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Nonlinear Poisson Equations on an Infinite Network

Maretsugu YAMASAKI

Department of Mathematics, Shimane University, Matsue, Japan
(Received September 6, 1989)

On a locally finite infinite network, the existence of a solution of a nonlinear Poisson
equation is discussed with the aid of a flow problem on the network.

§1. Introduction

Let N = {X, Y, K, r} be an infinite network which is locally finite and has no
self-loop. Denote by L(X) the set of all real functions on X and by Lo(X) the set of
all ue L(X) with finite support. Let p and g be positive numbers such that 1 <p
<o and 1/p+ 1/g=1. Let ¢,(t) be the real function on R defined by

(pp(t) = |t|p_15ign(t)9

where sign(t) =1 if t >0 and sign(t) = — 1 if t <O.
For ueL(X), its p-Laplacian 4,ueL(X) is defined by

APu(x) = Zyel" K(x9 y)(Pp(du(y))9

where du is the discrete derivative of u, i.e.,

d“()’) = - '.(y)—l erX K(x’ y)u(x)

Given a function peL(X), we study the problem of finding a solution of the
following nonlinear Poisson equation:

(1.1) d,u(x) = p(x) on X.

Since ¢@,(t) =t, 4,u is the usual discrete Laplacian of u and 4, is a linear
operator on L(X). Note that 4,u is nonlinear in u unless p = 2.

This problem has been investigated by many mathematicians in case p = 2.
For instance, R. J. Duffin [1] studied this problem on the lattice domain of the 3-
dimensional Euclid space by using Fourier transforms. T. Kayano and M.
Yamasaki [3] studied this problem on a locally finite infinite network by using a
flow problem as in [2].

In the present paper, we shall prove the existence of a Dirichlet potential which
satisfies the nonlinear Poisson equation (1.1) by using a flow problem as in [3].

For notation and terminology, we mainly follow [3] and [5].
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§2. Preliminaries

To state our problem more precisely, we recall some fundamental notion. For
we L(Y), the energy H,(w) of w of order p is defined by

H,(W) =3 ey T WO)IP.
For w, weL(Y), we define the mutual energy {w, w'> of w and w' by
<W5 W’> = Zyel’ r(y)W(y)W/(y)

if the sum is well-defined. Denote by L,(Y; r) the set of all we L(Y) such that
H,(w) < 0. Clearly Lo(Y) = L(Y;r). The mutual energy is well-defined for the
pair of elements in L,(Y;r) and L(Y;r).

For ue L(X), its Dirichlet integral D,(u) of order p is defined by

D,(u) = Hp(du) = } ey ()| du(y)I”.

Denote by D®P(N) the set of all Dirichlet functions u on X, i.e., D,(u) < co and by
DY (N) the set of all Dirichlet potentials of order p. Namely, D@'(N) is the closure
of Ly(X) in D"(N) with respect to the norm:

lull, = [Dp) + |u(xo)IP1'/7,

where x, is a fixed node.
We proved in [3; Theorem 4.3]

PROPOSITION 2.1. If peLo(X) and Y ..x u(x) =0, then there exists ue D®(N)
such that A,u(x) = pu(x) on X.

We say that N is of parabolic type of order p if the value of the following
extremum problem vanishes for some nonempty finite subset 4 of X:

2.1) d,(A, 00) = inf{D,(u): ue Lo(X) and u=1 on A}.

We also say that N is of hyperbolic type of order p if it is not of parabolic type of
order p.

For a nonempty finite subset 4 of X, denote by F(4, o) the set of all flows
weL(Y) from A to the ideal boundary oo, i.e.,

(2.2) Y ey K(x, Y)w(») =0 on X — A4.
The strength I(w) of we F(4, o) is defined by
I(W) = - ZXEA Zer K(x3 y)W(y)
We recall some criteria for the parabolicity of N (cf. [4]):

PROPOSITION 2.2.  An infinite network N is of hyperbolic type of order p if and
only if any one of the following conditions is fulfilled:
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@  1¢DPW);

(b)  DP(N)# DP(N);

(© For every nonempty finite subset A of X, there exists we F(A, o) such that
H,(w) < o and I(w) = 1.

In case N is of hyperbolic type of order p, note that
d,({a}, ) = inf{D,(u); ue DF(N) and u(a) = 1} > 0.

With the aid of the optimal solution of this problem, we can prove that there exists a
function g e L(X) with the following properties:

(2.3) gP e DP(N) and 4,97 (x) = — &,(x) on X.
For pueLy(X), let us put
GPux) = — Y rex 9 ()p(x).

Note that g is the Green function of N with pole at a and that G?y is a solution
of the Poisson equation: 4,u(x) = p(x), since 4, is a linear operator. However we
can not expect that G®p is a solution of (1.1) unless p = 2.

Denote by H®(N) the set of all p-harmonic functions u on X, ie., du(x)=0
on X and by HD®(N) the set of all Dirichlet finite p-harmonic functions on X, i.e.,

HD®(N) = DP(N)n H?(N).
For each ue D'P(N), we have
(24 D,(u) = {@,(du), du) = H,(¢,(du)),

since |, (1)|* = [¢[*?™ 1 = [¢[”.
For ue L(X) and fe Ly(X), we obtain the following equality by interchanging
the order of summation:

(25) <(pp(du)9 df> = - erx [Apu(x)]f(x)
We have

LeMMA 2.1. Let ue D®(N) and ve DP(N). If {f,} is a sequence in Ly(X) such
that |lv—f,ll, =0 as n— oo, then

{pp(du), dvy = lim,, <@, (du), df,>.
Proor. By Holder’s inequality and (2.4),

<@, (du), dv — df,>| < H,(@,(dw))/*H (dv — df,)'"?
< Dp(u)l/qu(v '—fn)”p
< Dp(u)llq"v _fn"p — 0

as n— oo.
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COROLLARY. Let he HDV(N). Then {¢,(dh), dv) =0 for every ve DP(N).

We need the following discrete analogue of Royden’s decomposition of a
Dirichlet function (cf. [5]):

PROPOSITION 2.3. Assume that N is of hyperbolic type of order p. Then every
ue DP(N) can be decomposed uniquely in the form: u = v + h, where ve DP(N) and
he HDP(N).

We prepare

LEMMA 2.2. Assume that N is of hyperbolic type of order p and let
ue DP(N). If {@,(dh), du) = O for every he HD"”(N), then there exists a constant c
such that u — ce D¥(N).

Proor. By Proposition 2.3, u can be decomposed in the form: u = v + f with
ve DP(N) and fe HD(N). It follows from the corollary of Lemma 2.1 and our
assumption that

Dp(f) = <(pp(d.f): df> = <(Pp(df)> du — dU> = 03
so that f(x) = ¢ on X. Therefore u — c = ve DP(N).
We have by [5; Lemma 2.1]

Lemma 2.3, <{@,(Ww;) — @,(W,;), w; —w,> =0 for every wy, wyeL,(Y;r). The
equality holds only if w, = w,.

§3. Main results

For peL(X), denote by PSD(u) the set of all Dirichlet finite solutions of the
nonlinear Poisson equation (1.1) of order p, i.e.,

PSDP(u) = {ue DP(N); d,u = p},
and put

PSDP(u) = PSD® () n DY (N).

Our problem is to study when PSDY(u) or PSD® () is nonempty.
For we L(Y), define its nodal current excess dweL(X) by

8w(x) = ZyEY K(X, _)/)W(y)

Denote by KL,(N) the image of L,(Y;r) under the mapping 0 (i.e., the linear
transformation associated with the incidence matrix K):

KL,(N) = {ow; we L,(Y; r)}.

For weL(Y) and feLy(X), we have the following fundamental relation by
interchanging the order of summation:
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G.1) w, dfy = = Yaex f)[OWX)].

Let us consider the following flow problem on N:
(FP(p)), Given peL(X), find a function (called a flow) we L(Y) which satisfies
weL,(Y;r) and 0w = —p, ie,

Yoyer K(x, p)w(y) = — p(x) on X.
Clearly, (FP(u)), has a slution if and only if — pe KL, (N).
We say that we L(Y) is a cycle if dw =0, i.e.,
(32 Y yer K(x, Y)o(y) = 0 on X.

Denote by C,(Y)(resp. Co(Y)) the set of all cycles w such that weL, (Y;r)
(resp. Lo(Y)).

We shall prove

THEOREM 3.1. {4,u; ue DP(N)} = KL,(N).

Proor. Let ueD®(N) and put w= @,(du). Since H,(w)=D,(u) < oo by
(2.4), weL,(Y; r). By definition,

aW(X) = Zye}' K(xa y)(pp(du(Y)) = Apu(x)'
Hence 4,ue KL, (N).

THEOREM 3.2. If problem (FP(n)), has a solution, then there exists a Dirichlet
potential u of order p which satisfies the nonlinear Poisson equation (1.1), ie.,

PSDP () # .
Proor. Consider the following extremum problem:
(3.3) Minimize H,(w) subject to
weL,(Y;r) and Y oy K(x, y)w(y) = — p(x) on X.

Let a be the value of this problem and {w,} be a sequence of feasible solutions such
that H,(w,) —a as n—co. Recall the following Clarkson’s inequality (cf. [5]):
(1) Hyw+w)+ Hy(w—w) <297 '[H,(w) + Hy(W)] in case g = 2;

() [H,w+w)]P"' + [H,w—w)]P"! <2[H,(w) + H,wW)]? ' in case 1 <gq <2
It follows from Clarkson’s inequality that H,(w, — w,,) — 0 as n, m — oo (cf. the proof
of Theorem 2.1 in [5]). Thus there exists w*e L (Y;r) such that H,(w, — w*)—0
asn— co. Since N is locally finite, we see that w* is an optimal solution of problem
(3.3). Let weC,(Y). For any teR, w* + tw is a feasible solution of problem (3.3),
so that H,(w*) < H,(w* + tw). Therefore the derivative of H,(w* + tw) with
respect to ¢ vanishes at ¢ = 0. It follows that

(3.4) Yyer T @, w* () (y) =0
for every we C,(Y). Let xoeX be fixed. For any x # X, let P, and P, be paths
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from x, to x and p, and p, be path indices of P, and P, respectively. Then
o =p; — p,€Coy(Y) = C,(Y), and hence

Yoer FOP1 ()@, (W* (1) = ¥ ey ) P2(0) 0, (WH ()

by (3.4). Namely, the above sum does not depend on the choice of paths from x, to
x. Thus we can define u*e L(X) by

u*(xo) = 0 and u*(x) = ). ,cy r()P()@g(W*(v)) for x # x,,
where p is the path index of a path P from x, to x. Now we show the equality:
(3.5) du*(y) = — @,(w*(y)) on Y.
Let y'e Y with e()’) = {a, b} and let P’ be a path from x, to b such that
Cx(P") = {x¢, X1+, %,} with x,_, =a and x,=b,
Cy(P) = {y1,"*,ya} with y, ="

Furthermore, let P” be the subpath of P’ from x, to x,_, and let p’ and p” be the
path indices of P’ and P” respectively. Then

u*(b) = Y sy rMP' V), (W*())
= yer TP M@ (W* () + ()P (y’)qo,,(W*(y )
=u*(a) + r(y)[ — K(a, y)1o,w*())),

so that
du*(y') = —r(y)" ' [K(a, y)u*(a) + K (b, y)u*(b)]
= — o,(Ww*(y"),
since K(a, y') + K(b, y')) = 0. This shows (3.5). Noting that the inverse function of
@4(t) is equal to ¢,(t), we have by (3.5)
(3.6) w () = @,( — du*(y)) = — @, (du*(y)).

It follows from (3.6) that

A u* x) Zer K(X, y)(pp(du*(y))
= - Zye}’ K(x7 y)W*(y) [.t(X),
D,(u*) = H,(du*) = H,(¢,(Ww*)) = H,(w*) < 0.
Namely u*e PSD®(u). By (3.4) and (3.5), we have
3.7 {du*, w) =0

for every weC,(Y). Now we show that there exists a constant ¢ such that u*
—ceDP(N). Let he HDP(N) and w,(y) = ¢,(dh(y)). Then H,(w,) = D,(h) < o
by (2.4) and
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Zer K(X, y)a)h(y) = Zer K(x9 y)(pp(dh(y)) = Aph(X) = Oa
namely w,eC,(Y). By (3.7), we have
(@ (dh), du*) = {wy, du*) = 0.

On account of Lemma 2.2, there exists a constant ¢ such that v* = u™ — ce DP(N).
Since dv* = du*, we see that v* e PSDY(1).

As for the uniqueness of the solution of the nonlinear Poisson equation, we have

TuEOREM 3.3. Assume that N is of hyperbolic type of order p. If u, and u,
belong to PSDP(p), then uy = u,.

PrROOF. By our assumption, u,, u,€DP(N) and 4,u;(x) = 4,u,(x) = u(x) on
X. For any veLy(X), we have by (2.5)

<¢p(du1)’ d17> = - erX[Apul(x)]v(x)
= - erx[dpuz(x)] U(X) = <(pp(du2)’ dl)>
By Lemma 2.1,
<(pp(du1)7 d1)> = <(pp(du2)7 dU>
for every ve DP(N). Since v = u; — u,€ DP'(N), we have
(@ (duy) — @,(duy), duy — duy) =0,

and hence du, = du, by Lemma 2.3. It follows that u; —u, =c¢ for some constant
¢. By Proposition 2.2, ¢ =0. Therefore u; = u,.

§4. Sufficient conditions

Now we discuss the feasibility of the flow problem (FP(u)), or equivalently,
sufficient conditions which assure PSDY (n) # .

THEOREM 4.1. Assume that N is of hyperbolic type of order p. Then Lo(X )
< KL (N) and PSD (i) # & for every peLo(X).

Proor. Let pueLy(X) and let a be any node of X. Since N is of hyperbolic
type of order p, there exists w,eL,(Y;7) by Proposition 2.2 which satisfies the
conditions: w,e F({a}, c) and I(w,) =1, or equivalently,

ZyEY K(x, y)wa(y) = - Sa(JC) on X.
Let us put
W(y) = Zaexl"(a)wa(y)‘
Then we L, (Y;r) and
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Zer K(x> y)W(y) = Zaexﬂ(a)Zer K(xa y)wa(y) = - ,l.t(X)

for each xe X. Therefore — pe KL,(N) and PSDP(u) # & by Theorem 3.2. Since
KL,(N) is a linear space, ue KL, (N). »
As a generalization of [3; Lemma 3.1], we have

THEOREM 4.2. Let N be of parabolic type of order p and let ue DP(N). If
Yxex | 4pu(x)| < 0, then Y ..y 4,u(x) = 0.

ProOOF. Since 1eDE’(N), there exists a sequence { fu} in Ly(X) such that
0<f,<1 on X and ||f,—1),-0 as n—o. Put w= ¢,(du). Since {df,}
converges weakly to 0 in L,(Y;r) and weL,(Y;r), <w,df,>—>0 as n— 0. We
may assume that c =), |4 4(x)| > 0. For any & > 0, there exists a finite subset
X' of X such that )y |[4,u(x)] < e Since {f,} converges pointwise to 1, we
can find n, such that |f,(x) — 1] <e/c on X’ for all n > ny. It follows that

leeX Apu(x) + <Wa dfn>| = IerX[Apu(x)] [1 _fn(x)]l
< erX’ |Apu(x)”1 _fn(x)l + ZxEX—X’ IApu(x)l
< Yiex' |dpu(x)|e/c + ¢ < 2¢

for all n > n,. Therefore ),y 4,u(x) = 0.

CorOLLARY. Let N be of parabolic type of order p. Then PSDP(u) = & for
every nonzero ueL™(X).

As a generalization of Proposition 2.1, we have

THEOREM 4.3. If peLo(X) satisfies Y .xu(x)=0, then PSDP(y)+# .
Therefore, KLy(N) > {ue Lo(X); Y yex u(x) = 0}.

PROOF. Let pueLy(X) and A= {xeX; u(x) 0} and take b¢A. Define
W, € L(Y) by
wb(y) = - erA ,u(x)px(y),

where p, is the path index of a path P, from b to x (x # b). Observing that p, is a
flow from b to x with unit strength, i.e.,

Yrer K2, y)py(0) = — &,(2) + £,(2) on X,
we have
Zye!’ K(Z9 Y)Wb(y) = - erA H(X)Zyey K(Z, y)px(y) = — u(z)_

Since H,(p,) =) p_r(y) < o0 and 4 is a finite set, we conclude that W, is a solution
of (FP(u)), and PSDY (u) # & by Theorem 3.2.

THEOREM 4.4, Let p, v, e L(X). If p, veKL,(N)andif p <o <v on X, then
o€ KL,(N).
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PrOOF. There exist w,, W,eL,(Y;r) such that 0w, = u and ow,=v. For
every nonnegative fe Lo(X), we have by (3.1)

erx f(x)cr(x) < erx (X)V(X)
= erx f(x)[awv(x)] = - <wv9 df>n
erxf(x)o'(x) = erxf(x).“(x) = - <wuo df>
For any feLo(X), we have f=f* —f~ with f*(x) = max{f(x), 0} and f~(x)
= max{ — f(x), 0}, so that

erX f(x)a(x) = erX f+(x)a(x) - erX f—(X)O'(X)
< - <wv5 df+> + <wus df_>
< [H,0,)11[D,(f )17 + [H,(%,) 1 [D,(f 7)1

Since D,(f*) < D,(f) and D,(f7) < D,(f), we have
Y wex f(X)0(x)| < M[D,()1"" = M[H,(df)]"",

where M = [H,(W,)]"4 + [H,(W,)]"/%. Therefore, the linear functional ® on the
linear subspace dLo(X) = {df;feLo(X)} of L,(Y;r) defined by

D(df) = Y xex [(X)0(x)

is continuous. Here we note that d is a one-to-one mapping from Ly (X) to
dLy(X). By the well-known Hahn-Banach’s theorem, there exists a continuous
linear functional ® on L,(Y;r) such that ®(df) = ®(df) for all dfedLo(X). The
dual space of L,(Y; r) is isometric to L,(Y; r), so there exists we L, (Y; r) such that
&(w) = (W, w) for every weL,(Y;r). It follows that

— Y wex SEI[OW()] = (W, df > = Ysex S(X) 0 (x)

for every fe Lo(X), and hence 0w = —o. Put w,= —W. Then w,eL,(Y;r) and
0w, = o, and hence g€ KL, (N).

COROLLARY. Assume that PSD® (y) # & and PSDY'(v) # &. If oe L(X) and
if u<ao<v on X, then PSD{ (o) # &.
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