島根大学地質学研究報告 **4**. 61~ 68ページ (1985年 6 月) Geol, Rept. Shimane Univ., **4**. p. 61~ 68 (1985)

岡山県勝山町南部の緑色片岩について

佐 野 栄*

Greenschists of the Sangun Metamorphic Terrane in the southern Katsuyama District, Okayama Prefecture.

Sakae SANO

はじめに

岡山県北西部の勝山町~北房町には、比較的広い地 域にわたり三郡変成岩類が分布する. この地域につい てはHASHIMOTO(1968)により詳細な研究報告がな されており、東西に延びる背斜軸を中心にその南北の 両翼に緑色片岩が整合一連に重なり,背斜軸部から両 翼に向かい変成度が低下すると考えられている。そし て、背斜軸部は緑色片岩相 (Zone III),外側に向かう につれ, 藍閃片岩相の帯 (Zone II と Zone II'), パン ペリー石-緑泥石帯(Zone I)と三帯に分けられる. また, 西村ほか (1981) は, HASHIMOTO (1968) の南 翼にあたる北房町地域の三郡変成岩類の研究を行ない, 再結晶作用の進んだ結晶片岩類が WNW-ESE の走向 を持ち、南に50°~60°傾斜する単斜構造を示し、見か け上の下位から上位に向って,塩基性片岩層,泥質片 岩層,塩基性片岩と泥質片岩の互層が累重するとして いる.しかし、筆者によるこれまでの野外調査の結果 は,必ずしも緑色片岩と周囲の泥質片岩との構造関係 は整合的ではないことを示し、また、化学組成につい ても一括して"塩基性"としては扱い難いことが示さ れた(佐野1984 MS,小林,佐野,1984).本稿では, この緑色片岩の野外における分布と産状、そして、緑 色片岩の原岩についての検討を行なう.

緑色片岩の分布形態

第1図は、勝山町南部〜北房町の地質図である。本 緑色片岩体は、東西約8km×南北最大2kmと三郡変 成帯中で最も広く分布するものの一つである。この岩 体を取り巻く周囲の結晶片岩は泥質片岩および挾在す る珪質片岩からなり、多くの場合、泥質片岩は珪質部 と雲母質部の2~3mmの細かいリズミカルな互層を呈 している。この泥質片岩は、数 cm オーダーの波長の微 褶曲構造が発達しており、軸の方向はまちまちである。 また、緑色片岩の北側において泥質片岩は、4~5 cm の厚さの珪質片岩を伴うこともある。緑色片岩の南側 には、微褶曲構造の発達しない珪質片岩が分布し、泥 質片岩の薄層を挾む。

これらの泥質および珪質片岩と緑色片岩の関係は次 の通りである。

一見,整合的に見える産状としては次の3つの場合 がある.1)緑色片岩がしだいに雲母質になり,泥質片 岩に接する場合、2)緑色片岩と泥質片岩の間に薄く石 英片岩を挾み,緑色片岩は剝離性に富むようになる場 合、3)泥質片岩は片理が不鮮明な塊状岩となり,緑色 片岩も片理が明瞭でなくなる場合,である.

これに対し,泥質片岩が緑色片岩を取り込むような 関係が見られることもあり,この境界は直線状ではな く,不規則に緑色片岩の構造を横切るようにゆるく曲 がりながら接する(図版 I, a, b).泥質片岩は, 黒色 塊状で境界に近い部分では石英のレンズあるいは脈が 多くなる.緑色片岩もまた塊状であるが,部分的に葉 理構造の発達している所も見い出される.この緑色片 岩の葉理構造は,周囲の泥質片岩により断ち切られて いる(図版 I, c).

緑色片岩の西部のルート図を第2回に示す. 湾曲部 東南側の緑色片岩の片理面は、E-W 方向の走向を示 すのに対し、西北部では、N-S~NWN-SES 方向の 走向を示す.また、この走向の方向は、周囲の泥質お よび珪質片岩の片理面 NE-SW 方向の走向と斜交す る.湾曲部内側の泥質片岩は一般に構造が乱れており、 連続性の悪い珪長質レンズを多く含む.

従来,この緑色片岩は,泥質あるいは珪質片岩と整

^{*} 岡山大学地球内部研究センター(昭和59年島根大学理学部地質 学教室卒業)

第1図 勝山町南部地域の地質図

1.第三紀礫岩層 2.流紋岩質火砕岩類 3.古生層 4-7. 三郡結晶片岩類(4.緑色片 岩 5.珪質片岩 6.珪質片岩を挾在する泥質片岩 7.泥質片岩) 8.変輝緑岩~ハン レイ岩類 9.超塩基性岩類 10.酸性岩岩脈 11.断層 12.背斜軸 13.向斜軸

合一連で重なるとされていたが,緑色片岩の複雑な分 布や,以上のような野外における露頭の観察は,周囲 の岩石との関係が整合的とは考えにくく,むしろ,緑 色片岩がブロックとして周囲の岩石中に存在する可能 性を指示する.

産状および岩石記載

第3図は,岩体南西部別所付近における緑色片岩の 露頭(AO-01)柱状図である。岩相の異なる7サンプ ル(a~g)の薄片を作製した。その代表的岩相を図版 IIに示す。図版II-a あるいはc で明らかなように,緑 色片岩の原岩が溶岩片であれば変成作用を受けてもそ の火成岩組織を残していることを示している.以下に それぞれの記載を行なう.

(AO-01a) 図版 II-c に示されるように, 原岩はガラ ス質の火山岩片を含む火山砕屑性砂岩~シルト質岩で ある.火山岩片は数 mm の径をもつ不規則な形を示す 小さなものや, 10×15 mm 程のものが見い出される. 最大数 cm 程の火山岩片も見られる.火山岩片の石基 部は,単ニコルにおいて,極めて細粒で汚染された暗 褐色部が多い.なかに, 微細針状~長柱状斜長石 (曹 長石)も含まれている.一般に,杏仁孔が発達し,そ

第2図 則実付近のルートマップ 緑色片岩は不規則な分布を示す.1.緑色片岩 2.泥質片岩 3.珪質片岩

の内部は曹長石により充填される.斑晶は見られない. 石基全体に不規則に珪長質脈が入る.火山岩片は,そ の周囲の基質のような片状構造を示さず,杏仁孔は片 状構造に平行に引き延ばされているものが多い.基質 部は,細粒の石英あるいは曹長石と緑レン石により占 められ,定向配列したアクチノ閃石,白色雲母により 片理を形成している.両相の境界は明瞭である.

(AO-01b) 原岩は,火山砕屑性角レキ岩. 図版 IIdにその岩片部を示す. 岩片は,紡錐型を呈し,大きさ は約5×8 cm である. 岩片の石基は, 微細な長柱状 の斜長石が放射状に発達している. 斑晶は方向性をも たず,その多くは,0.1~0.5 mm 程度の単斜輝石から なる.まれに,単斜輝石の自形結晶も見い出される. 石基中を珪長質細脈が不規則に入る.火山岩の組織は 一般によく残されている. (AO-01c) 原岩は、火山岩片を含む火山砕屑性砂岩 と推定される。火山岩片は、ガラス質石基中に微細長 柱状の斜長石が見い出され、斑晶は見られない。石基 中には、不規則形を呈する不透明鉱物が多く含まれ、 これは、岩片を含む基質の片理方向に比較的調和的に 細長く配列する。この岩片は鏡下において1mm 程の 小さなものが数多く基質中に見られるが野外において は、10数 cm 程の紡錐型のものも見いだされる。

(AO-01d) 原岩は、火山砕屑性砂岩あるいはシルト 岩と推定される。図版II-eにおいては主に、細粒の緑 レン石と石英あるいは曹長石から成り、その量比ある いは粒径の相違により色調の違う縞状構造が認められ る.

(AO-01e) 火山砕屑性砂岩が原岩と推定され,主 に,細粒の緑レン石と石英あるいは曹長石から構成さ

63

れ,まれに0.2~1mmの残留単斜輝石が散在する。 また,残留鉱物としてクローム鉄鉱の自形結晶が見い だされる.

(AO-01f) 火山砕屑性シルト岩あるいは泥岩が原岩 と思われ、野外において灰~青緑色を呈する。白色雲 母が非常に多くその間を緑レン石が充填する。雲母の 多い葉理と珪長質な葉理に分かれる部分も見られ、雲 母の多い葉理は雲母の産状に変化があり放射状に集 合している部分や繊維状の部分も見られる。(図版 II-f).

(AO-01g) 原岩は、火山岩片を含む火山砕屑岩と 推定され、野外では流理様構造が発達する.これは、火 山岩片がレンズ状に引き延ばされて形成されたものと 思われる。岩片の石基は、ガラス質で、斜長石が長柱 状斑晶として認められる。また、火山岩片を包含する 基質は細粒緑レン石が多い。

以上のように, 露頭 AO-01 において緑色片岩はい くつかのユニットに区分することが可能といえる. 同様にして、比較的条件の良い露頭 AM-01, AM-03, AM-04, AN-01についても柱状図の作製を行なった. (第4図). AM-01では、緑色片岩は原岩が火山砕屑性 砂岩あるいはシルト岩であり、その粒度の違いにより それぞれのユニットに分割される.そして、各々のユ ニットは鏡下において鉱物組み合わせに若干の相違も 見いだされている.また、AN-01においては、雲母質 緑色片岩が細かいラミナ状を呈してくり返されている.

このような岩相の累重関係は、三波川帯四国中央部 において KAWACHI et al., (1982) により明らかにさ れており、再移動されたハイアロクラスタイトの堆積 の様子を示すものとされ、物質供給地が議論された.

本地域で認められた前述の4つの露頭においても緑 色片岩は同じようにいくつかのユニットに区分でき、 それらの積み重なりが認められた。そしてその原岩の 多くは、岩片として溶岩を包含する場合があるが、本 来は、火山砕屑性堆積岩であることがうかがえる。 (図版II-a, b).

64

凡例は第3図と同じ

このように、広範にわたる緑色片岩体を構成する岩 石の多くは海底に堆積した火山性物質を源岩とする堆 積岩(火山砕屑性堆積岩)であることを示し、それら が一回ではなく数回のユニットの積み重なりから形成 されていることを示している。

化学組成

緑色片岩中の14地点,17個のサンプルの分析値は, 第1表に示される。分析に使用した試料は、loss of ignition を除いた無水試料を用い,小林ほか(1981) に従い,螢光X線分析装置(JSX-60S7)により測定 を行なった。但し試料と融剤の比は1:5にしてある。

SiO₂量は、47-56 wt% で52 wt%以上の値を示す ものが半数存在する.つまり、緑色片岩は一概に塩基 性岩であるとはいいがたい。また、SiO₂量とアルカリ 量(Na₂O+K₂O)の関係を第5 図-a に示す。総アルカ リ量はSiO₂量に無関係に4-6 wt%の間にプロット される。第5 図-b において、K₂O/Na₂O は非常にバラ ツキが多い。これはK₂O が容易に移動しやすく、その ため二次的に増加し、そして、その程度の違いにより バラツキが生じたものと思われる。

第1表 全岩化学組成值

	P-04	032504	032510	100802	AO-01g	H-09	C-24	AO-01d	AO-01a
SiO2 TiO2 Al2O3 FeO HnO NgO CaO Na2O K2O P2O5	55.593.2315.850.119.300.124.285.262.013.320.71	54.51 2.62 17.37 3.63 5.26 0.07 4.99 6.06 2.98 2.35 0.52	$54.99 \\ 1.95 \\ 11.75 \\ 4.58 \\ 4.50 \\ 0.11 \\ 10.30 \\ 7.31 \\ 3.02 \\ 1.05 \\ 0.38 $	$\begin{array}{c} 47.00\\ 2.76\\ 15.63\\ 9.35\\ 4.06\\ 0.20\\ 12.33\\ 4.87\\ 2.23\\ 1.69\\ 0.39 \end{array}$	52.80 2.25 14.24 6.41 4.62 0.16 8.06 7.37 3.29 1.10 0.38	50.342.3514.853.326.570.149.598.622.132.150.41	$\begin{array}{c} 48.17\\ 2.17\\ 11.33\\ 5.60\\ 5.69\\ 0.16\\ 16.27\\ 7.79\\ 0.00\\ 2.51\\ 0.34 \end{array}$	53.473.0516.175.494.030.094.607.814.040.580.69	52.292.1714.594.885.420.148.526.433.241.500.36
Total	99.78	100.36	99.94	100.51	100.68	100.47	100.03	100.02	99.54
Si02 Ti02 A1203 Fe0 Mn0 Mg0 Ca0 Na20 K20 P205 Total	U-25 52.76 2.62 16.01 4.15 5.79 0.13 5.27 8.59 3.21 0.51 0.52	X-09 54.57 2.09 12.50 4.75 5.13 0.17 8.19 7.64 3.74 0.53 0.32	AO-01e 50.49 2.92 14.95 5.93 5.09 0.16 7.72 7.07 3.90 0.86 0.67	AB-14M 49.38 2.64 15.72 4.06 6.80 0.09 8.02 7.85 3.23 1.10 0.52	AC-02 53.14 2.25 13.66 4.00 6.10 0.12 8.93 7.58 3.21 1.05 0.60	AC-32 47.89 2.92 15.65 4.90 6.62 0.36 8.40 7.87 1.74 2.40 0.57	AD-05 52.98 2.46 15.00 2.11 7.81 0.11 8.56 5.30 4.42 0.25 0.49	AL-23 51.47 2.65 15.27 3.42 8.22 0.23 5.61 7.65 4.24 0.56 0.54	
rotal	99.56	99.63	99.76	99.41	100.64	99.32	99.49	99.86	

第5図 a) SiO₂-(Na₂O+K₂O)図 b) SiO₂-(K₂O/Na₂O)図 図中の実線は MACDONALD & KATSURA (1964) によるアルカリ岩と非アルカリ岩の 境界

	Chromite	Cr-diops	side	Ti-augite	
SiO2	0.13	51.04	51.26	47.65	46.85
A1203	14.23	3.07	3.30	5.30	6.33
TiO2	3.14	0.83	0.87	2.91	3.84
Cr203	37.83	0.98	0.88	0.03	0.09
FeO	34.26	4.84	5.36	9.06	9.28
MnO	0.50	0.14	0.19	0.15	0.14
MaQ	9.63	16.03	15.93	12.42	12.10
CaO	0.00	20.94	21.15	21.88	21.97
Na2O	0.00	0.46	0.47	0.48	0.51
Total	99.72	98.33	99.41	99.88	101.11

第2表 残留鉱物の化学組成

FeO*は全鉄量を FeO とした値

緑色片岩の鏡下における観察では、白色雲母が一般 的に産出する。全岩化学組成における4-6 wt% にな らされた分布を示す総アルカリ量の値,または、K₂O/ Na₂Oの値のバラツキは、主としてこの白色雲母の生 成に帰因する。

第2表に残留鉱物の分析値を示す。特徴的なものと して、クローム鉄鉱、クローム単斜輝石、チタン質普 通輝石が見られる。クローム鉄鉱は、矩形の自形結晶 を示すものが多く、結晶の周囲には白色雲母や緑泥石 が生成し、これらの変成鉱物にもクロームが含まれて いる。クローム鉄鉱中には TiO₂ が約3 wt% 含まれて いる。クローム単斜輝石は、Cr₂O₃ が 0.8 wt% 含まれ、 まれに産出する。チタン質普通輝石は、鏡下において X'=淡褐色、Z'=淡褐~淡紫色の多色性を示す。これ らの残留鉱物の起源は塩基性火成岩が推定される。

しかしながら、全岩化学組成値は必ずしも塩基性を 示さず、またSiO2に乏しいものの中にK2Oにかなり 富むものがある.この矛盾は緑色片岩の起源を塩基性 火成活動に関連する砕屑物中に細粒粘土質物質やより 酸性の火山岩が関与したと考えることにより解決され うる.海水との反応によるK2Oの増加やあるいは、海 底における風化や変質等の諸元素の選択的な溶脱によ りSiO2等の変化があり、第1表のような全岩化学組 成値を示すものと思われる.このことは、野外の産状 や鏡下の観察における緑色片岩の起源が火山噴出物に 由来する堆積岩であるという結果と矛盾しない.

まとめ

勝山町南部から北房町に広範に分布する緑色片岩は, その野外における分布あるいは露頭オーダーの観察か ら周囲の泥質あるいは珪質片岩と整合一連ではなく不 規則な形を呈してブロック状に入り込んでいるものと 思われる.

また、緑色片岩の原岩は、鏡下の観察により多くは 火山砕屑性堆積岩であり、部分的に小岩片として溶岩 を包含する.この緑色片岩の原岩である火山砕屑性堆 積岩は野外において数 cm~数 m のオーダーのユニッ トの積み重なりから形成されていることが明らかとな った。残留鉱物により、この火山砕屑性堆積岩の起源 に塩基性火成活動が関与していたことはまちがいない が全岩化学組成は必ずしも塩基性を示さない。従来か ら本地域では、一般に緑色片岩は塩基性片岩として取 り扱って来ていることには問題があるものと思われる.

辞

謝

文

本研究は島根大学 59 年度卒業論文として開始され た.卒業論文作成において島根大学地質学教室の小林 英夫教授,渡辺暉夫博士に御指導,御教示いただいた. 螢光 X線分析については飯泉滋助教授に御指導いただ いた.また,渡辺暉夫博士には草稿を読んでいただいた. 以上の方々に厚く御礼申し上げます.

献

- HASHIMOTO M., 1968: Glaucophanitic metamorphism of the Katsuyama district, Okayama Prefecture, Japan. J.Fac.Sci., Univ.Tokyo, Section II, 17, 99-162.
- KAWACHI Y., T.WATANABE and C.A.LANDIS, 1982: Origin of mafic volcanogenic schists and related rocks in the Sambagawa belt, Japan. J.Geol.Soc. Japan. Vol. 88, No. 10, 797-817.
- 小林英夫,渡辺暉夫,飯泉 滋,1981: 珪酸塩岩石主 成分元素の螢光 X 線による全自動分析. 島根大学理 学部紀要,15,115-124.

- 小林英夫, 佐野 栄, 1984: 岡山県勝山町, 北房町境 界に分布する緑色片岩類の全岩化学組成、内帯高圧 変成帯総研連絡紙 No. 2, 10.
- MACDONALD G.A. and T.KATSURA, 1964: Chemical 佐野 栄, 1984: 岡山県勝山町南部の三郡変成岩類の composition of Hawaiian lavas. J. Petrol., 5, 82 - 133.
- 西村祐二郎, 原 郁夫, 早坂康隆, 武田賢治, 1981: 夜久野岩類の構造地質学,中生代造構作用の研究, 3, 199-213.
 - 地質学的岩石学的研究,島根大学卒業論文(手記).

図 版 説 明

図版 I

- a:緑色片岩と泥質片岩の境界. GS:緑色片岩. PS:泥質片岩.
- ь: " (スケールは 50 円硬貨)
- c:境界部の拡大写真。

図版II 緑色片岩の産状.

- a:火山岩片(紡錐型部)を含む緑色片岩.
- b:推定原岩が火山砕屑性堆積岩である緑色片岩(AM-01)。
- c:小さな火山岩片を含む緑色片岩の組織(クロスニコル).
- d: 火成岩の組織を残す緑色片岩. 上半分は集斑状組織を示す単斜輝石斑晶(クロ スニコル)
- e:原岩が火山砕屑性砂岩と推定される緑色片岩の組織(クロスニコル).
- f: 原岩が火山砕屑性シルト~泥質岩と推定される緑色片岩の組織(クロスニコル)

a

С

栄

