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Abstract. We give a chracterization of all parallel isometric immersions of a
quaternionic space form into a real space form by the extrinsic shape of some kind
of Frenet curves of order 2 which is closely related to the quaternionic Kähler
structure.

1. Introduction

Let f : M → M̃ be an isometric immersion of a Riemannian manifold M into an

ambient Riemannian manifold M̃ . It is possible in some cases to know the shape of
the submanifold M by examining the extrinsic shape of curves in the submanifold
M .

A smooth curve γ = γ(s) in a Riemannian manifold M parametrized by its
arclength s is called a Frenet curve of proper order 2 if there exist a field of or-
thonormal frames {V1 = γ̇, V2} along γ and a positive smooth function κ = κ(s)
satisfying that

(1.1) ∇γ̇V1(s) = κ(s)V2(s) and ∇γ̇V2(s) = −κ(s)V1(s),

where ∇γ̇ denotes the covariant differentiation along γ with respect to the Rie-
mannian connection ∇ of M . The function κ and the orthonormal frame {V1, V2}
are called the curvature and the Frenet frame of γ, respectively. A Frenet curve of
proper order 2 with constant curvature k(> 0) is called a circle of curvature k. We
regard a geodesic as a circle of null curvature. A curve is said to be a Frenet curve
of order 2 if it is either a geodesic or a Frenet curve of proper order 2.

In their paper [6], K. Nomizu and K. Yano proved that a submanifold M is an

extrinsic sphere of M̃ , namely M is a totally umbilic submanifold with parallel
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mean curvature vector in M̃ , if and only if there exists some positive number k

such that all circles of curvature k in M are circles in the ambient space M̃ .
Motivated by this result, the author showed that M is a totally geodesic subman-

ifold of M̃ if and only if there exists some nonconstant positive smooth function
κ = κ(s) such that all Frenet curves of proper order 2 of curvature κ in M are

Frenet curves of order 2 in the ambient space M̃([11]). Moreover, in [5, 12], S.
Maeda and the author considered a class of Frenet curves of order 2 in a Kähler
manifold M which satisfies the condition that the Frenet frame {V1, V2} spans a
holomorphic plane, that is, V2 = JV1 or V2 = −JV1 for the complex structure J of
M . By using such a class of curves they characterized all totally geodesic Kähler
immersions of Kähler manifolds into an ambient Kähler manifold and all parallel
isometric immersions of a complex space form into a real space form.

The purpose of the present paper is to provide a characterization of every par-
allel isometric immersion of a quaternionic space form Mn(c ; H) into a real space

form M̃4n+p(c̃ ; R) by observing the extrinsic shape of quaternionic Frenet curves in
Mn(c ; H), which is a particular class of Frenet curves of order 2 closely related to
the quaternionic Kähler structure. That is, we shall prove the following theorem:

Theorem. Let Mn be a quaternionic Kähler manifold of quaternionic dimension

n and f an isometric immersion of Mn into a real space form M̃4n+p(c̃ ; R). If
there exists a positive smooth function κ satisfying that f maps every quaternionic

Frenet curve γ of curvature κ in Mn to a plane curve in M̃4n+p(c̃ ; R), then the
immersion f is rigid. Moreover, f is a parallel immersion and locally congruent to
one of the following:

(1) f is a totally geodesic immersion of Mn = Hn = R4n into M̃4n+p(c̃ ; R) =
R4n+p, where c̃ = 0,

(2) f is a totally umbilic immersion of Mn = Hn = R4n into M̃4n+p(c̃ ; R) =
RH4n+p(c̃), where c̃ < 0,

(3) f is a parallel immersion defined by

f = f2 ◦ f1 : Mn = HP n(c)
f1−→ S2n2+3n−1((n + 1)c/(2n))

f2−→ M̃4n+p(c̃ ; R),

where f1 is the first standard minimal immersion, f2 is a totally umbilic
immersion and (n + 1)c/(2n) ≥ c̃.

This theorem is a quaternionic version of the preceding results in [5, 12]. The
accurate definition of a quaternionic Frenet curve will be given in section 2. In
section 3, we review fundamental equations in submanifold theory and the notion
of isotropic immersions. In section 4, we discuss the rigidity of constant isotropic
parallel immersions of a quaternionic space form Mn(c ; H) into a real space form

M̃4n+p(c̃ ; R). The proof of our theorem will be given in section 5.

Acknowledgement. The author wishes to express his appreciation to Professor S.
Maeda for his constant encouragement and valuable suggestions.
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2. Quaternionic Frenet curves in quaternionic Kähler manifolds

Let M be a Riemannian manifold of real dimension 4n with Riemannian metric
〈 , 〉. A quaternionic Kähler structure J on M is a rank 3 vector subbundle of the
bundle of endmorphism of the tangent bundle TM with the following properties.

(1) For each point x ∈ M there exist an open neighborhood U of x in M and
sections J1, J2, J3 of the restriction J |U over U such that
(a) each Jr (r = 1, 2, 3) is an almost Hermitian structure on U , that is,

J 2
r = −id and 〈JrX,Y 〉 + 〈X, JrY 〉 = 0

for all vector fields X and Y on U .
(b) JrJr+1 = Jr+2 = −Jr+1Jr (r mod 3) for r = 1, 2, 3.

(2) The condition that ∇XJ is a section of J holds for each vector field X on
M and section J of the bundle J .

This triple {J1, J2, J3} is called a canonical local basis of J . For each canonical
local basis of quaternionic Kähler structure, there exist three 1-forms q1, q2 and q3

on U satisfying

(2.1) ∇XJr = qr+2(X)Jr+1 − qr+1(X)Jr+2 (r mod 3)

for each vector field X on U and r = 1, 2, 3. A Riemannian manifold M of real
dimension 4n with a quaternionic Kähler structure J is called an n-dimensional
quaternionic Kähler manifold.

We say that an n-dimensional connected quaternionic Kähler manifold M is an
n-dimensional quaternionic space form of quaternionic sectional curvature c (∈ R)
if the Riemannian sectional curvature of M is equal to c for all tangent 2-planes
spanned by X ∈ TxM and JX with J ∈ Jx at each point x ∈ M . We donote it by
Mn(c ; H). The standard model of a quaternionic space form is locally congruent to
one of a quaternionic projective space HP n(c) of quaternionic sectional curvature
c (> 0), a quaternionic Euclidean space Hn and a quaternionic hyperbolic space
HHn(c) of quaternionic sectional curvature c (< 0).

Let γ = γ(s) be a Frenet curve of proper order 2 in a quaternionic Kähler
manifold M which satisfies (1.1). For this curve γ we put

τγ =

√√√√ 3∑
r=1

〈V1, JrV2〉2 .
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Since we have from (1.1) and (2.1)

d

ds
τ 2
γ = 2

3∑
r=1

〈V1, JrV2〉
{
〈∇γ̇V1, JrV2〉 + 〈V1, (∇γ̇Jr)V2〉 + 〈V1, Jr(∇γ̇V2)〉

}
= 2

3∑
r=1

〈V1, JrV2〉
{
〈κV2, JrV2〉

+ 〈V1, qr+2(γ̇)Jr+1V2 − qr+1(γ̇)Jr+2V2〉 + 〈V1,−κJrV1〉
}

= 2
3∑

r=1

qr+2(γ̇)〈V1, JrV2〉〈V1, Jr+1V2〉 − 2
3∑

r=1

qr+1(γ̇)〈V1, JrV2〉〈V1, Jr+2V2〉

= 0,

we see that τγ is constant along γ. We call τγ structure torsion of γ (see [1]). Then
it is easy to prove that for the structure torsion τγ of γ satisfying (1.1) the following
two conditions are mutually equivalent:

(1) τγ = 1,
(2) there exist a smooth section J of J with J2 = −id such that

V2(s) = Jγ(s)V1(s) for each s.

A Frenet curve γ of proper order 2 in a quaternionic Kähler manifold M is said to be
a quaternionic Frenet curve if it satisfies one (hence both) of the conditions above.
A quaternionic Frenet curve of constant curvature k(> 0) is called a quaternionic
circle of curvature k. We regard a geodesic as a quaternionic circle of null curvature.
Thus the notion of quaternionic Frenet curves is a natural extension of that of
quaternionic circles(see [9]).

We note that for an arbitrary unit tangent vector X at any point x of M and
for an arbitrary J ∈ Jx with J2 = −id, there exists a unique quaternionic Frenet
curve γ = γ(s) defined on some open interval (−ε, ε) ⊂ R such that

γ(0) = x, γ̇(0) = V1(0) = X and V2(0) = JX.

3. Isotropic immersions

We recall a few fundamental notions in submanifold theory. Let M , M̃ be Rie-

mannian manifolds and f : M → M̃ an isometric immersion. We identify a vector

X of M with a vector f∗(X) of M̃ . The Riemannian metrics on M , M̃ are denoted

by the same notation 〈 , 〉. We denote by ∇ and ∇̃ the covariant differentiations

of M and M̃ , respectively. Then the formulae of Gauss and Weingarten are

∇̃XY = ∇XY + σ(X,Y ),

∇̃Xξ = −AξX + DXξ,

where σ, Aξ and D denote the second fundamental form of f , the shape operator
in the direction of ξ and the covariant differentiation in the normal bundle, respec-
tively. We define the covariant differentiation ∇̄ of the second fundamental form σ
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with respect to the connection in (tangent bundle) ⊕ (normal bundle) as follows:

(3.1) (∇̄Xσ)(Y, Z) = DX(σ(Y, Z)) − σ(∇XY, Z) − σ(Y,∇XZ).

If ∇̄σ = 0, we say that the isometric immersion f is parallel.

A real space form M̃n(c̃ ; R) is an n-dimensional Riemannian manifold of constant
sectional curvature c̃, which is locally congruent to either a Euclidean space Rn, a
standard sphere Sn(c̃) or a real hyperbolic space Hn(c̃) according as the curvature c̃
is zero, positive or negative. In case that the ambient manifold is a real space form

M̃n(c̃ ; R), the equations of Gauss, Codazzi and Ricci for an isometric immersion

f : M → M̃n(c̃ ; R) can be written as follows:

〈R(X,Y )Z, W 〉 =c̃ (〈X,W 〉〈Y, Z〉 − 〈X,Z〉〈Y,W 〉)
+ 〈σ(X,W ), σ(Y, Z)〉 − 〈σ(X,Z), σ(Y,W )〉,

(3.2)

(∇̄Xσ)(Y, Z) = (∇̄Y σ)(X,Z),(3.3)

〈R⊥(X,Y )ζ, ξ〉 = 〈[Aζ , Aξ]X, Y 〉(3.4)

for vector fields X,Y, Z,W of M and normal vector fields ζ, ξ, where R, R⊥ repre-
sent the curvature tensors for ∇, D respectively.

For a unit vector X ∈ TxM , σ(X,X) is called the normal curvature vector

determined by X ∈ TxM . An isometric immersion f : M → M̃ is said to
be (λx-)isotropic at x ∈ M if there exists a nonnegative constant λx such that
‖σx(X,X)‖ = λx for every unit tangent vector X ∈ TxM . If there exists a non-
negative constant λ satisfying that ‖σx(X,X)‖ = λ for every point x ∈ M and

for every unit tangent vector X ∈ TxM , then f : M → M̃ is called a constant
(λ-)isotropic immersion.

The first normal space at the point x of M is defined as the subspace N1
x(M) of

NxM spanned by the image of the second fundamental form at x, that is,

N1
x(M) = SpanR{σ(X,Y ); X,Y ∈ TxM} ⊂ NxM.

If the dimension of the first normal space does not depend on x ∈ M , then the first
normal space

N1(M) =
⋃

x∈M

N1
x(M)

is a subbundle of the normal bundle NM .
The discriminant ∆x at x ∈ M is defined by

∆x = K(X,Y ) − K̃(X,Y ),

where K(X,Y ) (resp. K̃(X,Y )) represents the sectional curvature of the plane

spanned by orthonormal vectors X,Y ∈ TxM for M (resp. for M̃).
The following two lemmas are due to B. O’Neill ([7]):

Lemma 1. Let M , M̃ be Riemannian manifolds and f : M → M̃ an isometric
immersion. Then the following are mutually equivalent.

(1) f is λx-isotropic at x ∈ M for some λx(≥ 0).
(2) 〈σ(X,X), σ(X,Y )〉 = 0 for an arbitrary orthogonal pair X,Y ∈ TxM .
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(3) 〈σ(X,Y ), σ(Z,W )〉 + 〈σ(X,Z), σ(W,Y )〉 + 〈σ(X,W ), σ(Y, Z)〉
= λ2

x(〈X,Y 〉〈Z,W 〉 + 〈X,Z〉〈W,Y 〉 + 〈X,W 〉〈Y, Z〉)
for some λx(≥ 0) and for any vectors X,Y, Z,W ∈ TxM .

Lemma 2. Let f be an isometric immersion of M into M̃ . Suppose that f is
λx (> 0)-isotropic at each point x of M and the discriminant ∆x at x ∈ M is
constant. Then we have

− n + 2

2(n − 1)
λ2

x ≤ ∆x ≤ λ2
x.

Moreover,

(1) ∆x = λ2
x ⇐⇒ f is umbilic at x ∈ M ⇐⇒ dim N1

x(M) = 1,

(2) ∆x = − n + 2

2(n − 1)
λ2

x ⇐⇒ f is minimal at x ∈ M ⇐⇒ dim N1
x(M) =

n(n + 1)

2
− 1,

(3) − n + 2

2(n − 1)
λ2

x < ∆x < λ2
x ⇐⇒ dim N1

x(M) =
n(n + 1)

2
.

We note that these lemmas are obtained by quite algebraic argument on the

linear mapping of TxM into Tf(x)M̃ .

4. The rigidity of constant isotropic parallel immersions of a
quaternionic space form into a real space form

We have the following Lemma ([3, 4, 10]):

Lemma 3. Let M be a quaternionic n-dimensional connected quaternionic Käher
manifold with canonical local basis {J1, J2, J3} which is isometrically immersed into

a real space form M̃4n+p(c̃ ; R) through an immersion f . Then the following two
conditions are equivalent:

(1) The isometric immersion f is parallel.
(2) σ(JrX, JrY ) = σ(X,Y ) for all X,Y ∈ TM and r = 1, 2, 3.

Now, we shall prove the following proposition:

Proposition 1. Let M be a connected open submanifold of an n-dimentional
quaternionic space form Mn(c ; H) of constant quaternionic sectional curvature c
and f a constant (λ-)isotropic parallel immersion of M into a real space form

M̃4n+p(c̃ ; R) of constant sectional curvature c̃. Then the immersion f is locally
rigid.

Proof. The rigidity of totally umbilic submanifolds of a real space form M̃4n+p(c̃ ; R)
is well-known. Hence we may assume that f is not totally umbilic. Moreover, we
have only to study in case that M is a connected open dense subset of Mn(c ; H)
which has no umbilic point because of continuity. We denote by σ the second
fundamental form of f . Since the immersion f is parallel, the first normal space
N1(M) is invariant under parallel translation with respect to the connection in
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the normal bundle and the dimension of N1(M) is constant on M . In fact, let x
and y be arbitrary two points of M . Let γ be a curve from x to y in M . Take
an orthonormal basis {X1, . . . , X4n} for TxM and parallel translate this frame to
y along γ with respect to the Riemannian connection ∇ of M . Thus we have
orthonormal frame field parallel along γ, which is denoted by {Y1, . . . , Y4n}. Then
σ(Yi, Yj) is parallel along γ with respect to the normal connection D, because

Dγ̇(σ(Yi, Yj)) = (∇̄γ̇σ)(Yi, Yj) + σ(∇γ̇Yi, Yj) + σ(Yi,∇γ̇Yj) = 0.

Noting that the set {σ(Yi(y), Yj(y)); i, j = 1, . . . , 4n} spans N1
y (M), we see that

the parallel translation along any γ from x to y with respect to D gives a linear
isomorphism of N1

x(M) to N1
y (M). Therefore the dimension of N1(M) is constant

and N1(M) is invariant under parallel translation. By celebrated Theorem of J.
Erbacher [2], we may assume that the first normal space N1

x(M) coinsides with the
normal space at any point x ∈ M .

Let R denote the curvature tensor of M . From the equation of Gauss (3.2) and
Lemma 1(3) we have

(4.1)

3〈σ(X,Y ), σ(Z,W )〉
= 〈R(Z,X)Y,W 〉 + 〈R(Z, Y )X,W 〉
− c̃{2〈X,Y 〉〈Z,W 〉 − 〈Z, Y 〉〈X,W 〉 − 〈Z,X〉〈Y,W 〉}
+ λ2{〈X,Y 〉〈Z,W 〉 + 〈X,Z〉〈W,Y 〉 + 〈X,W 〉〈Y, Z〉}

for all vector fields X,Y, Z and W tangent to M . On the other hand, the curvature
tensor R of M is given by

(4.2)

R(X,Y )Z =
c

4

{
〈Y, Z〉X − 〈X,Z〉Y

+
3∑

r=1

(
〈JrY, Z〉JrX − 〈JrX,Z〉JrY + 2〈X, JrY 〉JrZ

)}
for all vector fields X,Y and Z tangent to M , where {J1, J2, J3} denotes the canon-
ical local basis of quaternionic Kähler structure of M ⊂ Mn(c ; H). The equations
(4.1) and (4.2) yield the following:

(4.3)

〈σ(X,Y ), σ(Z,W )〉

=
1

3

{
λ2 + 2

( c

4
− c̃

)}
〈X,Y 〉〈Z,W 〉

+
1

3

{
λ2 −

( c

4
− c̃

)}
{〈X,Z〉〈W,Y 〉 + 〈X,W 〉〈Y, Z〉}

+
c

4

3∑
r=1

{〈JrX,Z〉〈W,JrY 〉 + 〈JrX,W 〉〈JrY, Z〉}

for all vector fields X,Y, Z and W tangent to M .
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Now we investigate the first normal space N1
x(M) at the point x ∈ M . We choose

an orthonormal basis

{e1, . . . , en, en+1 = J1e1, . . . , e2n = J1en,

e2n+1 = J2e1, . . . , e3n = J2en, e3n+1 = J3e1, . . . , e4n = J3en}

of TxM . As our immersion f is parallel, Lemma 3 implies that the 2n2 −n vectors

(4.4)

σ(ek, ek) for k = 1, . . . , n,

σ(ei, ej) for 1 ≤ i < j ≤ n

and σ(ei, ern+j) for 1 ≤ i < j ≤ n, r = 1, 2, 3

span the first normal space N1
x(M). The equaion (4.3) yeilds the following orthog-

onal relations:

(4.5) 〈σ(ei, ei), σ(ej, ej)〉 =
1

3

{
λ2 + 2

( c

4
− c̃

)}
+

2

3

{
λ2 −

( c

4
− c̃

)}
δij

for i, j = 1, . . . , n.

(4.6) 〈σ(ei, ei), σ(ek, el)〉 = 0

for i = 1, . . . , n, 1 ≤ k < l ≤ n.

(4.7) 〈σ(ei, ei), σ(ek, ern+l)〉 = 0

for i = 1, . . . , n, 1 ≤ k < l ≤ n, r = 1, 2, 3.

(4.8) 〈σ(ei, ej), σ(ek, el)〉 =
1

3

{
λ2 −

( c

4
− c̃

)}
δikδjl

for 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n.

(4.9) 〈σ(ei, ej), σ(ek, ern+l)〉 = 0

for 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n, r = 1, 2, 3.

(4.10) 〈σ(ei, ern+j), σ(ek, esn+l)〉 =
1

3

{
λ2 −

( c

4
− c̃

)}
δikδrn+j,sn+l

for 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n, r, s = 1, 2, 3.

It follows from (4.2) that we have

〈R(ei, ej)ej, ei〉 =
c

4
for 1 ≤ i < j ≤ n,

so that

(4.11) ∆ = ∆x =
c

4
− c̃
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at x ∈ M . Hence we may apply Lemma 2 to the linear subspace of TxM which is

generated by {e1, . . . , en} because λ > 0. Suppose that ∆ =
c

4
− c̃ = λ2. Then the

equations (4.5), (4.8) and (4.10) reduce to

〈σ(ei, ei), σ(ej, ej)〉 = λ2 for i, j = 1, . . . , n

and
〈σ(ei, ej), σ(ek, el)〉 = 〈σ(ei, ern+j), σ(ek, esn+l)〉 = 0

for 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n, r, s = 1, 2, 3.

Hence we have
σ(ei, ei) = λξ for i = 1, . . . , n

and
σ(ei, ej) = σ(ei, ern+j) = 0 for 1 ≤ i < j ≤ n, r = 1, 2, 3,

where ξ is a unit normal vector of M in M̃4n+p(c̃ ; R). These equalities imply

that the immersion f : M → M̃4n+p(c̃ ; R) is totally umbilic. Thus we have a
contradiction. Hence we have

(4.12) λ2 −
( c

4
− c̃

)
6= 0

and our discussion is divided into the following two cases: (A) ∆ = − n + 2

2(n − 1)
λ2,

(B) − n + 2

2(n − 1)
λ2 < ∆ < λ2.

First, we investigate the case (B). In this case, by Lemma 2, we have

dim SpanR{σ(ei, ej)}i,j=1,...,n =
n(n + 1)

2
.

This, combined with (4.5), . . . , (4.10) and (4.12), means that the 2n2 − n vectors

(4.4) form a basis of the normal space at each point x of M in M̃4n+p(c̃ ; R). Besides,
we have by Lemma 3

4n∑
a=1

σ(ea, ea) = 4
n∑

i=1

σ(ei, ei) 6= 0,

so we find the immersion f : M → M̃4n+p(c̃ ; R) is not minimal. Let us use the
Gram-Schmidt orthonormalization for the linearly indpendent system of vectors
{σ(ei, ei)}i=1,...,n in order to obtain an orthonormal basis of the first normal space
at each point of M . We denote by θ (0 < θ < π) the angle between the normal
curvature vectors σ(ei, ei) and σ(ej, ej) (i 6= j), so that by (4.5)

(4.13) 〈σ(ei, ei), σ(ej, ej)〉 =
1

3

{
λ2 + 2

( c

4
− c̃

)}
= λ2 cos θ.

The angle θ dose not depend on the choice of i, j (i 6= j) and x ∈ M , because the
immersion f is constant isotropic. Put

f1 = σ(e1, e1), e1̃ =
f1

‖f1‖
=

1

λ
σ(e1, e1)
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and

(4.14) fk = σ(ek, ek) −
k−1∑
l=1

〈σ(ek, ek), el̃〉el̃ , ek̃ =
fk

‖fk‖

for 2 ≤ k ≤ n. Then, by induction we can verify

(4.15)

fk = σ(ek, ek) −
cos θ

1 + (k − 2) cos θ

k−1∑
l=1

σ(el, el),

‖fk‖2 =
λ2(1 − cos θ){1 + (k − 1) cos θ}

1 + (k − 2) cos θ

and hence

(4.16)

ek̃ =
1

λ

√
1 + (k − 2) cos θ

(1 − cos θ){1 + (k − 1) cos θ}

×

{
σ(ek, ek) −

cos θ

1 + (k − 2) cos θ

k−1∑
l=1

σ(el, el)

}

for k = 1, . . . , n. On the other hand, since
c

4
− c̃ =

λ2

2
(3 cos θ − 1) from (4.13),

we get

‖σ(ei, ej)‖2 = ‖σ(ei, ern+j)‖2 =
λ2 (1 − cos θ)

2
by (4.8) and (4.10). Therefore relations (4.5), . . . , (4.10) show that the vectors

ek̃,

√
2

λ
√

1 − cos θ
σ(ei, ej) and

√
2

λ
√

1 − cos θ
σ(ei, ern+j)

for k = 1, . . . , n, 1 ≤ i < j ≤ n, r = 1, 2, 3 form an orthonormal system.
Now, using above vectors, we choose a local field of orthonormal frames

e1, . . . , e4n, e1̃, . . . , ep̃ (p = 2n2 − n)

in M̃4n+p(c̃ ; R) in such a way that, restricted to M , e1, . . . , en, en+1 = J1e1, . . . ,
e2n = J1en, e2n+1 = J2e1, . . . , e3n = J2en, e3n+1 = J3e1, . . . , e4n = J3en are tan-
gent to M , e1̃, . . . , eñ are defined by (4.16), and e]n+1, . . . , ep̃ are defined by

(4.17) e](i,j) =

√
2

λ
√

1 − cos θ
σ(ei, ej) for 1 ≤ i < j ≤ n,

(4.18) e ^(i,rn+j)
=

√
2

λ
√

1 − cos θ
σ(ei, ern+j) for 1 ≤ i < j ≤ n, r = 1, 2, 3,

where we set

(i, j) = i +
1

2
(j − i) {2n + 1 − (j − i)}

and

(i, rn + j) = i +
1

2
(j − i) {2n + 1 − (j − i)} +

r

2
n(n − 1)
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for i < j, r = 1, 2, 3.
We shall compute connection forms of the normal bundle to see the rigidity. We

use the following convention on the ranges of indices unless otherwise stated:

A,B,C = 1, . . . , 4n, 1̃, . . . , p̃ (p = 2n2 − n); i, j, k, l,m, q = 1, . . . , n;

a, b, c, d = 1, . . . , 4n; α, β = 1̃, . . . , p̃; r, s, t = 1, 2, 3.

With respect to the frame field of M̃4n+p(c̃ ; R) chosen as above, let

ω1, . . . , ω4n, ω1̃, . . . , ωp̃ (p = 2n2 − n)

be the field of dual frames. Then the structure equations of M̃4n+p(c̃ ; R) are given
by

dωA = −
∑

ωA
B ∧ ωB,

ωA
B + ωB

A = 0,

dωA
B = −

∑
ωA

C ∧ ωC
B + c̃ ωA ∧ ωB.

Restricting these forms to M , we have the structure equations of the immersion:

ωα = 0,

ωα
a =

∑
hα

abω
b,

hα
ab = hα

ba,

dωa = −
∑

ωa
b ∧ ωb,

ωa
b + ωb

a = 0,

dωa
b = −

∑
ωa

c ∧ ωc
b + Ωa

b ,

Ωa
b =

1

2

∑
Ra

bcdω
c ∧ ωd,

Ra
bcd = c̃ (δa

c δbd − δa
dδbc) +

∑
(hα

ach
α
bd − hα

adh
α
bc).

The second fundamental form σ can be described as

(4.19)

σ(ea, eb) =
∑

α

hα
abeα

=
∑

k

hk̃
abek̃ +

∑
l<m

h
](l,m)
ab e ](l,m)

+
∑

r

∑
l<m

h
^(l,rn+m)

ab e ^(l,rn+m)
.

The equation (3.1) has the representation

(4.20)
∑

hα
abcω

c = dhα
ab −

∑
hα

acω
c
b −

∑
hα

cbω
c
a +

∑
hβ

abω
α
β .

Then we have

(4.21) hα
abc = hα

acb.

Furthermore, the following relations hold:

(4.22) ωk
rn+i = −ωrn+k

i = ωi
rn+k ,

(4.23) ωrn+k
rn+i = ωk

i ,
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(4.24) ω
(r+1)n+k
rn+i = qr+2δ

k
i − ω

(r+2)n+k
i (r mod 3),

where qr+2 are the 1-forms given in (2.1),

(4.25) ω
(r+1)n+k
rn+i = ω

(r+1)n+i
rn+k = −ωrn+k

(r+1)n+i (r mod 3).

In fact, we have

(4.26) ∇ern+i =
∑

a

ωa
rn+iea =

∑
k

ωk
rn+iek +

∑
s,k

ωsn+k
rn+i esn+k.

On the other hand, by using (2.1) we see

(4.27)

∇(Jrei) = (∇Jr) ei + Jr∇ei

= qr+2Jr+1ei − qr+1Jr+2ei + Jr

(∑
a

ωa
i ea

)
= qr+2e(r+1)n+i − qr+1e(r+2)n+i

+
∑

k

ωk
i Jrek +

∑
k

ωrn+k
i Jrern+k

+
∑

k

ω
(r+1)n+k
i Jre(r+1)n+k +

∑
k

ω
(r+2)n+k
i Jre(r+2)n+k

= qr+2e(r+1)n+i − qr+1e(r+2)n+i

+
∑

k

ωk
i ern+k −

∑
k

ωrn+k
i ek

+
∑

k

ω
(r+1)n+k
i e(r+2)n+k −

∑
k

ω
(r+2)n+k
i e(r+1)n+k

= −
∑

k

ωrn+k
i ek +

∑
k

ωk
i ern+k

+
∑

k

(
qr+2δ

k
i − ω

(r+2)n+k
i

)
e(r+1)n+k

+
∑

k

(
−qr+1δ

k
i + ω

(r+1)n+k
i

)
e(r+2)n+k (r mod 3).

Thus the relations (4.22), (4.23) and (4.24) are derived from (4.26) and (4.27). The
relation (4.25) follows from (4.22) and (4.24).

We here determine all hα
ab. Thanks to Lemma 3, we have

σ(Jrei, Jrej) = σ(ei, ej),

σ(ei, Jrej) = −σ(Jrei, ej),

σ(Jrei, Jr+1ej) = −σ(ei, JrJr+1ej) = −σ(ei, Jr+2ej) (r mod 3),

that is,

(4.28) hα
rn+i,rn+j = hα

ij ,

(4.29) hα
i,rn+j = −hα

rn+i,j ,
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(4.30) hα
rn+i,(r+1)n+j = −hα

i,(r+2)n+j (r mod 3).

For i, j (i < j) we see from (4.6), (4.16)

hk̃
ij = 〈σ(ei, ej), ek̃〉 = 0.

Using (4.14) and (4.15), we have

hk̃
kk = 〈σ(ek, ek), ek̃〉 = ‖fk‖ = λ

√
(1 − cos θ){1 + (k − 1) cos θ}

1 + (k − 2) cos θ
.

For i, k with i > k, by (4.13) and (4.15)

hk̃
ii = 〈σ(ei, ei), ek̃〉

=
1

‖fk‖
〈σ(ei, ei), σ(ek, ek) −

cos θ

1 + (k − 2) cos θ

k−1∑
l=1

σ(el, el)〉

=
1

‖fk‖

{
λ2 cos θ − (k − 1)λ2 cos2 θ

1 + (k − 2) cos θ

}
=

1

λ

√
1 + (k − 2) cos θ

(1 − cos θ){1 + (k − 1) cos θ}

{
λ2 cos θ(1 − cos θ)

1 + (k − 2) cos θ

}
=

λ cos θ
√

1 − cos θ√
{1 + (k − 1) cos θ}{1 + (k − 2) cos θ}

.

Hence we get

(4.31) hk̃
ij =



λ

√
(1 − cos θ){1 + (k − 1) cos θ}

1 + (k − 2) cos θ
for k = i = j,

λ cos θ
√

1 − cos θ√
{1 + (k − 1) cos θ}{1 + (k − 2) cos θ}

for k < i = j,

0 otherwise.

Similar computation gives the following:

(4.32) h
](l,m)
ij =


λ
√

1 − cos θ√
2

δl
iδ

m
j for i < j, l < m,

0 for i = j, l < m,

(4.33) h
^(l,sn+m)

i,rn+j =


λ
√

1 − cos θ√
2

δl
iδ

sn+m
rn+j for i < j, l < m,

0 for i = j, l < m,
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(4.34) h
^(l,rn+m)

ij = 0 for i ≤ j, l < m,

(4.35) hk̃
i,rn+j = h

](l,m)
i,rn+j = 0 for i < j, l < m.

Since our immersion f is parallel and the angle θ is constant on M , the equation
(4.20) reduces to ∑

hβ
abω

α
β =

∑
hα

acω
c
b +

∑
hα

cbω
c
a,

that is,

(4.36)

∑
β

hβ
ijω

α
β =

∑
q

hα
iqω

q
j +

∑
t,q

hα
i,tn+qω

tn+q
j

+
∑

q

hα
qjω

q
i +

∑
t,q

hα
tn+q,jω

tn+q
i ,

(4.37)

∑
β

hβ
i,sn+jω

α
β =

∑
q

hα
iqω

q
sn+j +

∑
t,q

hα
i,tn+qω

tn+q
sn+j

+
∑

q

hα
q,sn+jω

q
i +

∑
t,q

hα
tn+q,sn+jω

tn+q
i ,

(4.38)

∑
β

hβ
rn+i,sn+jω

α
β =

∑
q

hα
rn+i,qω

q
sn+j +

∑
t,q

hα
rn+i,tn+qω

tn+q
sn+j

+
∑

q

hα
q,sn+jω

q
rn+i +

∑
t,q

hα
tn+q,sn+jω

tn+q
rn+i .

By using (4.22), (4.23), (4.24), (4.25), (4.28), (4.29), (4.30) we can find that it is
sufficient to investigate (4.36) for i ≤ j and (4.37) for i ≤ j. First we consider the

case that α = k̃ and i < j in (4.36). For the left-hand side, we see from (4.31),
(4.32), (4.34)∑

β

hβ
ijω

k̃
β =

∑
q

hq̃
ijω

k̃
q̃ +

∑
](l,m)

h
](l,m)
ij ωk̃

](l,m)
+

∑
^(l,tn+m)

h
^(l,tn+m)

ij ωk̃
^(l,tn+m)

=
∑
](l,m)

λ
√

1 − cos θ√
2

δl
iδ

m
j ωk̃

](l,m)

=
λ
√

1 − cos θ√
2

ωk̃
](i,j)

.

For the right-hand side, by (4.29), (4.31) and (4.35) we have∑
q

hk̃
iqω

q
j +

∑
t,q

hk̃
i,tn+qω

tn+q
j +

∑
q

hk̃
qjω

q
i +

∑
t,q

hk̃
tn+q,jω

tn+q
i

=
∑

q

hk̃
iqω

q
j +

∑
q

hk̃
qjω

q
i

=hk̃
iiω

i
j + hk̃

jjω
j
i
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=



0 for i < j < k or k < i < j,

λ cos θ
√

1 − cos θ√
{1 + (k − 1) cos θ}{1 + (k − 2) cos θ}

ωj
i for i < k < j,

(
λ

√
(1 − cos θ){1 + (k − 1) cos θ}

1 + (k − 2) cos θ

− λ cos θ
√

1 − cos θ√
{1 + (k − 1) cos θ}{1 + (k − 2) cos θ}

)
ωk

j for k = i < j,

λ

√
(1 − cos θ){1 + (k − 1) cos θ}

1 + (k − 2) cos θ
ωk

i for i < j = k.

Hence, we obtain

(4.39) ωk̃
](i,j)

= 0 for k < i < j or i < j < k,

(4.40) ωk̃
](i,j)

=

√
2 cos θ√

{1 + (k − 1) cos θ}{1 + (k − 2) cos θ}
ωj

i for i < k < j,

(4.41) ωk̃
](k,j)

=

√
2{1 + (k − 2) cos θ}

1 + (k − 1) cos θ
ωk

j for k < j,

(4.42) ωk̃
](i,k)

=

√
2{1 + (k − 1) cos θ}

1 + (k − 2) cos θ
ωk

i for i < k.

If α = k̃ and i = j in (4.36), from (4.31), (4.32), (4.34) the left-hand side becomes∑
β

hβ
iiω

k̃
β =

∑
q

hq̃
iiω

k̃
q̃ +

∑
](l,m)

h
](l,m)
ii ωk̃

](l,m)
+

∑
^(l,tn+m)

h
^(l,tn+m)

ii ωk̃
^(l,tn+m)

=
∑
q<i

hq̃
iiω

k̃
q̃ + hĩ

iiω
k̃
ĩ

+
∑
q>i

hq̃
iiω

k̃
q̃

=
∑
q<i

λ cos θ
√

1 − cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ωk̃
q̃

+ λ

√
(1 − cos θ){1 + (i − 1) cos θ}

1 + (i − 2) cos θ
ωk̃

ĩ
.

The right-hand side is

2
∑

q

hk̃
iqω

q
i + 2

∑
t,q

hk̃
i,tn+qω

tn+q
i = 2

∑
q 6=i

hk̃
iqω

q
i + 2hk̃

iiω
i
i = 0.
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It follows that

(4.43)

∑
q<i

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ωk̃
q̃

+

√
1 + (i − 1) cos θ

1 + (i − 2) cos θ
ωk̃

ĩ
= 0.

Particularly, if k = i,

(4.44)
∑
q<k

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ωk̃
q̃ = 0.

Similarly, settting α = (̃k, l) and ˜(k, rn + l) in (4.36), we can get the following
relations:

(4.45) ω
](k,l)

](i,j)
= 0 for i < j, k < l,

(4.46) ω
g(j,l)

](i,j)
= ωl

i for i < j < l,

(4.47) ω
](k,j)

](i,j)
= ωk

i for i, k < j,

(4.48) ω
g(i,l)

](i,j)
= ωl

j for i < j, l,

(4.49) ω
](k,i)

](i,j)
= ωk

j for k < i < j,

(4.50)

∑
q<i

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ω
](k,l)
q̃

+

√
1 + (i − 1) cos θ

1 + (i − 2) cos θ
ω

](k,l)

ĩ
= 0,

(4.51)

∑
q<i

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ω
g(i,l)
q̃

+

√
1 + (i − 1) cos θ

1 + (i − 2) cos θ
ω

g(i,l)

ĩ
=

√
2 ωl

i for i < l,

(4.52)

∑
q<i

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ω
](k,i)
q̃

+

√
1 + (i − 1) cos θ

1 + (i − 2) cos θ
ω

](k,i)

ĩ
=

√
2 ωk

i for k < i,
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(4.53) ω
^(k,rn+l)

](i,j)
= 0 for i < j, k < l,

(4.54) ω
^(j,rn+l)

](i,j)
= ωrn+l

i for i < j < l,

(4.55) ω
^(k,rn+j)

](i,j)
= −ωrn+k

i for i, k < j,

(4.56) ω
^(i,rn+l)

](i,j)
= ωrn+l

j for i < j, l,

(4.57) ω
^(k,rn+i)

](i,j)
= −ωrn+k

j for k < i < j,

(4.58) ω
^(i,rn+j)

](i,j)
= ωrn+j

j − ωrn+i
i for i < j,

(4.59)

∑
q<i

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ω
^(k,rn+l)

q̃

+

√
1 + (i − 1) cos θ

1 + (i − 2) cos θ
ω

^(k,rn+l)

ĩ
= 0,

(4.60)

∑
q<i

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ω
^(i,rn+l)

q̃

+

√
1 + (i − 1) cos θ

1 + (i − 2) cos θ
ω

^(i,rn+l)

ĩ
=

√
2 ωrn+l

i for i < l,

(4.61)

∑
q<i

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ω
^(k,rn+i)

q̃

+

√
1 + (i − 1) cos θ

1 + (i − 2) cos θ
ω

^(k,rn+i)

ĩ
= −

√
2 ωrn+k

i for k < i,

where different indices indicate different numbers. We also obtain the following by

putting α = k̃ and ˜(k, rn + l) in (4.37) (if α = (̃k, l), we get nothing but the same
relations as above):

(4.62) ωk̃
^(i,rn+j)

= 0 for k < i < j or i < j < k,

(4.63) ωk̃
^(i,rn+j)

=

√
2 cos θ√

{1 + (k − 1) cos θ}{1 + (k − 2) cos θ}
ωrn+j

i for i < k < j,

(4.64) ωk̃
^(k,rn+j)

= −

√
2{1 + (k − 2) cos θ}

1 + (k − 1) cos θ
ωrn+j

k for k < j,
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(4.65) ωk̃
^(i,rn+k)

=

√
2{1 + (k − 1) cos θ}

1 + (k − 2) cos θ
ωrn+k

i for i < k,

(4.66) ω
^(k,rn+l)

^(i,rn+j)
= 0 for i < j, k < l,

(4.67) ω
^(j,rn+l)

^(i,rn+j)
= −ωl

i for i < j < l,

(4.68) ω
^(k,rn+j)

^(i,rn+j)
= ωk

i for i, k < j,

(4.69) ω
^(i,rn+l)

^(i,rn+j)
= ωl

j for i < j, l,

(4.70) ω
^(k,rn+i)

^(i,rn+j)
= −ωk

j for k < i < j,

(4.71) ω
^(k,(r+1)n+l)

^(i,rn+j)
= 0 (r mod 3) for i < j, k < l,

(4.72) ω
^(j,(r+1)n+l)

^(i,rn+j)
= ω

(r+2)n+l
i (r mod 3) for i < j < l,

(4.73) ω
^(k,(r+1)n+j)

^(i,rn+j)
= −ω

(r+2)n+k
i (r mod 3) for i, k < j,

(4.74) ω
^(i,(r+1)n+l)

^(i,rn+j)
= −ω

(r+2)n+l
j (r mod 3) for i < j, l,

(4.75) ω
^(k,(r+1)n+i)

^(i,rn+j)
= ω

(r+2)n+k
j (r mod 3) for k < i < j,

(4.76) ω
^(i,(r+1)n+j)

^(i,rn+j)
= ω

(r+1)n+j
rn+j − ω

(r+2)n+i
i (r mod 3) for i < j,

where different indices also indicate different numbers.
We can see that both of (4.43) and (4.44) are equivalent to

(4.77) ωk̃
l̃

= 0.

Indeed, evidently (4.77) implies (4.43) and (4.44). Conversely, put i = k − 1 in
(4.43):

∑
q<k−1

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ωk̃
q̃ +

√
1 + (k − 2) cos θ

1 + (k − 3) cos θ
ωk̃

]k−1
= 0.
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On the other hand, owing to (4.44) we have

∑
q<k−1

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ωk̃
q̃

= − cos θ√
{1 + (k − 2) cos θ}{1 + (k − 3) cos θ}

ωk̃
]k−1

.

These relations give

{√
1 + (k − 2) cos θ

1 + (k − 3) cos θ
− cos θ√

{1 + (k − 2) cos θ}{1 + (k − 3) cos θ}

}
ωk̃

]k−1

=

√
1 + (k − 3) cos θ

1 + (k − 2) cos θ
ωk̃

]k−1

= 0,

so that

ωk̃
]k−1

= 0

and ∑
q<k−1

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ωk̃
q̃ = 0.

Thus, inductively we have ωk̃
l̃

= 0 (l < k).

Besides, we can derive (4.50), (4.51), (4.52), (4.59), (4.60), (4.61) from the other
relations. For instance, we see (4.61) is valid as follows. From (4.62), (4.63), (4.64),
(4.65) the left-hand side is equal to∑
q<k

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ω
^(k,rn+i)

q̃

+
cos θ√

{1 + (k − 1) cos θ}{1 + (k − 2) cos θ}
ω

^(k,rn+i)

k̃

+
∑

k<q<i

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ω
^(k,rn+i)

q̃

+

√
1 + (i − 1) cos θ

1 + (i − 2) cos θ
ω

^(k,rn+i)

ĩ
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=
cos θ√

{1 + (k − 1) cos θ}{1 + (k − 2) cos θ}

√
2{1 + (k − 2) cos θ}

1 + (k − 1) cos θ
ωrn+i

k

+
∑

k<q<i

cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

×

(
−
√

2 cos θ√
{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

ωrn+i
k

)

+

√
1 + (i − 1) cos θ

1 + (i − 2) cos θ

(
−

√
2{1 + (i − 1) cos θ}

1 + (i − 2) cos θ
ωrn+i

k

)

=

{ √
2 cos θ

1 + (k − 1) cos θ
−

∑
k<q<i

√
2 cos2 θ

{1 + (q − 1) cos θ}{1 + (q − 2) cos θ}

−
√

2{1 + (i − 1) cos θ}
1 + (i − 2) cos θ

}
ωrn+i

k

=

{ √
2 cos θ

1 + (k − 1) cos θ
−

∑
k<q<i

( √
2 cos θ

1 + (q − 2) cos θ
−

√
2 cos θ

1 + (q − 1) cos θ

)

−
√

2{1 + (i − 1) cos θ}
1 + (i − 2) cos θ

}
ωrn+i

k

=

{ √
2 cos θ

1 + (i − 2) cos θ
−

√
2{1 + (i − 1) cos θ}
1 + (i − 2) cos θ

}
ωrn+i

k

= −
√

2 ωrn+i
k .

This becomes −
√

2 ωrn+k
i by (4.22).

The relations (4.39), . . . , (4.42), (4.45), . . . , (4.49), (4.53), . . . , (4.58), (4.62), . . . ,

(4.77) mean that all connection forms of the normal bundle NM in M̃4n+p(c̃ ; R)
(p = 2n2−n) are uniquely determined by connection forms of M . Hence, according
to the fundamental theorem of submanifolds, we conclude that our immersion f :

M → M̃4n+p(c̃ ; R) is rigid in case of (B).
Next, we study the case (A). By the same argument as in the case (B), we can

see the immersion f is rigid. Thanks to Lemma 2, we have

dim SpanR{σ(ei, ej)}i,j=1,...,n =
n(n + 1)

2
− 1,

so that the orthgonal relations (4.5), . . . , (4.10) with (4.12) imply that the 2n2−n−1
vectors σ(ek, ek) (k = 1, . . . , n − 1), σ(ei, ej) (1 ≤ i < j ≤ n), σ(ei, ern+j) (1 ≤
i < j ≤ n, r = 1, 2, 3) form a basis of the normal space at each point x of M in
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M̃4n+p(c̃ ; R). Lemma 2 (2) and Lemma 3 give

4n∑
a=1

σ(ea, ea) = 4
n∑

i=1

σ(ei, ei) = 0,

that is, the immersion f : M → M̃4n+p(c̃ ; R) is minimal. Since

∆ =
c

4
− c̃ = − n + 2

2(n − 1)
λ2,

we have

λ =

√√√√2 (n − 1)
(
c̃ − c

4

)
n + 2

and from (4.13)

cos θ =
−1

n − 1
for the angle θ (0 < θ < π) between the vectors σ(ei, ei) and σ(ej, ej) (i 6= j). We
find that 2n2 − n − 1 vectors√√√√ n + 2

2n(n − k)(n − k + 1)
(
c̃ − c

4

) {
(n − k + 1)σ(ek, ek) +

k−1∑
l=1

σ(el, el)

}
,

√√√√ n + 2

n
(
c̃ − c

4

) σ(ei, ej) and

√√√√ n + 2

n
(
c̃ − c

4

) σ(ei, ern+j)

for k = 1, . . . , n − 1, 1 ≤ i < j ≤ n, r = 1, 2, 3 form an orthonormal system.
Choose a local field of orthonormal frames

e1, . . . , e4n, e1̃, . . . , e]n−1, eñ = e](1,2)
, . . . , ep̃ = e

(̂1,4n)
(p = 2n2 − n − 1)

in M̃4n+p(c̃ ; R) such that, restricted to M , e1, . . . , e4n are tangent to M , and

ek̃ =

√√√√ n + 2

2n(n − k)(n − k + 1)
(
c̃ − c

4

) {
(n − k + 1)σ(ek, ek) +

k−1∑
l=1

σ(el, el)

}

for k = 1, . . . , n − 1,

e](i,j) =

√√√√ n + 2

n
(
c̃ − c

4

) σ(ei, ej) for 1 ≤ i < j ≤ n,

e ^(i,rn+j)
=

√√√√ n + 2

n
(
c̃ − c

4

) σ(ei, ern+j) for 1 ≤ i < j ≤ n, r = 1, 2, 3,

where

(i, j) = i +
1

2
(j − i) {2n + 1 − (j − i)} − 1



54 H. TANABE

and

(i, rn + j) = i +
1

2
(j − i) {2n + 1 − (j − i)} +

r

2
n(n − 1) − 1

for i < j, r = 1, 2, 3. Let

ω1, . . . , ω4n, ω1̃, . . . , ωp̃ (p = 2n2 − n − 1)

be the field of dual frames with respect to this frame field of M̃4n+p(c̃ ; R). Then,
noting the range of α, we have from (4.19)

hk̃
ij =



√√√√2n(n − k)
(
c̃ − c

4

)
(n + 2)(n − k + 1)

for 1 ≤ k = i = j ≤ 1 − n,

−

√√√√ 2n
(
c̃ − c

4

)
(n + 2)(n − k)(n − k + 1)

for 1 ≤ k < i = j ≤ n,

0 otherwise,

h
](l,m)
ij =



√√√√n
(
c̃ − c

4

)
n + 2

δl
iδ

m
j for 1 ≤ i < j ≤ n, 1 ≤ l < m ≤ n,

0 for 1 ≤ i = j ≤ n, 1 ≤ l < m ≤ n,

h
^(l,sn+m)

i,rn+j =



√√√√n
(
c̃ − c

4

)
n + 2

δl
iδ

sn+m
rn+j

for 1 ≤ i < j ≤ n, 1 ≤ l < m ≤ n, r, s = 1, 2, 3,

0 for 1 ≤ i = j ≤ n, 1 ≤ l < m ≤ n, r, s = 1, 2, 3,

h
^(l,rn+m)

ij = 0 for 1 ≤ i ≤ j ≤ n, 1 ≤ l < m ≤ n, r = 1, 2, 3,

hk̃
i,rn+j = h

](l,m)
i,rn+j = 0 for 1 ≤ i < j ≤ n, 1 ≤ l < m ≤ n, r = 1, 2, 3.

Hence, by using (4.36) and (4.38) we obtain

ωk̃
](i,j)

= 0 for 1 ≤ k < i < j ≤ n or 1 ≤ i < j < k ≤ n − 1,

ωk̃
](i,j)

= −
√

2√
(n − k)(n − k + 1)

ωj
i for 1 ≤ i < k < j ≤ n,

ωk̃
](k,j)

=

√
2(n − k + 1)

n − k
ωk

j for 1 ≤ k < j ≤ n,
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ωk̃
](i,k)

=

√
2(n − k)

n − k + 1
ωk

i for 1 ≤ i < k ≤ n − 1,

(4.78)
∑
q<i

1√
(n − q)(n − q + 1)

ωk̃
q̃ −

√
n − i

n − i + 1
ωk̃

ĩ
= 0

for 1 ≤ i, k ≤ n − 1,

(4.79)
∑
q<k

1√
(n − q)(n − q + 1)

ωk̃
q̃ = 0 for 1 ≤ k ≤ n − 1,

ω
](k,l)

](i,j)
= 0 for 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n,

ω
g(j,l)

](i,j)
= ωl

i for 1 ≤ i < j < l ≤ n,

ω
](k,j)

](i,j)
= ωk

i for 1 ≤ i, k < j ≤ n,

ω
g(i,l)

](i,j)
= ωl

j for 1 ≤ i < j, l ≤ n,

ω
](k,i)

](i,j)
= ωk

j for 1 ≤ k < i < j ≤ n,

(4.80)
∑
q<i

1√
(n − q)(n − q + 1)

ω
](k,l)
q̃ −

√
n − i

n − i + 1
ω

](k,l)

ĩ
= 0

for 1 ≤ k < l ≤ n, 1 ≤ i ≤ n − 1,

(4.81)
∑
q<i

1√
(n − q)(n − q + 1)

ω
g(i,l)
q̃ −

√
n − i

n − i + 1
ω

g(i,l)

ĩ
= −

√
2 ωl

i

for 1 ≤ i < l ≤ n,

(4.82)
∑
q<i

1√
(n − q)(n − q + 1)

ω
](k,i)
q̃ −

√
n − i

n − i + 1
ω

](k,i)

ĩ
= −

√
2 ωk

i

for 1 ≤ k < i ≤ n − 1,

ω
^(k,rn+l)

](i,j)
= 0 for 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n,

ω
^(j,rn+l)

](i,j)
= ωrn+l

i for 1 ≤ i < j < l ≤ n,

ω
^(k,rn+j)

](i,j)
= −ωrn+k

i for 1 ≤ i, k < j ≤ n,

ω
^(i,rn+l)

](i,j)
= ωrn+l

j for 1 ≤ i < j, l ≤ n,
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ω
^(k,rn+i)

](i,j)
= −ωrn+k

j for 1 ≤ k < i < j ≤ n,

ω
^(i,rn+j)

](i,j)
= ωrn+j

j − ωrn+i
i for 1 ≤ i < j ≤ n,

(4.83)
∑
q<i

1√
(n − q)(n − q + 1)

ω
^(k,rn+l)

q̃ −
√

n − i

n − i + 1
ω

^(k,rn+l)

ĩ
= 0

for 1 ≤ k < l ≤ n, 1 ≤ i ≤ n − 1,

(4.84)
∑
q<i

1√
(n − q)(n − q + 1)

ω
^(i,rn+l)

q̃ −
√

n − i

n − i + 1
ω

^(i,rn+l)

ĩ
= −

√
2 ωrn+l

i

for 1 ≤ i < l ≤ n,

(4.85)
∑
q<i

1√
(n − q)(n − q + 1)

ω
^(k,rn+i)

q̃ −
√

n − i

n − i + 1
ω

^(k,rn+i)

ĩ
=

√
2 ωrn+k

i

for 1 ≤ k < i ≤ n − 1,

ωk̃
^(i,rn+j)

= 0 for 1 ≤ k < i < j ≤ n or 1 ≤ i < j < k ≤ n − 1,

ωk̃
^(i,rn+j)

= −
√

2√
(n − k)(n − k + 1)

ωrn+j
i for 1 ≤ i < k < j ≤ n,

ωk̃
^(k,rn+j)

= −
√

2(n − k + 1)

n − k
ωrn+j

k for 1 ≤ k < j ≤ n,

ωk̃
^(i,rn+k)

=

√
2(n − k)

n − k + 1
ωrn+k

i for 1 ≤ i < k ≤ n − 1,

ω
^(k,rn+l)

^(i,rn+j)
= 0 for 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n,

ω
^(j,rn+l)

^(i,rn+j)
= −ωl

i for 1 ≤ i < j < l ≤ n,

ω
^(k,rn+j)

^(i,rn+j)
= ωk

i for 1 ≤ i, k < j ≤ n,

ω
^(i,rn+l)

^(i,rn+j)
= ωl

j for 1 ≤ i < j, l ≤ n,

ω
^(k,rn+i)

^(i,rn+j)
= −ωk

j for 1 ≤ k < i < j ≤ n,

ω
^(k,(r+1)n+l)

^(i,rn+j)
= 0 (r mod 3) for 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n,

ω
^(j,(r+1)n+l)

^(i,rn+j)
= ω

(r+2)n+l
i (r mod 3) for 1 ≤ i < j < l ≤ n,
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ω
^(k,(r+1)n+j)

^(i,rn+j)
= −ω

(r+2)n+k
i (r mod 3) for 1 ≤ i, k < j ≤ n,

ω
^(i,(r+1)n+l)

^(i,rn+j)
= −ω

(r+2)n+l
j (r mod 3) for 1 ≤ i < j, l ≤ n,

ω
^(k,(r+1)n+i)

^(i,rn+j)
= ω

(r+2)n+k
j (r mod 3) for 1 ≤ k < i < j ≤ n,

ω
^(i,(r+1)n+j)

^(i,rn+j)
= ω

(r+1)n+j
rn+j − ω

(r+2)n+i
i (r mod 3) for 1 ≤ i < j ≤ n,

where different indices also indicate different numbers and r = 1, 2, 3. Relations
(4.78) and (4.79) are equivalent to

ωk̃
l̃

= 0 for 1 ≤ k, l ≤ n − 1.

Relations (4.80), . . . , (4.85) follow from the others. Consequently, the immersion
f is rigid in case of (A). ¤

5. Proof of Theorem

First, we recall the notion of plane curves. A curve γ = γ(s) in a Riemannian
manifold M is said to be a plane curve if the curve γ is locally contained in some
real 2-dimensional totally geodesic submanifold of M . As a matter of course, every
plane curve with positive curvature is a Frenet curve of proper order 2. But in
general, the converse does not hold. In case that the space M is a real space form

M̃n(c̃ ; R) of constant sectional curvature c̃, a curve γ is a Frenet curve of proper
order 2 if and only if the curve γ is a plane curve with positive curvature. In fact,

let x be an arbitrary point of M̃n(c̃ ; R) and X,Y an orthonormal pair of vectors

in TxM̃
n(c̃ ; R). Let γ = γ(s) be a Frenet curve of proper order 2 with curvature

κ(s) in M̃n(c̃ ; R) satisfying the Frenet formulas (1.1) with initial condition

(5.1) γ(0) = x, γ̇(0) = X and V2(0) = Y.

Then there exists a 2-dimensional totally geodesic submanifold M2(c̃ ; R) passing

through the point x of M̃n(c̃ ; R) with TxM
2(c̃ ; R) = SpanR{X,Y }. We consider

the curve γ1 = γ1(s) in M2(c̃ ; R) satisfying the same differential equations (1.1) and
the initial condition (5.1). By the uniqueness of solution for a system of ordinary
differential equations, we have γ1(s) = γ(s) (s ∈ (−ε, ε)) for some ε > 0. Thus γ
is a plane curve.

We shall now prove Theorem. We denote by ∇ and ∇̃ the covariant differentia-

tions of Mn and M̃4n+p(c̃ ; R), respectively. Let x be an arbitrary point of Mn, X
an arbitrary unit vector in TxM

n and J an arbitrary element of Jx with J2 = −id.
We consider a quaternionic Frenet curve γ = γ(s) (s ∈ (−ε, ε)) in Mn satisfying

(5.2) ∇γ̇ γ̇(s) = κ(s)V (s), ∇γ̇V (s) = −κ(s)γ̇(s)

and the initial condition

γ(0) = x, γ̇(0) = X and V (0) = JX.



58 H. TANABE

Since the curve f ◦ γ is a plane curve in M̃4n+p(c̃ ; R) by assumption, there exist a

(nonnegative) function κ̃ = κ̃(s) and a field of unit vectors Ṽ = Ṽ (s) along f ◦ γ

in M̃4n+p(c̃ ; R) which satisfy

(5.3) ∇̃γ̇ γ̇(s) = κ̃(s)Ṽ (s), ∇̃γ̇Ṽ (s) = −κ̃(s)γ̇(s).

Then by the formula of Gauss we have

(5.4) κ̃Ṽ = κV + σ(γ̇, γ̇),

so that

(5.5) κ̃2 = κ2 + ‖σ(γ̇, γ̇)‖2.

We here note that the function κ̃ is positive because κ > 0.
Now we shall compute the covariant differentiation of (5.4): For the left-hand

side, by use of (5.3) and (5.4) we see

(5.6)

∇̃γ̇(κ̃Ṽ ) = ˙̃κṼ + κ̃∇̃γ̇Ṽ

=
˙̃κ

κ̃
{κV + σ(γ̇, γ̇)} − κ̃2γ̇.

For the right-hand side, by the formulae of Gauss and Weingarten we obtain

(5.7)

∇̃γ̇ {κV + σ(γ̇, γ̇)}

= κ̇V + κ∇̃γ̇V − Aσ(γ̇,γ̇)γ̇ + Dγ̇(σ(γ̇, γ̇))

= κ̇V + κ {∇γ̇V + σ(γ̇, V )} − Aσ(γ̇,γ̇)γ̇ + (∇̄γ̇σ)(γ̇, γ̇) + 2σ(∇γ̇ γ̇, γ̇)

= κ̇V − κ2γ̇ + 3κσ(γ̇, V ) − Aσ(γ̇,γ̇)γ̇ + (∇̄γ̇σ)(γ̇, γ̇).

We compare the tangential components and the normal components for the sub-
manifold Mn in (5.6) and (5.7), respectively. Then we get the following:

˙̃κκV − κ̃3γ̇ = κ̃
{
κ̇V − κ2γ̇ − Aσ(γ̇,γ̇)γ̇

}
,(5.8)

˙̃κσ(γ̇, γ̇) = κ̃
{
3κσ(γ̇, V ) + (∇̄γ̇σ)(γ̇, γ̇)

}
.(5.9)

The equation (5.9) implies

(5.10) κ̃ ˙̃κσ(γ̇, γ̇) = κ̃2
{
3κσ(γ̇, V ) + (∇̄γ̇σ)(γ̇, γ̇)

}
.

On the other hand, from (5.5) we have

(5.11)

κ̃ ˙̃κ =
1

2

d

ds
κ̃2

= κκ̇ +
1

2

d

ds
〈σ(γ̇, γ̇), σ(γ̇, γ̇)〉

= κκ̇ + 〈Dγ̇(σ(γ̇, γ̇)), σ(γ̇, γ̇)〉
= κκ̇ + 〈(∇̄γ̇σ)(γ̇, γ̇), σ(γ̇, γ̇)〉 + 2κ〈σ(V, γ̇), σ(γ̇, γ̇)〉.
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Substituting (5.5) and (5.11) into (5.10), at s = 0 we obtain

(5.12)

{
κ(0)κ̇(0) + 〈(∇̄Xσ)(X,X), σ(X,X)〉

+ 2κ(0)〈σ(X,X), σ(X, JX)〉
}
σ(X,X)

=
{
κ(0)2 + ‖σ(X,X)‖2

}{
3κ(0)σ(X, JX) + (∇̄Xσ)(X,X)

}
.

Here we consider anther quaternionic Frenet curve γ0 = γ0(s) (s ∈ (−ε0, ε0)) of the
same curvature κ in Mn satisfying the equations

∇γ̇0 γ̇0(s) = κ(s)V0(s), ∇γ̇0V0(s) = −κ(s)γ̇0(s)

with initial condition

γ0(0) = x, γ̇0(0) = X and V0(0) = −JX.

Since the curve f ◦γ0 is a plane curve in M̃4n+p(c̃ ; R) by assumption, we can apply
the above discussion to this curve γ0. Then the equality (5.12) for γ0 turns to

(5.12’)

{
κ(0)κ̇(0) + 〈(∇̄Xσ)(X,X), σ(X,X)〉

− 2κ(0)〈σ(X,X), σ(X, JX)〉
}
σ(X,X)

=
{
κ(0)2 + ‖σ(X,X)‖2

}{
−3κ(0)σ(X, JX) + (∇̄Xσ)(X,X)

}
.

Therefore, from (5.12) and (5.12’) we have

2κ(0)〈σ(X,X), σ(X, JX)〉σ(X,X) = 3κ(0)
{
κ(0)2 + ‖σ(X,X)‖2

}
σ(X, JX),

so that

(5.13) 2〈σ(X,X), σ(X, JX)〉σ(X,X) = 3
{
κ(0)2 + ‖σ(X,X)‖2

}
σ(X, JX).

Taking the inner product of both sides of this with σ(X,X), we get

2〈σ(X,X), σ(X, JX)〉‖σ(X,X)‖2

= 3
{
κ(0)2 + ‖σ(X,X)‖2

}
〈σ(X,X), σ(X, JX)〉

hence {
3κ(0)2 + ‖σ(X,X)‖2

}
〈σ(X,X), σ(X, JX)〉 = 0.

So we have

〈σ(X,X), σ(X, JX)〉 = 0,

because 3κ(0)2 + ‖σ(X,X)‖2 > 0. This, combined with (5.13), shows that

(5.14) σ(X, JX) = 0

for any X ∈ TxM
n at any point x ∈ Mn and any J ∈ Jx with J2 = −id. Replacing

X by JX + Y in (5.14), we get

(5.15) σ(JX, JY ) = σ(X,Y )
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for each X,Y ∈ TxM
n. Thus, by virtue of Lemma 3, we see that the immersion f

is parallel: ∇̄σ = 0.
Next, taking the inner product of both sides of (5.8) with V , we have

˙̃κκ = κ̃κ̇ − κ̃〈Aσ(γ̇,γ̇)γ̇, V 〉
= κ̃κ̇ − κ̃〈σ(γ̇, γ̇), σ(γ̇, V )〉.

On the other hand, from (5.14) we know that

(5.16) σ(γ̇, V ) = 0 for each s ∈ (−ε, ε).

Hence the above equation becomes

(5.17) ˙̃κκ = κ̃κ̇,

so that the equation (5.8) reduces to

Aσ(γ̇,γ̇)γ̇ = (κ̃2 − κ2)γ̇.

Therefore
〈σ(X,X), σ(X,Y )〉 = 〈Aσ(X,X)X,Y 〉 = 0

for any orthonormal pair of vectors X,Y ∈ TxM
n at each point x ∈ Mn. Thus, by

virtue of Lemma 1, the immersion f is isotropic at each point x ∈ Mn. Moreover,
we can see that f is constant isotropic as follows: Let c = c(s) be an arbitrary
geodesic in Mn parametrized by its arclength s. Then, since ∇̄σ = 0, we have

d

ds
‖σ(ċ, ċ)‖2 = 2〈(∇̄ċσ)(ċ, ċ), σ(ċ, ċ)〉 + 4〈σ(∇ċċ, ċ), σ(ċ, ċ)〉 = 0.

Thus ‖σ(ċ, ċ)‖ is constant along the curve c = c(s). This fact implies that the
immersion f is constant isotropic.

Let R denote the curvature tensor of Mn. For arbitrary J ∈ Jx with J2 = −id,
from (5.14), (5.15) and the equation of Gauss (3.2), we have

〈R(X, JX)JX,X〉 = c̃ + 〈σ(X,X), σ(JX, JX)〉 − ‖σ(X, JX)‖2

= c̃ + ‖σ(X,X)‖2

for an arbitrary unit vector X ∈ TxM at any point x of Mn. Since Mn is constant
isotropic, this shows that Mn is a quaternonic space form. Then, by Proposition
1, we can see that the submanifold Mn is one of (1), (2) and (3) in the statement
of Theorem.

In order to prove our assertion, we must check the examples (1), (2) and (3)
satisfy the hypothesis of Theorem. In case of (1), the hypothesis is obviously
satisfied. In case of (2), for each circle γ of curvature k(> 0) in Mn the curve f ◦ γ
is a circle of curvature

√
k2 − c̃ (see page 169 in [6]), hence it is a plane curve in

the ambient space M̃4n+p(c̃ ; R).

In case of (3), the isometric immersion f : Mn = HP n(c) → M̃4n+p(c̃ ; R) given
by (3) is constant

√
c − c̃ -isotropic and parallel (see for example [8]). Denote by

∇ and ∇̃ the covariant differentiations of Mn and M̃4n+p(c̃ ; R), respectively. Let
γ = γ(s) be a quaternionic circle of curvature k (> 0) satisfying

∇γ̇ γ̇(s) = kV (s), ∇γ̇V (s) = −kγ̇(s).



PARALLEL ISOMETRIC IMMERSIONS OF A QUATERNIONIC SPACE FORM 61

Then we can see that the curve f ◦ γ is a circle of curvature
√

k2 + c − c̃ in

M̃4n+p(c̃ ; R) as follows: The curve f ◦ γ satisfies

∇̃γ̇ γ̇ = kV + σ(γ̇, γ̇),

so that

‖∇̃γ̇ γ̇‖ =
√

k2 + ‖σ(γ̇, γ̇)‖2 =
√

k2 + c − c̃.

We write

Ṽ =
1√

k2 + c − c̃
{kV + σ(γ̇, γ̇)}.

Since f is parallel, from Lemma 3 we obtain

σ(γ̇, V ) = σ(γ̇, Jγ̇) = 0.

Moreover, as f is constant isotropic, by using (2) of Lemma 1 we get

Aσ(γ̇,γ̇)γ̇ = ‖σ(γ̇, γ̇)‖2γ̇.

So, by the formulae of Gauss and Weingarten we have

∇̃γ̇Ṽ =
1√

k2 + c − c̃
∇̃γ̇{kV + σ(γ̇, γ̇)}

=
1√

k2 + c − c̃

{
k (∇γ̇V + σ(γ̇, V )) − Aσ(γ̇,γ̇)γ̇ + Dγ̇(σ(γ̇, γ̇))

}
=

1√
k2 + c − c̃

{
−k2γ̇ − ‖σ(γ̇, γ̇)‖2γ̇ + (∇̄γ̇σ)(γ̇, γ̇) + 2σ(∇γ̇ γ̇, γ̇)

}
=

1√
k2 + c − c̃

{
−(k2 + c − c̃)γ̇ + 2kσ(V, γ̇)

}
= −

√
k2 + c − c̃ γ̇ .

Thus the curve f ◦ γ is a plane curve in M̃4n+p(c̃ ; R). Hence our assertion follows.

¤

Remark 1. Theorem also holds under the condition κ ≡ 0 (see [8]).

Remark 2. Assuming that the curvature function κ in the statement of Theorem
is not constant, we obtain only the case (1). In fact, suppose that there exists
some s0 ∈ (−ε, ε) with κ̇(s0) 6= 0. Then we find ˙̃κ(s0) 6= 0 from (5.17) because
κ, κ̃ > 0. We know the fact that ∇̄σ = 0. So the equation (5.9), combined with
(5.16), yields σ(γ̇(s0), γ̇(s0)) = 0. Moreover, we can see that ‖σ(γ̇, γ̇)‖ is constant
along the curve γ because

d

ds
‖σ(γ̇, γ̇)‖2 = 2〈(∇̄γ̇σ)(γ̇, γ̇), σ(γ̇, γ̇)〉 + 4κ〈σ(V, γ̇), σ(γ̇, γ̇)〉 = 0.

Thus we conclude σ(X,X) = 0 for an arbitrary unit vector X ∈ TxM
n at each

point x ∈ Mn. Consequently our immersion f : Mn → M̃4n+p(c̃ ; R) is a totally
geodesic immersion.
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Remark 3. In [13], the author obtained a similar theorem to ours by using the
results of D. Ferus [3] and M. Takeuchi [10]. In the classification theory of parallel
submanifolds due to M. Takeuchi, we need a global condition that the submanifold
is complete. However, our theorem is a local version. So, in this paper, we gave a
proof which does not depend on results of [3, 10].
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