# 深成岩中のアクチノ閃石 - ホルンブレンド連晶とその再平衡

山口佳昭\*

Note on actinolite-hornblende intergrowth and it's subsolidus reequilibration in a plutonic rock

Yoshiaki YAMAGUCHI

#### はじめに

マグマ作用における角閃石の結晶作用経路は、これ までのところ、輝石や長石に比べて充分に解明されて いない。これは、角閃石が多成分系の複雑な固溶体鉱 物であることにもよるが,他方で,その結晶作用経路 が輝石や長石のようにソルバスによって支配される事 実がほとんど知られていないことによっている.これ までに、変成岩ではホルンブレンドがカミングトン閃 石とアクチノ閃石に対してそれぞれ不混和を示す事 実が知られている (SHIDO and MIYASHIRO, 1959; ROSS et al., 1969; KLEIN, 1969; COOPER and LOVERING, 1970; TAGIRI, 1977; YAMAGUCHI et al., 1983). 最近, 筆者は山口県須佐の高山カルクー アルカリ貫入岩体の石英閃緑岩中にアクチノ閃石-ホ ルンブレンドの連晶を見出して、この岩石中の角閃石 の結晶作用についてくわしい報告を投稿中である。こ こでは、その連晶と再平衡組織の記載にもとづいて角 関石の結晶作用におけるソルバスのもつ意義を検討す る.

#### 角閃石の産状と化学組成

高山カルクーアルカリ貫入岩体は中新世前~中期の 須佐層群中に貫入し、これに接触変成作用を与えてお り(SUZUKI and NISHIMURA、1983)、その黒雲母 K-Ar 固結年代は11Ma とされている(西村ほか、1982). この岩体はカンラン石ハンレイ岩、斜長岩、斜長岩質 ハンレイ岩、石英ハンレイ岩、石英閃緑岩およびアプ ライトからなり、層状構造はまれで、岩相変化はおよ そ連続的である(YAMAZAKI、1967; YAMAGUCHI et al., 1974).石英閃緑岩は一般に岩体の最上部および周 縁部に分布しており、ここで述べる角閃石連晶を含む 岩石標本は高山岬西岸の丸瀬の鼻で採集した.

この岩石では、早期に晶出した自形の斜長石(中核 部:Anss)と自形~半自形の斜方および単斜輝石がモ ード組成で約70%を占めており、その粒間を後期に晶 出した石英、カリ長石、角閃石および酸化物が埋めて いる。両輝石と角閃石の境界では角閃石は融食されて おり、角閃石晶出のはじめの段階では残液と輝石との 反応関係がみられる。

はじめに晶出した角閃石は淡緑色の hornblende ~ actinolitic hornblende 組成のホルンブレンドであり、 しばしばカミングトン閃石と連晶している。第1表, 第1図および第2図にその化学組成を示す。ここでは、 全 Fe を Fe<sup>2+</sup> とし、O = 23 として角閃石の構造式を計 算した. STOUT (1972) による Fe<sup>3+</sup>/(Fe<sup>3+</sup>+Fe<sup>2+</sup>) の再計算はここでは用いていない。この方法による と、一般に、角閃石の M4 サイト中の  $\mathbb{R}^{2+}$  イオン ( $\mathbb{R}^{2+}$ =  $Fe^{2+} + Mg + Mn$ )の含量が人為的に操作され、カミ ングトン閃石成分を無視する結果になるので、この場 合には適当ではない。カミングトン閃石と共存する Ca 角閃石の M4 サイトには一般に R<sup>2+</sup> イオンが含まれて いる。その含量はカミングトン閃石成分の固溶の程度 をあらわす目安であり, 生成温度によく依存して高温 になるほど増加する (Ross et al., 1969). このため に、ここでは角閃石の組成変化を相対的にあらわす目 的から、 ${}_{\rm Fe}$   ${}_{\rm Fe}$   ${}_{\rm Fe}$   ${}_{\rm Fe}$   ${}_{\rm C}$   ${}_{\rm C}$ 

淡緑色ホルンブレンドは、第1図に示すように、 M4サイト中の R<sup>2+</sup> 含量を減らしながらアクチノ閃石に 向かって組成変化している。こうして生じたアクチノ 閃石に近い組成をもつ周縁部ではこの Ca角閃石はカミ ングトン閃石との共存関係をやめて、次に述べるよう

<sup>\*</sup> 島根大学理学部地質学教室

に, Fe 含量の高い緑色ホルンブレンドと連晶している.

#### 第1表 角閃石の構造式

|                                     | h     | 1     | 2     | 3     | 4     |
|-------------------------------------|-------|-------|-------|-------|-------|
| Si                                  | 7.235 | 7.504 | 7.527 | 6.931 | 7.284 |
| AI                                  | 0.765 | 0.496 | 0.473 | 1.069 | 0.716 |
| AI                                  | 0.084 | 0.064 | 0.088 | 0.391 | 0.290 |
| Ti                                  | 0.039 | 0.002 | 0.001 | 0.002 | 0.002 |
| Fe                                  | 2.432 | 2.120 | 2.091 | 2.689 | 2.676 |
| Mn                                  | 0.049 | 0.046 | 0.059 | 0.055 | 0.054 |
| Mg                                  | 2.870 | 3.043 | 3.018 | 2.087 | 2.155 |
| Σ <sub>Al</sub> <sup>VI</sup> to Mg | 5.474 | 5.275 | 5.257 | 5.224 | 5.177 |
| $R^{2+}$ in M(4)                    | 0.474 | 0.275 | 0.257 | 0.224 | 0.177 |
| Ca                                  | 1.671 | 1.867 | 1.864 | 1.959 | 1.945 |
| Na                                  | 0.242 | 0.120 | 0.113 | 0.232 | 0.141 |
| К                                   | 0.074 | 0.025 | 0.027 | 0.074 | 0.038 |
|                                     |       |       |       |       |       |

h:カミングトン閃石と共存するホルンブレンド 1-4:連晶する2相のCa角閃石(1-2:淡緑 色角閃石,3-4:緑色角閃石).1-4の分析点 は第4図中に示す.



第1図 角閃石の R<sup>2+</sup> in M(4)-Al<sup>1V</sup> 組成

h (白正方形):カミングトン閃石と共存するホル ンブレンド, c (黒正方形):カミングトン閃石, 1-4:連晶する2相のCa角閃石(1-4の記号 は第1表中と同じ).

#### アクチノ閃石-ホルンブレンドの連晶

第3図および第4図にこの2相のCa 角閃石の連晶の 反射電子像を示す.像の観察には JXA-50Aマイク ロアナライザーを用いて、加速電圧 25 KV. 試料電流 0.02 µA の条件下で行った.ここでは、淡緑色角閃石 は暗い(平均原子番号が小さい)そして緑色ホルンブ レンドは明るい(平均原子番号が大きい)領域として 明瞭に識別され、それらの境界は化学的にシャープで ある。第5図に両角閃石の境界付近での Ca, Si および Al 含量のマイクロプローブ (ビーム径:1.5 µm) によ る組成プロファイルを示す.ここで、両角閃石の Ca 含 量はほとんど違わない。しかし、Si は淡緑色角閃石か ら緑色ホルンブレンドへ急激に減少し、また、Al はそ れと逆のプロファイルを示している。第4 図中に印し た1→4の点で分析した角閃石の化学組成を第1表, 第1図および第2図中に示す。これらの結果より、淡 緑色ホルンブレンドは actinolite~actinolitic hornblend であり、緑色ホルンブレンドは ferro-actinolitic hornblende ~ ferro-hornblende である (LEAKE (1978)の分類による)

分析点1→4のうち、境界に隣接した2点(2と3) の間では両角閃石の組成ギャップが1と4におけるよ りも大きい.このことは第5図のSiとAlの組成プロ ファイル上でも明瞭である.これは、マグマから晶出 した後の冷却過程で2相境界を通じる固体内拡散によ



第2図 角閃石の Fe/(Fe+Mg)-Al<sup>1V</sup> 組成
 記号は第1図中と全て同じ。



50um

第3図 Ca角閃石連晶の反射電子像 A:淡緑色角閃石 H:緑色角閃石 P:斜長石 B:黒雲母

ってサブソリダス下のソルバスに沿って組成ギャップ が拡大された結果と考えられる.したがって、マグマ から晶出した時の両角閃石の化学組成は、それぞれ1 と4の分析値に近いものと考えられる.ここでは、 Al<sup>1V</sup>のギャップはあまり大きくないが、淡緑色ホルン ブレンドに比べて緑色ホルンブレンドへの Fe の濃集が 著しい.TAGIRI (1977) は変成岩中に共存する 2つ の Ca 角閃石間においてはアクチノ閃石に比べてホルン



第5図 連晶するCa角閃石の2相境界付近の化 学組成プロファイル・1-4は第3図中 の分析点に対応している.



第4図 第3図の拡大像 1-4:連晶するCa角閃石の分析点を示す.

ブレンドの Fe/(Fe+Mg) が大きいことを総括的に示 した. この性質は、マグマ作用において比較的高温の ために  $Al^{1v}$ のギャップが小さい領域でも引きつがれる と考えられる.

ここで分析した両角閃石の境界はほぼ(101)に近い平 面である。 変成岩において、1 相の角閃石がサブソリダ ス下の条件で分相して結晶内再結晶 (intra-granular recrystallization) した結果, 2相の角閃石が(101) 境界面で接して共存する例が知られている (Ross et al., 1969). その場合の連晶は、はじめに多量に離溶 した(101)角閃石ラメラの一部が寄り集まることに よって形成される。しかし、この石英閃緑岩の Ca角 閃石の連晶は、こうした結晶内再結晶によって形成さ れたとは考え難い. すなわち, 1)ここには離溶ラメラ は見出されない。2)2相の境界は(101)に平行な面だ けではない(第3図).3)この岩石は変成作用を受け ていない。だから、この角閃石連晶はマグマ作用の後 期に結晶粒間の残液マグマから晶出したことは否定 し難い. 先に述べたように, 両角閃石は固結後に局所 的に再平衡されているが、それはせいぜい境界付近の 10~20 µm の範囲に限られている.

### 論

討

マグマの残液から2相のCa角閃石が共存して晶出す るための条件についてここで考える.OBA(1980)は合成

実験によって、Ca2Mg5Si8O22(OH)2-NaCa2Mg4Al3Si6O22 (OH)2系における Ca角閃石のソルバスの存在を確証 した.この実験はこの純粋な二成分系におけるソルバ スの頂上が PH2O =1 Kbar 下で 825°C まで拡張している ことを示した。また、実験によれば、このソルバスは 圧力が増加することによってもまたこの系に Fe が加わ ることによっても低温側へ著しく縮小する.実際に、天 然の変成岩中の Ca 角閃石の二相領域の頂上について推 定された温度は 500~700°C の範囲にある (HIETANEN, 1974; MISCH and RICE, 1975; SPEAR, 1980). -方,高山貫入岩体が貫入している須佐層群の埋没量は 小さく (岡本, 1974), この岩体の固結化はせいぜい 1.5 Kbar 以下の低圧下で進行したであろう. だからソ ルバスの縮小は広域変成作用におけるよりもずっと小さ かったと言えよう.このために、結晶粒間の残液の PH<sub>2</sub>O が増大して固相線温度が大きく低下すれば固相線 がソルバスに交叉することは可能であろう。また、粒 間の残液にHF, NaFやLiO2などの濃度が増したと すれば、当然に固相線温度の低下を助けたであろう (JAHNS and BURNHAM, 1958; WYLLIE and TUTTLE, 1961).

次に、このような Ca角閃石の2相共存をもたらせ た角閃石結晶作用の特徴を考察する。この岩石では、 最初に晶出したホルンブレンドはカミングトン閃石と 共存しており,カミングトン閃石成分を多く固溶して いる(第1図). その後の結晶作用の過程で、ホルン ブレンドはこの成分を減少させてカミングトン閃石と の共存をやめてアクチノ閃石組成に向かって組成変化 する. この時はまだ Ca角閃石のソルバスに接していな いので、ソルバスを越えて連続的にアクチノ閃石に近 づく (hypersolvus crystallization). 2相の Ca 角閃 石の連晶は、その後にソリダス温度がさらに降下し てソルバスと交叉するに至ってから生成したと考えら れる. ここで注意すべきことは、ホルンブレンド→ア クチノ閃石の組成変化の過程でFe/(Fe+Mg)は増 加せず,むしろ減少していることである(第2図). このような結晶作用経路では、降下してゆくソリダス がCa角閃石のソルバスに交叉するのに都合がよい. このソルバスは Fe/(Fe+Mg) が増加すると著しく 低温側へ縮小するので (OBA, 1980), もしホルンブ レンドの組成変化が Fe の増加する方向へ進めば降下し てゆくソリダスがソルバスに追いつくことは難しい. 高い酸素分圧下で分化するマグマでは、ホルンブレン ドが Fe を減少させながらアクチノ閃石へ向って組成変

化する経路がこれまでに知られている(CZAMANSKE and WONES, 1973; MASON, 1978; CZAMANSKE et al., 1981). 高山貫入岩体の石英閃緑岩では角閃石と 同時に磁鉄鉱が多量に晶出しており,角閃石は高い酸 素分圧化で晶出したと考えられている(YAMAZAKI, 1967). またここで,Feに富んだ緑色ホルンブレンド が連晶するからといって残液マグマの酸素分圧が末期 に減少したと考える必要はない.これは、先に述べた ように、Ca角閃石ソルバスの多成分的性質によると考 えるべきである.

以上の考察から、2相の Ca 角閃石の共存をもたら せた残液マグマの特徴として、1)残液中に水蒸気圧が 著しく増加した。2)結晶作用が低圧下で進行した。 3)酸素分圧が高かった。と言える。これまでのところ、 角閃石の結晶作用におけるソルバスの役割について注 目した研究が少い。今後、マグネタイトシリーズの深 成岩に共存する角閃石のくわしい研究が進められれば、 このような事実が広く見出されると期待される。

この小論をまとめるに際して、これまでに火成岩中 の角閃石について討論していただいた京都大学理学部 地質学鉱物学教室の冨田克敏、沢田順弘、三宅康幸、 島根大学理学部の飯泉滋、渡辺暉夫および小林英夫の 各氏にお礼申上げる.この研究には昭和57年度文部 省科学研究費(研究課題番号57540477)を用いた。

## 文 献

COOPER, A. F. and LOVERING, J. F. (1970)

- Greenschist amphiboles from Haast River, New Zealand. Contrib. Mineral. Petrol., 27, 11-24.
- CZAMANSKE, G. K. and WONES, D. R. (1973)
  Oxidation during magmatic differentiation, Finnmarka Complex, Oslo area, Norway: Part 2, The mafic silicates. J. Petrol., 14, 349-380.
- , ISHIHARA, S. and ATKIN, S. A. (1981) Chemistry of rock-forming minerals of the Cretaceous-Paleogene batholith in southwestern Japan and implications for magma genesis. J. Geophys. Res., 86, 10431-10469.
- EWART, A., HILDRETH, W. and CARMICHAEL, I. S. E. (1975) Quaternary acid magma in New Zealand. Contrib. Mineral. Petrol., 51, 1-27.
- HIETANEN, A. (1974) Amphibole pairs, epidote minerals, chlorite and plagioclase in metamorphic rocks, northern Sierra Nevada, California. Am.

Mineral., 59, 22-40.

- JAHNS, R. H. and BURNHAM, C. W. (1958) Experimental studies of pegmatite genesis: Part 2, Melting and recrystallization of granite and pegmatite (abstr). Geol. Soc. Am. Bull., 69, 1592-1593.
- KLEIN, C. (1968) Coexisting amphiboles. J. Petrol., 9, 281-330.
- (1969) Two-amphibole assemblages in the system actinolite-hornblende-glaucophane. Am. Mineral., 54, 212-237.
- MASON, D. R. (1978) Compositional variations in ferromagnesian minerals from porphyry coppergenerating and barren intrusions of the Western Highlands, Papua, New Guinea. *Econ. Geol.*, 73, 878-890.
- MISCH, P. and RICE, J. M. (1975) Miscibility of tremolite and hornblende in progressive Skagit metamorphic suite, North Cascade, Washington. J. Petrol., 16, 1-21.
- 西村祐二郎・三上貴彦・鈴木盛久・中村栄三(1982) 須佐-高山地域の接触変成作用とK-Ar年代.日本 地質学会西日本支部会報,no.74,14-15.
- OBA, T. (1980) Phase relations in the tremolitepargasite join. *Contrib. Mineral. Petrol.*, **71**, 247-256.
- 岡本和夫 (1974) 山陰西部の第三系, 地質ニュース, no. 243, 12-21.
- ROSS, M., PAPIKE, J. J. and SHAW, K. W. (1969) Exsolution textures in amphiboles as indicators of subsolidus thermal histories. *Mineral. Soc. Am. Spec. Pap.*, 2, 275-299.
- SHIDO, F. and MIYASHIRO, A. (1959) Hornblendes of the basic metamorphic rocks. J. Fac. Sci. Univ. Tokyo, sec. 2, 12, 85-102.
- SPEAR, F. S. (1980) NaSi ⊂CaAl exchange equilibrium between plagioclase and amphibole. Contrib. Mineral. Petrol., 72, 33-41.

- STOUT, J. H. (1972) Phase petrology and mineral chemistry of coexisting amphiboles from Telemark, Norway. J. Petrol., 13, 99-145.
- SUZUKI, M. and NISHIMURA, Y. (1983) Contact metamorphic effect on basaltic rocks by the Koyama gabbro complex, Susa area, Southwest Japan. J. Sci. Hiroshima Univ. ser. C, 8, no. 2, 149-163.
- TAGIRI, M. (1977) Fe-Mg partition and miscibility gap between coexisting calcic amphiboles from the southern Abukuma plateau, Japan. Contrib. Mineral. Petrol., 62, 271-281.
- TOMITA, K., YAMAGUCHI, Y. and TAKITA, R. (1974) Exsolution texture in coexisting amphiboles from Tanzawa tonalite complex, Tanzawa mountainland, Central Japan. *Mem. Geol. Soc. Jap., no.* **11**, 95-106.
- WYLLIE, P. J. and TUTTLE, O. F. (1961) Experimental investigation of silicate system containing two volatile components: Part 2. Am. J. Sci., 259, 128-143.
- YAMAGUCHI, Y., TOMITA, K. and SAWADA, Y. (1974) Crystallization trend of zoned pyroxenes in quartz gabbro from the Koyama intrusive complex at Mt. Koyama, Yamaguchi prefecture, Japan. *Mem. Geol. Soc. Jap.*, no. **11**, 69-82.
- , SHIBAKUSA, H. and TOMITA, K. (1983) Exsolution of cummingtonite, actinolite and sodic amphibole in hornblende in high-pressure metamorphism. *Nature*, **304**, no. **5923**, 257-259.
- , Y. and TOMITA, K. (1983) Hornblendecummingtonite and hornblende-actinolite unmixing in amphibole crystallization from hydrous magma. *Extended abstracts of WRI-4* (1983), 544.
- YAMAZAKI, T. (1967) Petrology of the Koyama calc-alkaline intrusive complex, Yamaguchi prefecture, Japan. Sci. Rep. Tohoku Univ., ser. 3, 10, 99-150.