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On a locally finite infinite network, the existence of a solution of a nonlinear Poisson 

equation is discussed with the aid of a flow problem on the network. 

S1. Imtroductiom 

Let N = {X, Y, K, r} be an infinite network which is locally finite and has no 

self-loop. Denote by L(X) the set of all real functions on X and by Lo(X) the set of 

all u e L(X) with finite support. Let p and q be positive numbers such that I 

(pp(t) = I tlP~ I sign(t), 

where sign(t) = I if t ~ O and sign(t) = - I if t 

For u e L(X), its p-Laplacian ApueL(X) is defined by 

A u(x) = ~ K(x y)(p (du(y)) 

p y~Y , 
where du is the discrete derivative of u, i.e. , 

du(y) r(y) ~ I ~･=x K(x, y)u(x) . 

Given a function // e L(X), we study the problem of finding a solution of the 

following nonlinear Poisson equation 

(1.1) Apu(x) = kt(x) on X. 
Since q)2(t) = t, A2u is the usual discrete Laplacian of u and A2 is a linear 

operator on L(X). Note that Apu is nonlinear in u unless p = 2. 

This problem has been investigated by many mathematicians in case p = 2 
For instance, R. J. Duffin [1] studied this problem on the lattice domain of the 3-

dimensional Euclid space by using Fourier transforms. T. Kayano and M 
Yamasaki [3] studied this problem on a locally finite infinite network by using a 

flow problem as in [2] . 

In the present paper, we shall prove the existence of a Dirichlet potential which 

satisfies the nonlinear Poisson equation (1.1) by using a flow problem as in [3] 

For notation and terminology, we mainly follow [3] and [5] 
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S2. Prelirninaries 

To state our problem more precisely, we recall some fundamental notion. For 

w e L( Y), the energy Hp(w) of w of order p is defined by 

H (w) = ~y~Y r(y)lw(y)lP. 

For w w e L(Y) we define the mutual energy 
 of w and w' by 

 = ~y~Y r(y)w(y)w'(y) 

if the sum is well-defined. Denote by Lp(Y; r) the set of all w e L(Y) such that 

Hp(w) 

pair of elements in Lp( Y; r) and Lq(Y; r) 

For u e L(X), its Dirichlet integral Dp(u) of order p is defined by 

D (u) H (du) = ~y~Y r(y) I du(y) IP. 

Denote by D(P)(N) the set of all Dirichlet functions u on X, i. e., Dp(u) 

D(P)(N) the set of all Dirichlet potentials of order p. Namely, D(P)(N) is the closure 

of Lo(X) in D(P)(N) with respect to the norm: 

II u Ilp = [Dp(u) + Iu(xo)lP]l/P 

where xo is a fixed node. 

We proved in [3; Theorem 4.3] 

PROPOSITION 2. 1. If // e Lo(X) and ~*~x l/(x) = O, then there exists u e D(2)(N) 

such that A2u(x) = /4(x) on X. 

We say that N is of parabolic type of order p if the value of the following 

extremum problem vanishes for some nonempty finite subset A of X 

(2.1) dp(A, co) = inf{Dp(u): ueLo(X) and u = I on A}. 

We also say that N is of hyperbolic type of order p if it is not of parabolic type of 

order p. 

For a nonempty finite subset A of X, denote by F(A, oo) the set of all fiows 

weL(Y) from A to the ideal boundary oo, i.e., 

~y=Y K(x, y)w(y) = O on X - A. (2.2) 

The strength I(w) of w e F(A, co) is defined by 

I(w) = - ~ ~ K(x y)w(y) *=A y=Y , 
We recall some criteria for the parabolicity of N (cf. [4] ) 

PROPOSITION 2.2. An infinite network N is of hyperbolic type of order p tf and 

only tf any one of the following conditions is fulfilled.' 
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(a) I ~ D(P) (N) ; 

(b) D(P) (N) ~ D(P) (N) ; 

(c) For every nonempty finite subset A of X, there exists w e F(A, oo) such that 

Hq(w) 

In case N is of hyperbolic type of order p, note that 

dp({a}, oo) = inf{Dp(u); u e D(P)(N) and u(a) = 1} > O. 

With the aid of the optimal solution of this problem, we can prove that there exists a 

function g(P) e L(X) with the following properties: 

g(P) e D(oP)(N) and Apg("P)(x) = (2.3) - 8.(x) on X. 

For 14eLo(X), Iet us put 

G(P)//(x) = - ~.~x 9(P) (x)l/(x) 

Note that g(2) is the Green function of N with pole at a and that G(2)kt is a solution 

of the Poisson equation: A2u(x) = p(x), since A2 is a linear operator. However we 

can not expect that G(P)// is a solution of (1.1) unless p = 2. 

Denote by ~~p)(N) the set of all p-harmonic functions u on X, i.e., Apu(x) = O 

on X and by HD(P)(N) the set of all Dirichlet finite p-harmonic functions on X, i,e., 

HD(P) (N) = D(P) (N) n H(P) (N) . 

For each u e D(P)(N), we have 

(2.4) Dp(u) = 
 = Hq((Pp(du)), since lepp(t)Iq = Itlq(p~ 1) = ItlP. 

For u e L(X) and fe Lo(X), we obtain the following equality by interchanging 

the order of summation 

(2.5) 
 - ~.=x [Apu(x)]f(x). 

We have 

LEMMA 2. 1. Let u e D(P)(N) and v e D(P)(N). If {f~} is a sequence m L (X) such 

that llv -f~ llp -> O as n ~> oo, then 

 = Iim~+* 

 
PROOF. By H6lder's inequality and (2.4), 

l 

 I ~ Hq((Pp(du))1/qHp(dv - df~)1/P ~ Dp(u)1/qDp(v -f~)1/P 

~ Dp(u)1/q 11 v - f. Ilp -> O 

as n -> co. 
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COROLLARY. Let h e HD(P)(N). Then 

 = O for every v e D(oP)(N) 
We need the following discrete analogue of Royden's decomposition of a 

Dirichlet function (cf. [5]) 

PROPOSITION 2. 3. Assume that N is of hyperbolic type of order p. Then every 
u e D(P)(N) can be decomposed uniquely in the form.' u = v + h, where v e D(oP)(N) and 

h e HD(P) (N) . 

We prepare 

LEMMA 2.2. Assume that 'N is of hyperbolic type of order p and let 
u e D(P)(N). If 

 = O for every h e HD(P)(N), then there exists a constant c such that u - c e D(oP)(N). 

PROoF. By Proposition 2.3, u can be decomposed in the form: u = v + f with 

v e D(P)(N) and fe HD(P)(N). It follows from the corollary of Lemma 2.1 and our 

assumption that 

Dp(f) = 

 = 

 = O, 
so that f(x) = c on X. Therefore u - c = v e D(oP)(N) 

We have by [5; Lemma 2.1] 

LEMMA 2.3. 

 ~ O for every wl' w2 eL (Y r) The equality holds only tf wl = 14'2' 

S3･ Main results 

For p e L(X), denote by PSD(P)(p) the set of all Dirichlet finite solutions of the 

nonlinear Poisson equation (1.1) of order p, i.e., 

PSD(P)(/4) = {ueD(P)(N); Apu = p}, 

and put 

PSD(P) (,1) = PSD(P) (/1) n D(P) (N) . 

Our problem is to study when PSD(P)(//) or PSD(P)(//) is nonempty 

For w e L(Y), define its nodal current excess ew e L(X) by 

aw(x) = ~y~Y K(x y)w(y) 

Denote by KLq(N) the image of Lq(Y; r) under the mapping a (i.e., the linear 

transformation associated with the incidence matrix K) 

KLq(N) = {aw; weLq(Y; r)}. 

For w eL(Y) and feLo(X), we have the followmg fundamental relation by 
interchanging the order of summation 
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(3.1) 
 = - ~.=xf(x)[ew(x)]. Let us consider the following flow problem on N: 
(FP(~))q Given // e L(X), find a function (called a flow) w e L(Y) which satisfies 

weL (Y' r) and aw - - ' q , - //, l.e., 
~y=Y K(x, y)w(y) = - //(x) on X. 

Clearly, (FP(l/))q has a slution if and only if - /4 e KLq(N) 

We say that co eL(Y) is a cycle if aco = O, i.e., 

(3･2) ' ~y=Y K(x, y)co(y) = O on X. 
Denote by Cq(Y)(resp. Co(Y)) the set of all cycles co such that co e Lq(Y; r) 

(resp. Lo(Y)). 

We shall prove 

THEOREM 3.1. {Apu; u e D(P)(N)} c KLq(N) 

PRooF. Let u e D(P)(N) and put w = epp(du). Since Hq(w) = Dp(u) 

(2.4), w e Lq(Y; r). By definrtron, 

aw(x) = ~y=Y K(x y)(p (du(y)) A u(x) 

Hence ApueKLq(N) 

THEOREM 3.2. If problem (FP(l/))q has a solution, then there exists a Dirichlet 

potential u of order p which satisfies the nonlinear Poisson equation (1.1), i.e., 

PSD(P)(//) ~ ~. 

PRooF. Consider the following extremum problem 

(3.3) Minimize Hq(w) subject to 

w eL (Y r) and ~y=Y K(x, y)w(y) = - //(x) on X. 

Let oc be the value of this problem and {w~} be a sequence of feasible solutions such 

that Hq(w~) -> c( as n -> oo. Recall the following Clarkson's inequality (cf. [5]) 

(1) Hq(w + w') + Hq(w - w') ~ 2q~1[Hq(w) + Hq(w')] in case q ~~ 2; 

(2) [Hq(w + w')]P~1 + [Hq(w - w')]P~1 ~ 2[Hq(w) + Hq(w')]P~1 in case I 

It follows from Clarkson's inequality that Hq(w~ - w~) -> O as n, m -> oo (cf. the proof 

of Theorem 2.1 in [5]). Thus there exists w* e Lq(Y; r) such that Hq(w~ - w*) -> O 

as n -> co . Since N is locally finite, we see that w* is an optimal solution of problem 

(3.3). Let co e Cq(Y). For any t e R, w* + tco is a feasible solution of problem (3.3), 

so that Hq(w*) ~ Hq(w* + tco). Therefore the derivative of Hq(w* + tco) with 

respect to t vanishes at t = O. It follows that 

~y~Y r(y)(pq(w*(y))co(y) = O (3.4) 

for every co e Cq(Y). Let xo e X be fixed. For any x ~ xo' Iet P1 and P2 be paths 



6 Maretsugu YAMASAKI 
from xo to x and pl and p2 be path indices of P1 and P2 respectively. Then 
co = pl - p2 e Co(Y) c Cq(Y), and hence 

~y=Y r(y)pl(y)(p (w*(y)) = ~ r(y)p (y)(p (w (y)) 

q y~Y 2 by (3.4). Namely, the above sum does not depend on the choice of paths from xo to 

x. Thus we can define u* e L(X) by 

u (xo) = O and u*(x) = ~ r(y)p(y)q) (w (y)) for x ~ xo' 
y~ Y 

where p is the path index of a path P from xo to x. Now we show the equality 

(3.5) du*(y) = - (pq(w*(y)) on Y. 

Let y' e Y with e(y') = {a, b} and let P' be a path from xo to b such that 

Cx(P') = {xo' xl,"',x~} wrth x~ 1 _ = a and x~ = b, 

CY(P') = {yl""'y~} wrth y y 

Furthermore let P" be the subpath of P from xo to x~ _ I and let p and p" be the 

path indices of P' and P" respectrvely Then 

u*(b) = ~ r(y)p'(y)(p (w (y)) 
y=Y 

= ~y=Y r(y)p"(y)(pq(w*(y)) + r(y')p'(y')(pq(w*(y')) 

= u*(a) + r(y') [ - K(a, y')] (pq(w*(y')), 

so that 

du*(y ) = - r(y')~ I [K(a, y')u*(a) + K(b, y')u*(b)] 

= - q)q(w*(y')), 

since K(a, y') + K(b, y') = O. This shows (3.5). Noting that the inverse function of 

(Pq(t) is equal to epp(t), we have by (3.5) 

(3.6) (y) = (pp( - du*(y)) = - epp(du*(y)). w* 

It follows from (3.6) that 

Apu*(x) = ~y=Y K(x y)(p (du (y)) 

= - ~y~Y K(x, y)w*(y) = I/(x), 

D (u*) = Hp(du*) = Hp(epq(w*)) = Hq(w*) 

Namely u* e PSD(P)(ll)' By (3.4) and (3.5), we have 

(3.7) 
 = O for every co e Cq(Y). Now we show that there exists a constant c such that u* 
- c e D(oP)(N). Let h e HD(P)(N) and coh(y) = (pp(dh(y)). Then Hq(coh) = Dp(h) 

by (2.4) and 
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~y~Y K(x, y)coh(y) = ~y~Y K(x y)(p (dh(y)) A h(x) O 

namely coh e Cq(Y). By (3.7), we have 

 = 

 = O 
On account of Lemma 2.2, there exists a constant c such that v* = u* - c e D(P)(N) 

Since dv* = du*, we see that v* e PSD(oP)('l)' 

As for the uniqueness of the solution of the nonlinear Poisson equation, we have 

THEOREM 3.3. Assume that N is of hyperbolic type of order p. If ul and u2 

belong to PSD(oP)(l/), then ul = u2' 

PRooF. By our assumption, ul' u2 e D(oP)(N) and Apul(x) = Apu2(x) = I/(x) on 

X. For any veLo(X), we have by (2.5) 

 = - ~.=x[Apul(x)]v(x) 

= - ~*=x[Apu2(x)]v(x) = 

. 
By Lemma 2.1, 

 = 

 
for every v eD(oP)(N). Since v = ul - u2eD(oP)(N), we have 

 = O, 

and hence dul = du2 by Lemma 2. 3. It follows that ul - u2 = c for some constant 

c. By Proposition 2.2, c = O. Therefore ul = u2 

S 4. Sufficiemt comditioms 

Now we discuss the feasibility of the flow problem (FP(,l))q, or equivalently, 

sufficient conditions which assure PSD(P)(//) ~ ~1. 

THEOREM 4. 1. Assume that N is of hyperbolic type of order p. Then Lo(X) 

c KLq(N) and PSD(P)(//) ~ ~: for every p eLo(X). 

PROoF. Let p e Lo(X) and let a be any node of X. Since N is of hyperbolic 

type of order p, there exists w. e Lq(Y; r) by Proposition 2.2 which satisfies the 

conditions: w. e F({a} , oo) and I(w~) = 1, or equivalently, 

~y=Y K(x, y)w.(y) = - 8 (x) on X 

Let us put 

w(y) = ~.~xl/(a)w (y) 

Then v~ e Lq(Y; r) and 
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~y~Y K(x y)w(y) = ~.=x //(a)~ K(x y)w (y) kt(x) 

y~Y , 
for each x e X. Therefore - // e KLq(N) and PSD(P)(/1) ~ ~f by Theorem 3.2. Since 

KLq(N) rs a linear space, I/ e KLq(N) 

As a generalization of [3; Lemma 3.1], we have 

THEOREM 4.2. Let N be of parabolic type of order p and let u e D(P)(N). If 
~*=x IApu(x)1 

PRooF. Since I e D(oP)(N), there exists a sequence {f~} in L (X) such that 

o ~f~ ~ I on X and llf~ - I Ilp->0 as n~'oo. Put w = (pp(du). Since {df~} 
converges weakly to O in Lp(Y; r) and weLq(Y; r), 

 -> O as n -> co. We may assume that c = ~.~x I Apu(x)1 > O. For any 8 > O, there exists a finite subset 

X' of X such that ~.=x-x' IApu(x)1 

can find no such that If.(x) - I I 

l~.=x Apu(x) + 

1 = l~*=x[Apu(x)] [1 -f.(x)] l ~ ~.~x' IApu(x)II I -f~(x)1 + ~.~x- ' IApu(x)l 
x 

~ ~*~x' IApu(x)18/c + 8 

for all n ~ no' Therefore ~*=x Apu(x) = O. 

COROLLARY. Let N be of parabolic type of order p. Then PSD(P)(//) = ~ for 

every nonzero p e L+(X). 

As a generalization of Proposition 2.1, we have 

THEOREM 4.3. If // eLo(X) satisfies ~.=x l/(x) = O, then PSD(oP)(//) ~ ~f. 

Therefore, KLq(N) D {,leLo(X); ~.=x l/(x) = O}. 

PRooF. Let lleLo(X) and A = {xeX; I/(x) ~ O} and take b~A Define 
I~'b eL(Y) by 

w (y) - ~*=A //(x)p*(y), 

where p* is the path index of a path P* from b to x (x ~ b). Observing that p* is a 

flow from b to x with unit strength, i.e., 

~y~Y K(z, y)p.(y) = - e (z) + 8 (z) on X 

we have 

~y=Y K(z y)w (y) - ~.=A //(x) ~y~Y K(z, y)p.(y) = - p(z). 

Since Hq(P.) = ~p., r(y) 

of (FP(l/))q and PSD(P) (/4) ~ ~ by Theorem 3.2. 

THEOREM 4.4. Let //, v, aeL(X) If// veKL (N) and tfp 
a e KLq (N) . 
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PROoF. There exist I~u, I~. e Lq(Y; r) such that al~u = /1 and ew v For 

every nonnegative feLo(X), we have by (3.1) 

~.~x f(x) a(x) ~ ~.~x f(x) v(x) 

= ~.=x f(x) [aw~(x)] = - 

, ~*=x f(x)a(x) ~ ~*~x f(x)p(x) = - 

 . 
For any feLo(X), we have f=f+ _f- ' with f+(x) = max{f(x), O} and f~(x) 

= max{ -f(x), O}, so that 

~*~x f(x)(r(x) = ~.=x f +(x) a(x) ~*~x f (x)a(x) 

 + 
 ~ [Hq(1~>.)] 1/q [Dp(f +)] 1/P + [Hq(1~u)] 1/q [Dp(f -)] l/P. 

Smce Dp(f+) ~ Dp(f) and Dp(f-) ~ Dp(f), we have 

l~.=x f(x)cr(x)1 ~ M[Dp(f)]l/P = M[Hp(df)] 1/P 

where M = [Hq(V~.)]l/q + [Hq(1~p)]l/q. Therefore, the linear functional (~ on the 

linear subspace dLo(X) = {df;feLo(X)} of Lp(Y; r) defined by 

R (d f ) = ~ .=x f (x) cr (x) 

rs contmuous. Here we note that d rs a one-to-one mapping from Lo(X) to 
dLo(X). By the well-known Hahn-Banach's theorem, there exists a continuous 
linear functional ~~ on Lp(Y; r) such that (~)~ (df) = R(df) for all dfedLo(X). The 

dual space of Lp(Y; r) is isometric to Lq(Y; r), so there exists ~/ e Lq(Y; r) such that 

~(w) = 

 for every w e Lp(Y; r). It follows that 
- ~.=xf(x)[a~;(x)] = 

 = ~.=xf(x)a(x) 
for every feLo(X), and hence a~/ a Put l~ = - . . = - ~'. Then l~.eLq(Y; r) and 
al~. = cr, and hence a e KLq(N) 

COROLLARY' Assume that PSD(P)(/1) ~ ~ and PSD(P)(v) ~ ~: If cr e L(X) and 
tf /1 ~ cr ~ v on X, then PSD(oP)(a) ~ ~:. 

[1] 
[2] 

[3] 

[4] 
[5] 

Ref eremces 

R. J. Duffin, Discrete potential theory, Duke Math. J. 20 (1953), 233-251 

H. Flanders, Infinite networks: I-Resistive networks, IEEE Trans. Circuit Theory CT-18 (1971), 

326-331. 

T. Kayano and M. Yamasaki, Dirichlet finite solutions of Poisson equations on an infinite 

network, Hiroshima Math. J. 12 (1982), 551-561 

M. Yamasaki. Parabolic and hyperbolic infinite networks, ibid. 7 (1977), 135-146 

M. Yamasaki, Ideal boundary limit of discrete Dirichlet functions, ibid. 16 (1986), 353-360 


