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Abstract

In unconfined compression tests, a clay specimen deforms uniformly at the beginning of loading, but the deformation changes

into non-uniform deformation near maximum load. At that time, strain is localized in the specimen, and localization of strain leads to

failure of specimens through formation of shear bands. In this study, this phenomenon was detected by using soil-water coupled finite

element analysis based on finite strain. Several finite element meshes were used to examine the influence of the three differing mesh

sizes on the analytical results. The mechanism of deformation from initiation of strain localization to formation of shear band is

simulated using finite element analysis. The inclination angles of the shear bands based on the results of finite element analysis agree

well, regardless of differing mesh sizes. Differing meshes influence the width of shear bands and the percentage of shear strain at the

shear bands.

1. Introduction

In element tests such as unconfined compression tests
and triaxial compression tests, ideally, clay specimens deform
uniformly from the beginning of loading through to failure of
the specimens (see Fig. 1). In general, deformation of clay
specimens is uniform in the early stage of loading. However,
deformation changes from uniform deformation to
non-uniform deformation near maximum load. Localization of
strain then leads to failure of specimens through formation of
shear bands. Therefore, signs of failure including shear band
formation, localization of strain, and non-uniform deformation
appear on the specimens before destruction.

For the sake of simplicity, this phenomenon has been
extensively studied under plane strain loading conditions.
Morgenstern and Tchalenko (1967) studied the behavior of
thin sections of carbowax-impregnated clay in a direct shear
device. The implication of the plastic bifurcation for
geomechanics has been realized in a number of constitutive
models and theoretical bifurcation analyses (e.g. Vardoulakis,
1981;Yatomi et al., 1989; Chau and Rudnicki, 1990; Shibi et
al., 2000). Although stress states and strain distributions are
supported by bifurcation analyses when a specimen is
deformed non-uniformly, these analyses cannot simulate the
following deformation. Using finite element method is useful
to simulate non-uniform deformation. Deformation analysis

and numerical bifurcation analysis using finite element
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method have been conducted extensively (e.g. Asaoka and
Noda, 1995; Larsson et al., 1996; Kobayashi ef al., 1999).
In this paper, the initiation and propagation of strain

localization that developed in rectangular block specimens of
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normally consolidated clay during undrained shear under
plane strain loading conditions was detected using soil-water
coupled finite element analysis based on finite strain. A
Cam-clay model was applied for a constitutive equation of
clay. A very small scratch was made at a corner of the
specimens to facilitate localization of strain. Several finite
element meshes of differing size were used to examine the

influence of the difference of meshes on the analytical results.
2. Constitutive relation

In this paper, we employ the Cam-clay model for finite
deformation (e.g. Roscoe et al., 1963; Yatomi et al., 1989).
The Cam-clay model is known world-wide, and provides a
reasonable match with the experimentally observed behavior
of saturated clay, even though only a few soil parameters are
used. Although there are some sophisticated models than the
Cam-clay model, they are complicated and need a lot of
parameters. It is desirable for deformation analysis to be
comparatively easily carried out precisely quickly from an
engineering viewpoint. In this purpose, a comparatively
simple model of soil like a Cam-clay model is suitable. The
Cam-clay model is summarized briefly below.

It has been well recognized that the constitutive relations
for saturated clays should be based on the effective (Cauchy)

stress tensor 7, which is defined by

ii>
T’y =Ty + udy. (1)

Here, T} is the total Cauchy stress tensor, u is the pore water
pressure, and J; is Kronecker’s delta. Then, the effective
mean nominal stress p” and the generalized stress deviator ¢

are defined as
Ly 3 @)
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respectively, where Sj; is the deviatoric part of 7.

Note that, here and in what follows, we regard tension
and extension positive and compression and contraction
negative except u, p’, and the volumetric strain v; an ordinary
exchange of the sign in soil mechanics needs a special care
and makes the discussion troublesome since stress rates
employed in finite strain theory are not merely the rate of
stress.

The yield function of the Cam-clay model is of the form
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Fig. 2 Boundary condition in the present finite element analysis

where A and « are the compression index and the swelling
index respectively, ey is the void ratio at the initial state, p’y is
the mean effective stress at the initial state, and D is the
coefficient of dilatancy, which is related to the critical state
parameter M as defined by D=(A—x)/{M(1+e;)} (e. g. Shibata,
1963; Sekiguchi and Ohta, 1977).

The plastic part of stretching tensor DP; is expressed by a

flow theory as
o 1L 1S 1= 1Sy 1= 5 @
Dij :Z{E?—Eﬂau}{E?_Eﬂﬁkl}Tkl ’

with 7= ![S,.J.S,.j /2 and B=(M-q/p)/J3 , and
h= p'ﬁ /(\/3D) is the hardening modulus.

The Cam-clay constitutive relation is expressed as

J
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where K(=(1+e)p'/x) is the bulk modulus and
G(: 3(1- 2V)]Z/{2(1 +v)}) is the shear modulus, where v is

Poisson’s ratio.
3. Finite element analysis for shear band formation

The following section presents the numerical results
obtained on shear band formation of rectangular clay block
under plane strain compression loadings. The objective of this
section is to investigate that the mechanism of deformation
from initiation of strain localization to formation of shear

band was demonstrated by using finite element method.
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3.1 Finite Element Method, Boundary Conditions
and Their Modeling
The finite element program used in this study was coded
according to the method proposed by Sandhu and Wilson \g 1F
(1969). The type of solid element used for deformation was a
second order iso-parametric plane strain element with 8 nodal medium mesh without imperfection
- /A~ the coarsest mesh
points, and a first order iso-parametric element with 4 nodal — A~ coarser mesh
. . . - - medium mesh with imperfection
points was used for pore water pressure. The analysis with — @~ finer mesh
these elements results in better precision than that with lower - [ the finest mesh
order elements, such as constant strain triangular element. 0 . L . L
0 2 4

Using these elements can reduce the number of nodal point
and shorten analytical time accordingly.

We consider a rectangular clay specimen with initial
width By = 50 mm and with initial height Hy = 100 mm shown
in Fig. 2. The specimen is subjected to plane strain condition.
The specimen is discretized into 15 x 30 (=480, the coarsest
mesh), 18 x 36 (= 648, coarser mesh), 24 x 48 (=1152,
medium mesh), 30 x 60 (=1800, finer mesh), and 36 x 72
(=2592, the finest mesh) elements of equal size to examine the
influence of the difference of meshes on the analytical results.
As shown in Fig. 2 the top and bottom ends of the specimen
are frictionless, while the side face is free. On the top
boundary, the displacement is prescribed in the vertical
direction and is free in the horizontal direction. The bottom
boundary is fixed only the vertical direction, such that the
horizontal displacement is allowed. But the center of bottom
is fixed to restrict a rigid motion. Concerning the drainage
conditions, the boundary of specimen is assumed to be
undrained. An initial imperfection, such as a very small
scratch, was made at a top right corner of the specimens to
facilitate localization of strain (see Fig. 3). In laboratory tests,
scratches were made easily at corners of the specimen by
accident.

The clay specimen is in a normally consolidated state.

Here and in what follows, the soil parameters of the specimen

£(%)

Fig. 4 Stress ratio-strain curves

are taken to be 4 = 0.155, = 0.021, v=0.333, M= 1.650,
and ey = 1.087 which were determined from experimental
results from triaxial tests on Kawasaki Clay, as reported by
Nakase and Kamei (1983) and Nakase et al. (1988). The
coefficient of permeability which is used in the finite element
program were assumed to be £ = 1.0 x 10~°m/s.

3.2 Numerical results based on finite element
method and discussions

We call the stress ratio-strain curve of an ideal specimen
without imperfection the main path and this curve is shown in
Fig. 4. The main path computed using all meshes agreed, and
we illustrate only the main path for medium mesh. In the main
path, the stress ratio increased rapidly with increasing an axial
strain at the beginning of loading. The stress ratio increased
consistently, but its increment quantity gradually decreased
when the axial strain exceeded 1%. The ideal specimen was
compressed uniformly during loading, and no localization of
strain occurred. Curves of specimens with initial imperfection
are also shown in Fig. 4. The stress ratio-strain curves of the

specimen with initial imperfection are here called the

3
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Fig. 7 Process of deformation using medium mesh

bifurcation path. The bifurcation paths almost correspond with
the main path up to an axial strain of 1.4%. After peaking at
an axial strain of 2.0%, the stress ratio gradually decreased.
There is no significant mesh size dependency on the stress
ratio-strain curves. The value of ¢/p” of specimen with
imperfection at peak was underestimated by 21% compared to
that of the ideal specimen. This shows that specimens may
only reach 79% of the maximum strength when the initial
imperfections exist.

Figures 5~9 show processes of deformation of clay
specimen with the coarsest, coarser, medium, finer, and the

finest meshes. Specimens were compressed uniformly up to &,
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= 1.46%. When the specimens were compressed further and
axial strain increased, their upper parts moved slightly to the
left. The deformation of the specimen then changed from
uniform deformation to non-uniform deformation at axial
strains over 2.29%. In the coarsest mesh, slip surface was
observed clearly as localized deformation of finite meshes at
& = 5.00%. Slip surface was formed with smaller axial strain
as meshes became finer. In the finest mesh, slip surface was
observed clearly at g, = 3.54%.

In the specimen, localization of strain must have
occurred before the localization of deformation. To investigate

the localization of strain, transitions of maximum shear strain
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contour using each mesh are shown in Figs. 10~14. The
maximum shear strain, ju.., 1S normalized using the axial
strain, because the localization of strain results from the
distribution of strain in the specimen. In these figures, it is
apparent that the maximum shear strain locally increased in
the right top and left lower corners of the specimen at axial
strain of 1.46%, which seemed to be the uniform deformation
from Figs. 5~9. This phenomenon was promoted by the

presence of imperfection. In each mesh, localized regions of

strain of Jua/& = 1.0~2.0 were connected by a band at &,
2.29%. The value of j./& in the banded zone increased

markedly with an increasing axial strain. The widths of the

banded zone for the coarsest and coarser mesh were greater

than those of medium, finer and the fine mesh. The banded

~

zone of Jpa/& = 3.0 was formed at g, 2.7% in medium,
finer and the finest mesh, and was recognized as shear band
formation. In the coarsest and coarser mesh, the shear band
was formed later and was observed at g = 3.1 ~ 3.5%.
Although the axial strain at which shear band was formed
decreased when mesh became finer, its increment quantity
gradually decreased when mesh became finer than medium
mesh. However, the inclination angles of the shear band in all
three cases agreed well, regardless of the differing mesh sizes.

The shear bands were formed without passing through the
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Fig. 14 Transition of maximum shear strain contour using the finest mesh
imperfection, and hence the position of the scratch scarcely coarser mesh, the value of }./& in the banded zone

influenced the position of the shear bands. In the coarsest and increased slowly because the banded zone of strain
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localization formed was broad. The shear band resulting from
medium mesh almost corresponded with that of finer and the
finest mesh. Consequently, simulation of clear shear bands
can be made by making the mesh sufficiently fine. In this
analysis it was sufficient if the specimen was discretized into
24 x 48 elements.

To investigate influence axial strain at which shear band
was formed (gqf) on differing mesh sizes, relationship
normalized by axial strain at the peak of stress ratio (g,) and
the number of elements is shown in Fig. 15. Although the
value of egyr / €, decreased markedly with an increasing the
number of elements, its increment quantity gradually
decreased when the number of elements exceeded 1500. It is
non-effective to divide a specimen with the number of
element more than 1500 because analytical time gets longer
when the number of element increases.

In the viewpoint of balance between shortening of an
analytical time and precision of an analysis result, it was
sufficient if the specimen was discretized into 24 x 48

elements in this analysis

4. Conclusions

The mechanism of deformation from initiation of strain
localization to formation of shear band was simulated using
finite element analysis. The inclination angles of the shear
bands based on the results of finite element analysis agreed
well, regardless of differing mesh sizes. Differing meshes
influenced the width of shear bands and the percentage of

shear strain at the shear bands.
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