 1. If f(t, x, ~) of (1) satisfies a Lipschitz condition If(t, x, n) 
-f(t, ~, n)1 ~ L(n)lx - ~1, the function Vn(t, x, ~) = e~2L(n)tlx - ~l2 satisfies 

V(In)(t, x, ~) ~ e~2L(n)t(_ 2L(n)lx - ~l2 + 2lx - ~1 If(t, x, n) -f(t, ~, n)D ~ O. 

Thus Vn(t, x, ~) satisfies the conditions in Theorem 1, and hence, every solution of 

Equation (1) is unique to the right 

S 3･ Stability of solutioms 

Suppose that f of (1) is identically O on I when x = O and n = (yo"",y~) 

= O. Then IVP (2) with xo = O and n = O has the zero solution. A continuous 

function V(t, x) : J x BH -> I is called a Liapunov function if V satisfies locally a 

Lipschitz condition in x, where J = { - m, . . . , - I } U I. The derivative V(1)(t, x, n) is 

defined by 

~(1) (t, x, n) = Iihm+~~P; {V(t + h, x + hf(t, x, n)) - V(t, x)}. 

DEFlNITION 2. The zero solution of Equation (1) is stable if for any 8 > O and 

any to el, there exrsts a ~ = 6(to' 8) > O such that lxol 

imply lx(t, to' xo' n)1 

DEFINITION 3. The zero solution of Equation (1) is uniformly stable if the 6 in 

Definition 2 is independent of to 

DEFlNITION 4. The zero solution of Equation (1) is uniformly asymptotically 

stable if it is uniformly stable and there exists a ~0 > O such that for any 8 > O and 

any to el, there exists a T= T(e) > O such that lxol 

imply lx(t, to, xo' n)1 

Concerning stability of the zero solution of Equation (1), we obtain a few 

Razumikhin-type theorems. Though the proofs of them consist of standard 
arguments of the Razumikhin method (cf. [3, Chapter 5] ), here we prove them for 

the sake of completeness 

THEOREM 2. Suppose that there exists a Liapunov function V(t, x) on J x BH 
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such that 

( i ) V(t, O) ~ O, 

( ii ) V(t, x) ~ a(lxl), where a(r) is continuous, increasing, and positive definite 

(iii) ~(1)(t, x, n) ~ O whenever V(t, x) ~ V([t - i] , yi) (o ~ i ~ m). 

Then the zero solution of Equation (1) is stable 

PRooF. For any ee(O, H), V(t, x) ~ a(8) for teJ and x with lxl = 8. For any 

to el, choose a ~ = ~(t0,8) > O such that lxl 

V([to ~ i], x) 

Equation (1) satisfies lxol 

 to Let S = { [to ~ i] : O ~ i ~ m} U [to' tl]' From the choice of xo and n, there exists a 

T e(to' tl) such that V(T, x(T)) ~ V(t, x(t)) for all teS with t ~ T, and ~(1)(T' x(T), 

x([T]),...,x([T - m])) > O. On the other hand, (iii) and the choice of T imply 
~(1)(T' x(T), x([T]),...,x([T - m])) ~ O, which is a contradiction. Thus the zero 

solution of Equation (1) is stable. 

THEOREM 3. If the condition (ii) in Theorem 2 is replaced by 

(ii)' a(lxl) ~ V(t, x) ~ b(lxl), where a(r) and b(r) are continuous,,increasing, and 

posrtrve definite. Then the zero solution of Equation (1) is uniformly stable 

It rs easy to prove this theorem. By taking a 6 = ~(8) > O so that b(8) 

and by the same arguments as in the proof of Theorem 2, we can obtain that I xol 

zero solution of Equation (1) is uniformly stable 

THEOREM 4. In addition to all assumptions of Theorem 3, suppose that there 

exrsts a contmuous, nondecreasing function p(r) such that p(r) > r for r > O, and 

V(1)(t, x, n) ~ - c(lxl) whenever p(V(t, x)) > V([t - i], yi) (o ~ i ~ m), (4) 

where c(r) is a continuous, increasing, and positive definite function. Then the zero 

solution of Equation (1) is uniformly asymptotically stable. 

PROOF. By Theorem 3, the zero solution of Equation (1) is uniformly stable 

Let 6 > O and Hle(.O, H) be numbers with b(~) = a(H1)' Then by the similar 

arguments as in the proof of Theorem 2, it is easily seen that I xo I 

x(t) = x(t, to' xo' n)' For any ee(O, H1)' take a d = d(8) > O and an h = h(e)e(O. H1) 

such that p(r) - r > d for a(8) ~ r ~ b(~) and b(h) 

and T= T(8) = Nb(8)/y + (N - I ) (m + I ), where N is the smallest positive integer 

with a(e) + Nd ~ b(6). To prove 

V(t) 
 to + T, (5) first we prove 



Delay differential equations with piecewise constant arguments 25 

V(t ) 

~ y' 
If a(8) + (N - 1)d 

V(t) ~ b(~) on I(to' oo) implies 

p(V(t)) > V(t) + d > a(8) + Nd ~ b(~) > V([t - i], x([t - i])) (O ~ i ~ m) 

for to ~ t ~ to + b(~)/y. Thus from (4) we have 

b (~) 

V(1)(t, x(t), x([t]),...,x([t - m])) ~ - c(lx(t)j) ~ - y, to ~ t ~ to + ' 
y
 

which implies 

V(t) ~ V(to) ~ (t ~ to)V 

But this yields a contradiction V(t2) 

Next we prove 

V(t) 

~ y' 
If (7) is false, then we have V(t3) > a(8) + (N - 1)d for some t3 ~ to + b(~)/y. Then 

from (6), there exists a t4 e(tl' t3) such that V(t4) = a(8) + (N - 1)d and D+V(t4) 

= Iim sup {V(t4 + T) L 'V(t4)}/T ~ O. On the other hand, b(Ix(t4)D ~ V(t4) = a(8) 

*+0+ 
+ (N - 1)d ~~ a(8) > b(h) implies lx(t4)1 > h and p(V(t4)) > V(t4) + d = a(e) + Nd 
~ b(~) > V([t4 - i]) (o ~ i ~ m). Therefore from (4) we obtain ~(1)(t4, x(t4),..., 

x([t4 - m])) ~ - c(Ix(t4)D ~ - y 

holds. 

Finally we prove (5). If N = 1, then (7) implies (5). Suppose that N ~ 2. By 

repeating the same arguments as in the proof of (6), from (7) we have V(t5) ~ a(8) 

+ (N - 2)d for some t5 e [to + b(~)/y + m + 1, to + 2b(6)/y + m + I]. By repeatmg 

this procedure, we obtain V(t) ~ a(8) + (N - j)d for t ~ to + jb(~)/y + (j - 1)(m + 1) 

(1 ~ j ~ N), and consequently, we have (5). Thus the zero solution of Equation (1) 

is uniformly asymptotically stable 

EXAMPLE 2. Consider a scalar equation 

~(t) = -f(x(t)) + cg(x([t])), (8) 
where f, g : R -> R are continuous and increasing functions, xf(x) > O for x ~ O, 

l9(x)1 ~ min { If(x)1, If(- x)I} on R, and c is a constant. For a Liapunov functron 

V(x) = x2/2 on R, we have 
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V(8)(x y) = - (f(x) - cg(y))x, 

which together with Theorems 2 and 3 implies 

COROLLARY 1. Under the above assumptions, the zero solution of Equation 
(8) is 

( i ) uniformly stable if I cl ~ 1,' and 

(ii) uniformly asymptotically stable if I c I 

S 4. Osci~lation of solutions of llinear equatioms 

In [1], oscillation of solutions of the linear delay differential equation with a 

precwrse constant argument 

~(t) + a(t)x(t) + b(t)x([t - I]) = O (9) 

is discussed, where a(t), b(t) : I -> R are continuous functions. For any 'positive 

p+1 t p = a(s)ds dt b (t) exp integer p, Iet D 

p-1 

DEFlNITION 5. A function x(t) : [to ' co) -> R is oscillatory if x(t) has an arbitrary 

large zero point 

In [1], the following two theorems are proved. These theorems give sufficient 

conditions for oscillation of all solutions of Equation (9) 

THEOREM 5 (Aftabizadeh-Wiener-Xu). Suppose that b(t) > O on I and 

lim supDp > 1. (10) p*" 

Then Equation (9) has oscillatory solutions only 

THEOREM 6 (Aftabizadeh-Wiener-Xu) . Suppose that 

p+1 p+1 lim inf exp a(s)ds lim mf b(t) exp a(s)ds dt > ~ (11) 

p~" p P+" p Then Equation (9) has oscillatory solutions only 

For Equation (9), consider a linear equation with a more general form 

~ 
x(t) + a(t)x(t) + ~ b (t)x([t - i]) = O, (12) 

i=1 

where a(t), bi(t) (1 ~~ i ~ m) : I -> R are continuous functions, and m ~ 2 is an integer 
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, p+ 1 

For any integer i (1 ~ i ~ m) and p ~ m, Iet Di,P = bi(t) exp a(s)ds dt 

Corresponding to Theorem 5, first we obtain P~1 

THEOREM 7. Suppose that for any integer i (1 ~ i ~ m). Di.P~O for all 
sufficiently large p and that 

~ 
lipm+1~nfD1,p + Iimsup ~ Di P > 1. (13) 

P~" i=1 ' 

Then Equation (12) has oscillatory solutions only 

Proof. For any integer k ~ O. Equation (12) reduces to x(t) + a(t)x(t) 

~ + ~ bi(t)x(k - i)-=.O for t e [k k + 1) which grves 

i=1 

~ 
x(k + 1)exp a(s)ds = x(k) - ~ x(k - l) b (t) exp a(s)ds dt. (14) 

i=1 

Suppose that Equation (12) has an eventually positive solution x(t). Then for some 

T, x(t) > O for t > T and for any integer i (1 ~ i ~ m), Di,P ~ O for p > T. For any 

integer p ~ [T] + 2m + 1, Iet yp = x(p) exp a(s)ds /x(p - 1). Now the facts 

that x(p -j - 1) > O (2 ~ j ~ 2m) and Di.P ~ O (1 ~ i ~ m) and (14) with k = p 

- m,...,p - I imply 

x(p)exp a(s)ds ~ x(p - i), I ~ i ~ m. 
P-i 

~ 
From this and (14) with k = p, we have yp+1 + ~ Di,P ~ 1. This implies 

i=1 

~ 
y* + Iim sup ~ Di P ~ 1, . (15) 

P~" i=1 ' 

where y* = Iipm+1~nfyp. On the other hand, (14) with k = p and the fact that Di,P~O 

(2 ~ i ~ m) give D1,p ~ yp. From this, we obtain lipm*1~nfDl,p ~ y*' which together 

with (15) imply 

~ lipm_1~nfD1,p + Iimsup ~ Di,P ~ 1. 

P+" i=1 

This contradicts to Assumption (13). Thus Equation (12) cannot have an eventually 

positive solutron. It is easy to see that the case of eventually negative solution is 

reduced to the above case. Hence Equation (12) has oscillatory solutions only 
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If bi(t) ~: O for any integer i with 2 ~ i ~ m, then Equation (9) becomes a special 

case of Equation (12) by replacing bl(t) by b(t). From Theorem 7, for Equation (9) 

we have : 

COROLLARY 2. Suppose that Dp ~ O for all sufficiently l~rge p and 

lim infDp + Iim sup Dp > 1. (16) 
p~* p+" 

Then Equation (9) has oscillatory solutions only 

REMARK. Under the assumptions in Theorem 5, Condition (10) implies 
Condition (16) . Actually, it is easy' to show that Corollary 2 is= an improvement of 

Theorem 5. Let oc and p be numbers such that O 

 1, and let a(t) and b(t) be periodic continuous functions on I with periods I and 2 

respectively, and D I = oc and D2= p. Then we have lipm_ 1~nfDp=0c and lim sup Dp = p. 

Thus a(t) and b(t) do not satisfy Condition (10), though they satisfy Condition (16) 

Moreover, since all assumptions in Corollary 2 are satisfied under the assumptions 

in Theotem 5, Corollary 2 rs an improvement of Theorem 5 

Next, corresponding to Theorem 6 we have 

THEOREM 8. Suppose that for any integer i (~ ~ i ~ m), Di,p~O for all 

sufficiently large p and that 

1
 

lipm*1~nfDl,p> . (17) ~
 

Then Equation (12) has oscillatory solutions only 

PRooF. Suppose that Equation (12) has an eventually positive solution x(t), 

and that for some T, x(t) > O for t > T and for any integer i (2 ~ i ~ m), Di.P ~ O 

for p > T. For any integer p ~ [T] + m + 1, Iet yp = x(p)exp a(s) ds lx(p - 1) 

Then from (14) with k = p, we obtain P~1 

D1,p + ypyp+1 ~ yp. (18) 
Since we have Dl,p > O for all sufficiently large p from Assumption (17), (18) implies 

yp+1 
p~* 

lipm+1~nfDl,p + y~ ~ y*' 

which contradicts to Assumption (17). Thus Equation (12) cannot have an 
eventually positive solution. The'case of an eventually negative solution is reduced 
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to the above case. Hence Equation (12) has oscillatory solutions only 

By taking b(t) E bl(t) and bi(t) 3 O (2 ~ i ~ m), from Theorem 8 we have 

COROLLARY 3. ' Suppose that 

1
 

lim infDp > . (19) ~
 p+~ 

Then Equation (9) has oscillatory solutions only. 

Condition (11) in Theorem 6 is a pretty sharp condition. In fact, it is shown in 

[1] that if a(t) and b(t) are constant functions, then Condition (11) is necessary and 

sufficient in order that all solutions of Equation (9) are oscillatory. On the other 

hand, Condition (11) implies Condition (19). Actually, it is easy to show that 

Corollary 3 is an improvement of Theorem 6. Let c( and p be numbers with O 

~ 1/2 and 1/4 

wrth penods 2 a(s)ds O exp a(s)ds = oc, and Dp = P for any positive integer 

p. Then we have lim infexp a(s)ds oc and lim mf b(t) exp a(s)ds dt 

=1im infDp = p. Thus a(t) and b(t) do not satisfy Condition (11), though they satisfy 
p~* 

Condition (19). Hence Corollary 3 is an improvement of Theorem 6 

Finally we show the independence of Theorems 7 and 8. For a(t) and b(t) in 

Remark, take bl(t) E b(t) and bi(t) (2 ~ i ~ m) such that for any integer i (2 ~ i ~ m), 

Di,p=0 for all sufficiently large p. Then a(t) and bi(t) (1 ~ i ~ m) satisfy Condition 

(13), while they do not satisfy Condition (17), and hence, Theorem 7 is applicable to 

Equation (12) with these a(t) and bi(t) (1 ~ i ~ m), while Theorem 8 is not. On the 

other hand, Iet a(t) and b(t) be periodic continuous functions on I with periods I and 

1/4 

(2 ~ i ~ m), Di,p = O for all sufficiently large p. Then these a(t) and bi(t) (1 ~ i ~ m) 

satisfy Condition (17), while they do not satisfy Condition (13). Thus Theorem 8 is 

applicable to Equation (12) with these a(t) and bi(t) (1 ~ i ~ m), while Theorem 7 is 

not. The independence of Corollaries 2 and 3 is obvious from the above examples 

constructed to show the independence of Theorems 7 and 8 
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