
Mem. Fac. Sci. Eng. Shimane Univ.
Series B: Mathematical Science
40 (2007), pp.15–32

SUBMANIFOLD THEORY

FROM THE VIEWPOINT OF CIRCLES
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Abstract. We study submanifolds by using the notion of circles in Riemannian
geometry. This expository paper consists of two parts. One is to improve Nomizu
and Yano’s result ([11]) which characterizes extrinsic spheres in a Riemannian man-
ifold. The other is to characterize totally geodesic immersions and some parallel
immersions in terms of Frenet curves of proper order 2 (which are generalizations
of circles) on submanifolds.

1. Introduction

A smooth curve γ = γ(s) in a Riemannian manifold Mn parametrized by its
arclength s is called a Frenet curve of proper order 2 if there exist a field of or-
thonormal frames {V1 = γ̇, V2} along γ and a positive smooth function κ(s) satis-
fying the following system of ordinary differential equations: ∇γ̇V1(s) = κ(s)V2(s)
and ∇γ̇V2(s) = −κ(s)V1(s), where ∇γ̇ denotes the covariant differentiation along
γ with respect to the Riemannian connection ∇ of Mn. The function κ(s) and
the field of orthonormal frames {V1, V2} are called the curvature and the Frenet
frame of γ, respectively. Note that we do not allow the curvature κ(s) to van-
ish at some point. Therefore curves with inflection points, such as y = x3 on a
Euclidean xy-plane, are not Frenet curves of proper order 2. A curve is called a
Frenet curve of order 2 if it is either a geodesic or a Frenet curve of proper order
2. A Frenet curve of order 2 with nonnegative constant curvature k is called a
circle of curvature k. Needless to say a circle of null curvature is nothing but a
geodesic.

Study of circles produces new knowledge in submanifold theory. For example
we here recall the following two surfaces. Let f1 be a totally umbilic embedding
of a 2-dimensional standard sphere S2(c) of curvature c into a Euclidean space
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R5 and f2 = ι ◦ f an isometric parallel immersion of S2(c) into R5. Here f is the
second standard minimal immersion of S2(c) into S4(3c) and ι is a totally umbilic
embedding of S4(3c) into R5. It is known that for each great circle γ of S2(c),
both of the curves f1 ◦ γ and f2 ◦ γ are circles in the ambient space R5. This tells
us that we cannot distinguish f1 from f2 by the extrinsic shape of geodesics of
S2(c) in R5. However we emphasize that we can distinguish these two isometric
immersions f1 and f2 by the extrinsic shape of small circles of S2(c) in R5. In
fact, for each small circle γ on S2(c), the curve f1 ◦ γ is also a circle in R5 but
the curve f2 ◦ γ is a helix of proper order 4 in the ambient space R5, namely in
R5 the curve f2 ◦ γ has constant positive three curvatures κ1, κ2 and κ3 along
this curve in the sense of Frenet formula. It is hence interesting to investigate
the extrinsic shape of circles of the submanifold.

The first half of this paper is motivated by the follwing fact due to Nomizu
and Yano [11]: Let Mn be a Riemannian submanifold of an ambient Riemannian
manifold M̃n+p (with Riemannian connection ∇̃) through an isometric immersion
f . Then (Mn, f) is an extrinsic sphere of M̃n+p (that is, Mn is a totally umbilic
submanifold with parallel mean curvature vector of M̃n+p) if and only if, for some
positive constant k and for every circle γ = γ(s) of curvature k on Mn, the curve
f ◦ γ is a circle in M̃n+p. In this fact we pay particular attention to a condition
“the curve f ◦ γ is a circle in M̃n+p”. It is natural to pose the following two
problems.

Problem 1. If we replace this condition by a condition that the curve f ◦ γ has
constant the first curvature, that is, ‖∇̃γ̇ γ̇‖ is constant along f ◦ γ, what can we
say about the isometric immersion f?

Problem 2. If we replace this condition by a condition that the curve f ◦ γ is a
Frenet curve of order 2, what can we say about the isometric immersion f?

The main purpose of the first half of this paper is to give complete answers
to these problems (Theorems 1 and 2). As an application of Theorem 1 we
obtain a characterization of Veronese embeddings of complex projective spaces
into complex projective spaces which are typical examples of Kähler immersions
(Theorem 3).

In the latter half, using the notion of Frenet curves of order 2, we establish some
results. We first provide a characterization of every totally geodesic submanifold
Mn in a Riemannian manifold M̃n+p by observing the extrinsic shape of a Frenet
curve of proper order 2 on the submanifold Mn (Theorem 4).

We consider a Frenet curve γ = γ(s) of proper order 2 in a Kähler manifold
M (with complex structure J). We put τγ = |〈V1, JV2〉|, which is well-defined.
Since we have

d

ds
〈V1, JV2〉 = 〈∇γ̇V1, JV2〉+ 〈V1, J∇γ̇V2〉 = κ〈V2, JV2〉 − κ〈V1, JV1〉 = 0,
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we see τγ does not depend on parameter s. A curve γ = γ(s) is called a Kähler
Frenet curve if it is either a geodesic or a Frenet curve of proper order 2 with
τγ = 1. In other words, a Kähler Frenet curve γ is either a geodesic or a curve
satisfying ∇γ̇ γ̇ = κ(s)Jγ̇ or ∇γ̇ γ̇ = −κ(s)Jγ̇ for some positive smooth function
κ = κ(s). We call γ a Kähler circle of curvature k if the curvature function κ of
a Frenet curve γ of order 2 is a nonnegative constant k.

We next give a characterization of all totally geodesic Kähler immersions of
Kähler manifolds into Kähler manifolds by using the notion of Kähler Frenet
curves (Theorem 5). We finally characterize all parallel isometric immersions of
an n-dimensional complex space form Mn(c) (which is locally congruent to either
CPn(c),Cn or CHn(c)) of constant holomorphic sectional curvature c into a (2n+
p)-dimensional real space form M̃2n+p(c̃) (which is locally congruent to either
R2n+p, S2n+p(c̃) or H2n+p(c̃)) of constant sectional curvature c̃ by observing the
extrinsic shape of Kähler Frenet curves on Mn(c) (Theorem 6).

2. Fundamental equations and isotropic immersions

We review fundamental equations in submanifold theory. Let Mn, M̃m be
Riemannian manifolds and f : Mn → M̃m an isometric immersion. Throughout
this paper we will identify a vector X of Mn with a vector f∗(X) of M̃m. The
Riemannian metrics on Mn, M̃m are denoted by the same notation 〈 , 〉.

We denote by ∇ and ∇̃ the covariant differentiations of Mn and M̃m, re-
spectively. Then the second fundamental form σ of the immersion f is defined
by

(2.1) σ(X,Y ) = ∇̃XY −∇XY,

where X and Y are vector fields tangent to Mn. For a vector field ξ normal to
Mn, we write

(2.2) ∇̃Xξ = −AξX + DXξ,

where −AξX (resp. DXξ) denotes the tangential (resp. the normal) component
of ∇̃Xξ. We define the covariant differentiation ∇̄ of the second fundamental
form σ with respect to the connection in (tangent bundle)⊕(normal bundle) as
follows:

(2.3) (∇̄Xσ)(Y, Z) = DX(σ(Y, Z))− σ(∇XY,Z)− σ(Y,∇XZ).

We next review the notion of isotropic immersions. An isometric immersion
f : M → M̃ is said to be isotropic at x ∈ M if ‖σ(X,X)‖/‖X‖2(= λ(x)) does
not depend on the choice of X( 6= 0) ∈ TxM . If the immersion is isotropic at every
point, then the immersion is said to be isotropic. When the function λ = λ(x)
is constant on M , we call M a constant (λ-)isotropic submanifold. Note that a
totally umbilic immersion is isotropic, but not vice versa. The following is well
known ([12]).
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Lemma 1. Let f be an isometric immersion of M into (M̃, 〈 , 〉). Then f is
isotropic at x ∈ M if and only if the second fundamental form σ of f satisfies
〈σ(u, u), σ(u, v)〉 = 0 for an arbitrary orthogonal pair u, v ∈ TxM .

3. Characterization of constant isotropic immersions

The following gives a geometric meaning of constant isotropic immersions in
terms of circles on submanifolds.

Theorem 1 ([5]). Let Mn be an n-dimensional connected Riemannian subman-
ifold of an (n+p)-dimensional Riemannian manifold M̃n+p through an isometric
immersion f . Then the following are equivalent.

(i) Mn is a constant (λ-) isotropic submanifold of M̃n+p.
(ii) There exists a positive constant k satisfying that for each circle γ of cur-

vature k on the submanifold Mn the curve f ◦ γ in M̃n+p has constant
the first curvature κ1 along this curve.

Proof. (i) ⇒ (ii): Let f : Mn → M̃n+p be a constant λ-isotropic immersion. We
take a circle of curvature k, which satisfies the following equations:

(3.1) ∇γ̇ γ̇ = kYs and ∇γ̇Ys = −kγ̇.

In the following, for simplicity we also denote f ◦ γ by γ. It follows from (2.1)
that

(3.2) ∇̃γ̇(s)γ̇(s) = kYs + σ(γ̇(s), γ̇(s)).

Then from (3.2) we can see that the first curvature κ1 = ‖∇̃γ̇ γ̇‖ of the curve f ◦γ

is equal to
√

k2 + λ2 , which is constant.
(ii) ⇒ (i): Let f : Mn → M̃n+p be an isometric immersion satisfying the

condition (ii). We take a point x ∈ M and choose an arbitrary orthonormal pair
of vectors u, v ∈ TxM . Let γ = γ(s) be a circle of curvature k on the submanifold
Mn with initial condition that γ(0) = x, γ̇(0) = u and∇γ̇ γ̇(0) = kv. By condition
(ii) the first curvature κ1 = ‖∇̃γ̇ γ̇‖ of the curve f ◦γ is constant, so that equation
(3.2) implies ‖σ(γ̇, γ̇)‖ is constant. Hence we obtain

(3.3)

0 =
d

ds
‖σ(γ̇, γ̇)‖2 = 2〈Dγ̇(σ(γ̇, γ̇)), σ(γ̇, γ̇)〉

= 2〈(∇̄γ̇σ)(γ̇, γ̇) + 2σ(∇γ̇ γ̇, γ̇), σ(γ̇, γ̇)〉
= 2〈(∇̄γ̇σ)(γ̇, γ̇), σ(γ̇, γ̇)〉+ 4k〈σ(γ̇, γ̇), σ(γ̇, Y )〉.

Evaluating equation (3.3) at s = 0, we get

(3.4) 〈(∇̄uσ)(u, u), σ(u, u)〉+ 2k〈σ(u, u), σ(u, v)〉 = 0.
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On the other hand, for another circle ρ = ρ(s) of the same curvature k on the
submanifold Mn with initial condition that ρ(0) = x, ρ̇(0) = u and ∇ρ̇ρ̇(0) =
−kv, we have

(3.5) 〈(∇̄uσ)(u, u), σ(u, u)〉 − 2k〈σ(u, u), σ(u, v)〉 = 0

which corresponds to equation (3.4). Thus, from (3.4) and (3.5) we can see that
〈σ(u, u), σ(u, v)〉 = 0 for any orthonormal pair of vectors u, v at each point x of
M , so that the submanifold Mn is (λ-)isotropic in M̃n+p through the isometric
immersion f by Lemma 1.

Next, we shall show that λ : M → R is constant. It follows from (3.4) and
(3.5) that

〈(∇̄uσ)(u, u), σ(u, u)〉 = 0 for every unit vector u at each point x of Mn.

Then, for every geodesic τ = τ(s) on the submanifold Mn we see that λ = λ(s)
is constant along τ . Therefore we can conclude that λ is constant on M . ¤

4. Characterization of extrinsic spheres

The following is an improvement of Nomizu and Yano’s result [11].

Theorem 2 ([4]). Let Mn be an n-dimensional connected Riemannian submani-
fold of an (n+p)-dimensional Riemannian manifold M̃n ＋ p through an isometric
immersion f . Then Mn is an extrinsic sphere of M̃n ＋ p if and only if for some
positive constant k and for every circle γ = γ(s) of curvature k in Mn, the curve
f ◦ γ is a Frenet curve of order 2 in M̃n ＋ p.

Proof. The “only if” part is obvious by virtue of the well-known result of Nomizu
and Yano ([11]). So it suffices to verify the “if” part.

Let x be an arbitrary point of Mn and u, v an orthonormal pair of vectors in
TxMn. Let γ = γ(s) be a circle of of positive curvature k in Mn satisfying (3.1)
and the initial condition γ(0) = x, γ̇(0) = u and Y0 = v. By assumption there
exist a (nonnegative) smooth function κ̃ = κ̃(s) and a field of unit vectors Ỹs

along f ◦ γ in M̃n+p satisfying that

(4.1) ∇̃γ̇ γ̇ = κ̃Ỹs, ∇̃γ̇ Ỹs = −κ̃γ̇.

It follows from (2.1) and the first equality of (4.1) that

(4.2) κ̃Ỹs = kYs + σ(γ̇, γ̇),

so that

(4.3) κ̃2 = k2 + ‖σ(γ̇, γ̇)‖2.
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We here note that κ̃(s) > 0 for each s.
Now we shall compute the covariant differentiation of (4.2). For the left-hand

side, by using (4.1) and (4.2) we see

(4.4)
∇̃γ̇(κ̃Ỹs) = ˙̃κỸs + κ̃∇̃γ̇ Ỹs

=
˙̃κ
κ̃

(kYs + σ(γ̇, γ̇))− κ̃2γ̇.

For the right-hand side, using (2.1), (2.2), (2.3) and (3.1), we obtain

(4.5)

∇̃γ̇(kYs + σ(γ̇, γ̇))

= k∇̃γ̇Ys −Aσ(γ̇,γ̇)γ̇ + Dγ̇(σ(γ̇, γ̇))

= k(∇γ̇Ys + σ(γ̇, Ys))−Aσ(γ̇,γ̇)γ̇ + (∇̄γ̇σ)(γ̇, γ̇) + 2σ(∇γ̇ γ̇, γ̇)

= −k2γ̇ + 3kσ(γ̇, Ys)−Aσ(γ̇,γ̇)γ̇ + (∇̄γ̇σ)(γ̇, γ̇).

We compare the tangential components and the normal components for the sub-
manifold Mn in (4.4) and (4.5), respectively. Then we get the following:

˙̃κkYs − κ̃3γ̇ = κ̃(−k2γ̇ −Aσ(γ̇,γ̇)γ̇),(4.6)
˙̃κσ(γ̇, γ̇) = κ̃(3kσ(γ̇, Ys) + (∇̄γ̇σ)(γ̇, γ̇)).(4.7)

Equation (4.7) gives at s = 0

˙̃κ(0)σ(u, u) = κ̃(0)(3kσ(u, v) + (∇̄uσ)(u, u)),

so that

(4.8) ˙̃κ(0)κ̃(0)σ(u, u) = κ̃(0)2(3kσ(u, v) + (∇̄uσ)(u, u)).

On the other hand, we see from (4.3) and (3.3) that

(4.9) κ̃2(0) = k2 + ‖σ(u, u)‖2,

and that for each s

2 ˙̃κκ̃ = 2〈(∇̄γ̇σ)(γ̇, γ̇), σ(γ̇, γ̇)〉+ 4〈σ(∇γ̇ γ̇, γ̇), σ(γ̇, γ̇)〉.

So we have at s = 0

(4.10) ˙̃κ(0)κ̃(0) = 〈(∇̄uσ)(u, u), σ(u, u)〉+ 2k〈σ(v, u), σ(u, u)〉.
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Substituting (4.9) and (4.10) into (4.8), we obtain

(4.11)
3k(k2 + ‖σ(u, u)‖2)σ(u, v)− 2k〈σ(u, u), σ(u, v)〉σ(u, u)

= 〈(∇̄uσ)(u, u), σ(u, u)〉σ(u, u)− (k2 + ‖σ(u, u)‖2)(∇̄uσ)(u, u).

Here we consider anther circle τ = τ(s) of the same curvature k in Mn satisfying
the equations ∇τ̇ τ̇ = kZs and ∇τ̇Zs = −kτ̇ , with initial condition τ(0) = x,
τ̇(0) = u and Z0 = −v. By assumption, the curve f ◦ τ is a Frenet curve of order
2 in M̃n+p. So we can apply the above discussion to the curve τ . Then we can
see that

(4.11’)
−3k(k2 + ‖σ(u, u)‖2)σ(u, v) + 2k〈σ(u, u), σ(u, v)〉σ(u, u)

= 〈(∇̄uσ)(u, u), σ(u, u)〉σ(u, u)− (k2 + ‖σ(u, u)‖2)(∇̄uσ)(u, u).

Hence, from (4.11) and (4.11’) we obtain

(4.12) 3(k2 + ‖σ(u, u)‖2)σ(u, v)− 2〈σ(u, u), σ(u, v)〉σ(u, u) = 0.

Taking the inner product of both sides of equation (4.12) with σ(u, u), we get

(3k2 + ‖σ(u, u)‖2)〈σ(u, u), σ(u, v)〉 = 0.

Hence
〈σ(u, u), σ(u, v)〉 = 0.

Since x is arbitrary, thanks to Lemma 1, we find that our immersion f is (say,
λ-)isotropic. So, again by using Lemma 1, we get Aσ(γ̇,γ̇)γ̇ = λ2γ̇. Hence, from
(4.6) we have

˙̃κkYs − κ̃3γ̇ = −κ̃(k2 + λ2)γ̇.

Taking the inner product of bith sides of this equation with unit vectors Ys, we
know that κ̃ = κ̃(s) is constant along the curve f ◦ γ. Therefore we can see that
the curve f ◦γ is a circle in the ambient space M̃n+p. Thus we get the statement
of Theorem 2. ¤

5. Characterization of Veronese embeddings

As an application of Theorem 1 we shall provide a characterization of a
Kähler isometric full immersion of a complex projective space CPn(c) of con-
stant holomorphic sectional curvature c into a complex projective space CPN (c̃)
of constant holomorphic sectional curvature c̃. By virtue of the classification
theorem ([1, 10]) this Kähler immersion is equivalent to a Kähler embedding
fν : CPn(c/ν) → CPN (c) given by

[zi]05i5n 7→
[√ ν!

ν0! · · · νn!
zν0
0 · · · zνn

n

]
ν0+···+νn=ν,

where [∗] means the point of the projective space with homogeneous coordinates
∗ and N = (n + ν)!/(n!ν!)− 1. We usually call fν the ν-th Veronese embedding.
The embedding fν has various geometric properties. We recall the work of [1,
10] for the later use.
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Theorem A. Let f : Mn(c) → MN (c̃) be a Kähler isometric immersion of a
complex space form of constant holomorphic sectional curvature c into another
complex space form of constant holomorphic sectional curvature c̃. If c̃ > 0 and
f is full, then c̃ = νc, N = (n + ν)!/(n!ν!)− 1 and f is locally equivalent to the
ν-th Veronese embedding fν for some positive integer ν.

We are now in a position to prove the following:

Theorem 3 ([5]). Let f : Mn → MN (c) be a Kähler isometric full immersion of
an n-dimensional Kähler manifold Mn into an N -dimensional complex space form
MN (c) of constant holomorphic sectional curvature c > 0. Then the following
conditions are equivalent.

(i) For some positive integer ν, the submanifold Mn is locally congruent to
CPn(c/ν), N = (n + ν)!/(n!ν!)− 1 and f is locally equivalent to the ν-th
Veronese embedding fν .

(ii) There exists a positive constant k satisfying that for each circle γ of cur-
vature k on the submanifold Mn the curve f ◦ γ in MN (c) has constant
the first curvature κ1 along this curve.

Proof. (i) ⇒ (ii): For each Veronese embedding fν : CPn(c/ν) → CPN (c) we see
that ‖σ(X, X)‖2 = c(ν−1)/2ν for any unit vector X at each point x ∈ CPn(c/ν)
(see [13]). Then we find that for each circle γ of curvature k on CPn(c/ν) the

curve fν ◦ γ has constant the first curvature κ1 =
√

k2 + c(ν−1)
2ν in the ambient

manifold CPN (c).
(ii) ⇒ (i): Let f : Mn → MN (c) be a Kähler isometric full immersion satisfy-

ing the condition (ii). Then by virtue of Theorem 1 Mn is constant (λ-)isotropic
in MN (c). On the other hand we denote by R (resp. R̃) the curvature tensor of
Mn (resp. MN (c)). We recall the Gauss equation

〈R̃(X,Y )Z, W 〉 = 〈R(X,Y )Z, W 〉+ 〈σ(X,Z), σ(Y, W )〉 − 〈σ(X, W ), σ(Y,Z)〉.
Since M is a Kähler submanifold in MN (c), from this equation and

R̃(X, Y )Z =
c

4
(〈Y, Z〉X − 〈X, Z〉X + 〈JY, Z〉JX − 〈JX, Z〉JY + 2〈X, JY 〉JZ),

we find that the holomorphic sectional curvature K(X, JX) of Mn determined
by a unit vector X is given by

K(X, JX) = 〈R(X, JX)JX,X〉 = c− 2‖σ(X, X)‖2.
Thus we can see that our submanifold Mn is a complex space form. Therefore
from Theorem A we obtain the statement (i). ¤

We here make mention of other curvatures in Theorem 3. It is known that for
each circle γ on CPn(c/ν) the curve fν ◦ γ is an integral curve of some Killing
vector field of the ambient space CPN (c), so that all curvatures of fν ◦ γ are
constant (cf. [7]).
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6. Characterization of totally geodesic immersions

In this section we consider Frenet curves of proper order 2 on submanifolds.
Our aim here is to prove the following:

Theorem 4 ([17]). Let Mn be a connected Riemannian submanifold of a Rie-
mannian manifold M̃n+p through an isometric immersion f . Asumme that there
exists a nonconstant positive smooth function κ = κ(s) satisfying that for every
Frenet curve γ = γ(s) of proper order 2 with curvature κ in Mn, the curve f ◦ γ

is a Frenet curve of order 2 in the ambient space M̃n+p. Then Mn is totally
geodesic in M̃n+p.

Proof. Let x be an arbitrary point of Mn and u, v any orthonormal pair of vectors
in TxMn. Without loss of generality we suppose that the function κ = κ(s) is
defined on some open interval −ε < s < ε. Let γ = γ(s) (|s| < ε) be a Frenet
curve of proper order 2 with curvature κ in Mn satisfying the equations

(6.1) ∇γ̇ γ̇ = κ(s)Ys, ∇γ̇Ys = −κ(s)γ̇

and the initial condition γ(0) = x, γ̇(0) = u and Y0 = v. By assumption the
curve f ◦ γ is a Frenet curve of proper order 2 in M̃n+p. So there exist a positive
smooth function κ̃ = κ̃(s) and a field of unit vectors Ỹs along f ◦ γ in M̃n+p

satisfying equation (4.1).
Then by the same discussion as in the proof of Theorem 2 we have the following

equations.

κ̃Ỹs = κYs + σ(γ̇, γ̇),(6.2)

κ̃2 = κ2 + ‖σ(γ̇, γ̇)‖2.(6.3)

(6.4)
∇̃γ̇(κ̃Ỹs) = ˙̃κỸs + κ̃∇̃γ̇ Ỹs

=
˙̃κ
κ̃

(κYs + σ(γ̇, γ̇))− κ̃2γ̇.

(6.5)

∇̃γ̇(κYs + σ(γ̇, γ̇))

= κ̇Ys + κ∇̃γ̇Ys −Aσ(γ̇,γ̇)γ̇ + Dγ̇(σ(γ̇, γ̇))

= κ̇Ys + κ(∇γ̇Ys + σ(γ̇, Ys))−Aσ(γ̇,γ̇)γ̇

+ (∇̄γ̇σ)(γ̇, γ̇) + 2σ(∇γ̇ γ̇, γ̇)

= κ̇Ys − κ2γ̇ + 3κσ(γ̇, Ys)−Aσ(γ̇,γ̇)γ̇ + (∇̄γ̇σ)(γ̇, γ̇).
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We compare the tangential components and the normal components for the sub-
manifold Mn in (6.4) and (6.5), respectively.

˙̃κκYs − κ̃3γ̇ = κ̃(κ̇Ys − κ2γ̇ −Aσ(γ̇,γ̇)γ̇),(6.6)
˙̃κσ(γ̇, γ̇) = κ̃(3κσ(γ̇, Ys) + (∇̄γ̇σ)(γ̇, γ̇)).(6.7)

Equation (6.7) gives at s = 0

˙̃κ(0)σ(u, u) = κ̃(0)(3κ(0)σ(u, v) + (∇̄uσ)(u, u)),

so that

(6.8) ˙̃κ(0)κ̃(0)σ(u, u) = κ̃(0)2(3κ(0)σ(u, v) + (∇̄uσ)(u, u)).

On the other hand, we see from (6.3) and (3.3) that

(6.9) κ̃2(0) = κ2(0) + ‖σ(u, u)‖2,

and that

(6.10)
˙̃κ(0)κ̃(0) =κ̇(0)κ(0) + 〈(∇̄uσ)(u, u), σ(u, u)〉

+ 2κ(0)〈σ(v, u), σ(u, u)〉.

Substituting (6.9) and (6.10) into (6.8), we obtain

(6.11)

3κ(0)(κ(0)2 + ‖σ(u, u)‖2)σ(u, v)− 2κ(0)〈σ(u, u), σ(u, v)〉σ(u, u)

= (κ̇(0)κ(0) + 〈(∇̄uσ)(u, u), σ(u, u)〉)σ(u, u)

− (κ(0)2 + ‖σ(u, u)‖2)(∇̄uσ)(u, u).

Then by the same discussion as in the proof of Theorem 2 we find that

(6.11’)

−3κ(0)(κ(0)2 + ‖σ(u, u)‖2)σ(u, v) + 2κ(0)〈σ(u, u), σ(u, v)〉σ(u, u)

= (κ̇(0)κ(0) + 〈(∇̄uσ)(u, u), σ(u, u)〉)σ(u, u)

− (κ(0)2 + ‖σ(u, u)‖2)(∇̄uσ)(u, u).

It follows from (6.11) and (6.11’) that

(6.12) 3κ(0)(κ(0)2 + ‖σ(u, u)‖2)σ(u, v)− 2κ(0)〈σ(u, u), σ(u, v)〉σ(u, u) = 0.

So we have
(3κ(0)2 + ‖σ(u, u)‖2)〈σ(u, u), σ(u, v)〉 = 0.
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Note that κ(0) 6= 0. Hence

〈σ(u, u), σ(u, v)〉 = 0.

This, combined with (6.12), shows that σ(u, v) = 0 holds for each orthonormal
pair of vectors u, v in TxMn. Since x is an arbitrary point, our immersion f is
totally umbilic. Then by taking the inner product of both sides of equation (6.6)
with Ys we see that

(6.13) ˙̃κ(s)κ(s) = κ̃(s)κ̇(s) for each s.

Moreover, from (6.7) we obtain

(6.14) ˙̃κ(s)hγ(s) = κ̃(s)(Dγ̇(s)h)γ(s) for any s,

where h is the mean curvature vector of our immersion. Therefore equations
(6.13) and (6.14) imply

(6.15) (Dγ̇(s)h)γ(s) =
˙̃κ(s)
κ̃(s)

hγ(s) =
κ̇(s)
κ(s)

hγ(s).

In particular, at s = 0, we get

(Duh)x =
κ̇(0)
κ(0)

hx.

This equation shows that (Duh)x is independent of the choice of a unit vector
u ∈ TxMn. Changing u into −u we see (Duh)x = 0. Since x is an arbitrary
point, we have shown that the mean curvature vector h of f is parallel.

Finally, by assumption, as the function κ(s) is not constant, there exists some
s0 ∈ (−ε, ε) with κ̇(s0) 6= 0. This, together with equation (6.15), yields

hγ(s0) =
κ(s0)
κ̇(s0)

(Dγ̇h)γ(s0) = 0.

Since ‖h‖ is constant on Mn, we have h = 0 on Mn. Consequently the immersion
f : Mn → M̃n+p is totally geodesic. ¤

The discussion in the proof of Theorem 4 gives the following, which is an
improvement of Theorem 2.

Theorem 4’. Let Mn be a connected Riemannian submanifold of a Riemannian
manifold M̃n+p through an isometric immersion f . Then Mn is an extrinsic
sphere of M̃n+p if and only if there exists a positive smooth function κ = κ(s)
satisfying that for every Frenet curve γ = γ(s) of proper order 2 with curvature κ

in Mn, the curve f ◦ γ is a Frenet curve of order 2 in the ambient space M̃n+p.
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7. Characterization of totally geodesic Kähler immersions

We consider the extrinsic shape f ◦ γ of a Kähler Frenet curve γ of a Kähler
manifold M in an ambient Kähler manifold M̃ through a Kähler isometric immer-
sion f . We shall give a characterization of all totally geodesic Kähler immersions
from this point of view.

Theorem 5 ([8, 15]). Let f be a Kähler isometric immersion of a complex
n-dimensional Kähler manifold Mn into an arbitrary complex m-dimensional
Kähler manifold M̃m. Then the following are equivalent.

(i) f is a totally geodesic immersion.
(ii) There exists a positive smooth function κ = κ(s) satisfying that f maps

every Kähler Frenet curve γ = γ(s) of curvature κ on Mn to a Frenet
curve of order 2 in M̃m.

(iii) There exists a positive constant k satisfying that f maps every Kähler
circle γ = γ(s) of curvature k on Mn to a Frenet curve of order 2 in M̃m.

In order to prove Theorem 5 we prepare the following lemma:

Lemma 2. Let Mn be a Kähler manifold with complex structure J which is
immersed into an arbitrary Riemannian manifold M̃ through an isometric im-
mersion f . If for a Kähler Frenet curve γ = γ(s) of positive curvature κ = κ(s)
on Mn, the curve f ◦γ is a Frenet curve of order 2 in M̃ , then following equalities
hold:

±κ ˙̃κJγ̇ − κ̃3γ̇ = κ̃{±κ̇Jγ̇ − κ2γ̇ −Aσ(γ̇,γ̇)γ̇},(7.1)
˙̃κσ(γ̇, γ̇) = κ̃{±3κσ(γ̇, Jγ̇) + (∇̄γ̇σ)(γ̇, γ̇)}.(7.2)

In equalities (7.1) and (7.2), we adopt plus sign (resp. minus sign) for a Kähler
Frenet curve satisfying ∇γ̇ γ̇ = κJγ̇ (resp. ∇γ̇ γ̇ = −κJγ̇).

Proof of Lemma 2. Since the curve f ◦ γ is a Frenet curve of order 2 in M̃ by
assumption, there exist a function κ̃ = κ̃(s) and a field of unit vectors Ỹs along
f ◦ γ in M̃ satisfying (4.1). Then from (2.1) we have

(7.3) κ̃Ỹs = ±κJγ̇ + σ(γ̇, γ̇).

The function κ̃ is positive because κ > 0.
For the left-hand side of (7.3), by using (4.1) and (7.3) again, we see

(7.4)
κ̃∇̃γ̇(κ̃Ỹs) = κ̃{ ˙̃κỸs + κ̃∇̃γ̇ Ỹs} = κ̃ ˙̃κỸs − κ̃3γ̇

= ˙̃κ{±κJγ̇ + σ(γ̇, γ̇)} − κ̃3γ̇.
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On the other hand, for the right-hand side of (7.3), it follows from (2.1), (2.2)
and (2.3) that
(7.5)
κ̃∇̃γ̇{±κJγ̇ + σ(γ̇, γ̇)}

= κ̃
{
±κ̇Jγ̇ ± κ∇̃γ̇(Jγ̇)−Aσ(γ̇,γ̇)γ̇ + Dγ̇(σ(γ̇, γ̇))

}

= κ̃
{
±κ̇Jγ̇ ± κ (∇γ̇(Jγ̇) + σ(γ̇, Jγ̇))−Aσ(γ̇,γ̇)γ̇ + (∇̄γ̇σ)(γ̇, γ̇) + 2σ(∇γ̇ γ̇, γ̇)

}

= κ̃
{
±κ̇Jγ̇ ± κ (J(±κJγ̇) + σ(γ̇, Jγ̇))−Aσ(γ̇,γ̇)γ̇ + (∇̄γ̇σ)(γ̇, γ̇)± 2κσ(Jγ̇, γ̇)

}

= κ̃
{
±κ̇Jγ̇ − κ2γ̇ ± 3κσ(γ̇, Jγ̇)−Aσ(γ̇,γ̇)γ̇ + (∇̄γ̇σ)(γ̇, γ̇)

}
.

We compare the tangential components and the normal components of (7.4) and
(7.5), respectively. Then we get equalities (7.1) and (7.2). ¤

We shall prove Theorem 5. Needless to say, condition (i) implies both condi-
tions (ii) and (iii). We have only to show that condition (ii) implies condition (i)
for each given positive smooth function κ = κ(s). Let v ∈ TMn be an arbitrary
unit vector tangent to Mn. We have Kähler Frenet curves γ1, γ2 of cuvature κ on
Mn satisfying ∇γ̇1 γ̇1 = κJγ̇1, ∇γ̇2 γ̇2 = −κJγ̇2 with condition γ̇1(0) = γ̇2(0) = v.
The curves γ1, γ2 satisfy the following equalities by Lemma 2:

±κ ˙̃κiJγ̇i − κ̃3
i γ̇i = κ̃i{±κ̇Jγ̇i − κ2γ̇i −Aσ(γ̇i,γ̇i)γ̇i},(7.6)

˙̃κiσ(γ̇i, γ̇i) = κ̃i{±3κσ(γ̇i, Jγ̇i) + (∇̄γ̇iσ)(γ̇i, γ̇i)},(7.7)

where κ̃i =
√

κ2 + ‖σ(γ̇i, γ̇i)‖2 (> 0). Since the immersion f is Kähler, we see

〈Aσ(γ̇i,γ̇i)γ̇i, Jγ̇i〉 = 〈σ(γ̇i, γ̇i), σ(γ̇i, Jγ̇i)〉 = 〈σ(γ̇i, γ̇i), Jσ(γ̇i, γ̇i)〉 = 0.

Hence, by taking the inner product of both sides of equation (7.6) with Jγ̇i, we
find κ ˙̃κi = κ̃iκ̇. Then equation (7.7) becomes

±3κJσ(γ̇i, γ̇i) + (∇̄γ̇iσ)(γ̇i, γ̇i) =
˙̃κi

κ̃i
σ(γ̇i, γ̇i) =

κ̇

κ
σ(γ̇i, γ̇i).

Evaluating this equation at s = 0, we get

3κ(0)Jσ(v, v) + (∇̄vσ)(v, v) =
κ̇(0)
κ(0)

σ(v, v) for i = 1,

−3κ(0)Jσ(v, v) + (∇̄vσ)(v, v) =
κ̇(0)
κ(0)

σ(v, v) for i = 2.
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It follows that σ(v, v) = 0 for an arbitrary unit vector v ∈ TMn. Therefore f is
a totally geodesic immersion.

Remark. In the statement of Theorem 5, we can not omit the condition that
κ is positive. For example, we consider the second Veronese embedding f2 :
CPn(c/2) −→ CP (n2+3n)/2(c) which is defined by

(z0, . . . , zn) 7→ (z2
0 ,
√

2 z0z1, . . . , z2
n)

in homogeneous coordinates. This (non totally geodesic) Kähler isometric embed-
ding maps every geodesic on CPn(c/2) to a totally real circle of positive curvature√

c /2 in the ambient space CP (n2+3n)/2(c), that is a circle of curvature
√

c /2 in
RP 2(c/4) which is a totally real totally geodesic submanifold of CP (n2+3n)/2(c).
The following gives a characterization of the second Veronese embedding:

Proposition ([6, 9]). Let Mn be a non totally geodesic Kähler submanifold of
CPN (c) through a full Kähler isometric immersion f . Suppose that for each geo-
desic γ on Mn, the curve f◦γ is a plane curve in the ambient space CPN (c). Then
the submanifold Mn is locally congruent to CPn(c/2), the isometric immersion f
is locally equivalent to the second Veronese embedding f2 and N = (n2 + 3n)/2.

Here, a curve γ = γ(s) on a Riemannian manifold M is called a plane curve if
the curve γ is locally contained in some real 2-dimensional totally geodesic sub-
manifold of M . As a matter of course, every plane curve with positive curvature
function is a Frenet curve of proper order 2. But in general, the converse does
not hold.

8. Characterization of some parallel isometric immersions

We shall provide a characterization of all parallel immersions of a complex
space form Mn(c) into a real space form M̃2n+p(c̃) by observing the extrinsic
shape of a Kähler Frenet curve of Mn(c) in the ambient space M̃2n+p(c̃).

Theorem 6 ([8]). Let f be an isometric immersion of a Kähler manifold Mn

into a real space form M̃2n+p(c̃) of constant sectional curvature c̃. If there exists a
positive smooth function κ satisfying that f maps every Kähler Frenet curve γ of
curvature κ on Mn to a plane curve in M̃2n+p(c̃), then f is a parallel immersion
and locally equivalent to one of the following.

(1) f is a totally geodesic immersion of Mn = Cn into M̃2n+p(c̃) = R2n+p,
where c̃ = 0.

(2) f is a totally umbilic immersion of Mn = Cn into M̃2n+p(c̃) = RH2n+p(c̃),
where c̃ < 0.

(3) f is a parallel immersion defined by

f = f1 ◦ f2 : Mn = CPn(c)
f1−→ Sn2+2n−1((n + 1)c/(2n))

f2−→ M̃2n+p(c̃),
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where f1 is the first standard minimal embedding, f2 is a totally umbilic
embedding and (n + 1)c/(2n) = c̃.

Proof. Let x be any point of Mn and v ∈ TxMn be any unit tangent vector at
x ∈ Mn. Let γ1 = γ1(s) and γ2 = γ2(s) be Kähler Frenet curves of curvature
κ on Mn satisfying that γ1(0) = γ2(0) = x, γ̇1(0) = γ̇2(0) = v and ∇γ̇1 γ̇1 =
κJγ̇1, ∇γ̇2 γ̇2 = −κJγ̇2. Then, by Lemma 2 equations (7.6) and (7.7) hold. Note
that κ̃i > 0. For the sake of brevity, we abbreviate the indices in the following.
It follows from (6.3) that

(8.1)

κ̃ ˙̃κ =
1
2

d

ds
κ̃2

= κκ̇ +
1
2

d

ds
〈σ(γ̇, γ̇), σ(γ̇, γ̇)〉

= κκ̇ + 〈(∇̄γ̇σ)(γ̇, γ̇), σ(γ̇, γ̇)〉 ± 2κ〈σ(Jγ̇, γ̇), σ(γ̇, γ̇)〉.

On the other hand, equation (7.2) implies that

(8.2) κ̃ ˙̃κσ(γ̇, γ̇) = κ̃2{±3κσ(γ̇, Jγ̇) + (∇̄γ̇σ)(γ̇, γ̇)}.
Substituting (6.3) and (8.1) into (8.2), at s = 0 we obtain

(8.3)

{
κ(0)κ̇(0) + 〈(∇̄vσ)(v, v), σ(v, v)〉 ± 2κ(0)〈σ(v, v), σ(v, Jv)〉

}
σ(v, v)

=
{

κ(0)2 + ‖σ(v, v)‖2
}{
±3κ(0)σ(v, Jv) + (∇̄vσ)(v, v)

}
.

Then the same discussion as in the proof of Theorem 5 shows

2κ(0)〈σ(v, v), σ(v, Jv)〉σ(v, v) = 3κ(0)
{

κ(0)2 + ‖σ(v, v)‖2
}

σ(v, Jv),

so that

(8.4) 2〈σ(v, v), σ(v, Jv)〉σ(v, v) = 3
{

κ(0)2 + ‖σ(v, v)‖2
}

σ(v, Jv).

Taking the inner product of both sides of this with σ(v, v), we get

2〈σ(v, v), σ(v, Jv)〉‖σ(v, v)‖2 = 3
{

κ(0)2 + ‖σ(v, v)‖2
}
〈σ(v, v), σ(v, Jv)〉

hence {
3κ(0)2 + ‖σ(v, v)‖2

}
〈σ(v, v), σ(v, Jv)〉 = 0.

Consequently 〈σ(v, v), σ(v, Jv)〉 = 0, because 3κ(0)2 + ‖σ(v, v)‖2 > 0. Again
from (8.4) we find

(8.5) σ(v, Jv) = 0 for any x ∈ Mn and any v ∈ TxMn.
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Replacing v by Jv + u, we have σ(u, v) = σ(Ju, Jv) for each u, v ∈ TxMn. This,
together with Codazzi’s equation in a space of constant curvature, implies that
the immersion f is parallel: ∇̄σ = 0 (see [3]). Next, owing to (8.5), we see
〈Aσ(γ̇,γ̇)γ̇, Jγ̇〉 = 〈σ(γ̇, γ̇), σ(γ̇, Jγ̇)〉 = 0. Therefore, taking the inner product of
both sides of (7.1) with Jγ̇, we have

(8.6) κ ˙̃κ = κ̃κ̇,

so that equation (7.1) reduces to

Aσ(γ̇,γ̇)γ̇ = (κ̃2 − κ2)γ̇,

which implies that

〈σ(v, v), σ(v, u)〉 = 〈Aσ(v,v)v, u〉 = 0

for any orthonormal pair of vectors u, v ∈ TxMn at each point x ∈ Mn. Thus, by
virtue of Lemma 1, the immersion f is isotropic. Hence our submanifold Mn is
a complex space form immersed as an isotropic submanifold with parallel second
fundamental form into the ambient space M̃2n+p(c̃), so that the immersion f
is rigid (see Proposition 1 in [18]). Therefore we can see that the submanifold
(Mn, f) is locally congruent to one of (1), (2) and (3) (cf. [2, 16]).

Now we shall show that the examples (1), (2) and (3) satisfy the hypothesis
of our theorem. For each positive smooth function κ the totally geodesic case
(1) satisfies our hypothesis. Next, for the other cases (2) and (3) we take the
function κ as a positive constant, say k. In the case of (2), for each circle γ of
curvature k(> 0) on Mn the curve f ◦ γ is a circle of curvature

√
k2 − c̃ (see

page 169 in [11]), so that it is a plane curve in the ambient space M̃2n+p(c̃).
Finally we explain the case (3) in detail. The isometric immersion f given by
(3) is (λ =)

√
c− c̃ -isotropic and the parallel second fundamental form σ of f

satisfies σ(JX, JY ) = σ(X, Y ) for each vector X, Y ∈ T (CPn(c)). Let γ = γ(s)
be a Kähler circle of curvature k(> 0) on CPn(c). Then the curve f ◦ γ satisfies
∇̃γ̇ γ̇ = ±kJγ̇ + σ(γ̇, γ̇). Note that

‖∇̃γ̇ γ̇‖ =
√

k2 + λ2 =
√

k2 + c− c̃ .

Here we put

Ỹs =
±kJγ̇ + σ(γ̇, γ̇)√

k2 + c− c̃
.
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So we have

∇̃γ̇ Ỹs =
1√

k2 + c− c̃
∇̃γ̇

(
± kJγ̇ + σ(γ̇, γ̇)

)

=
1√

k2 + c− c̃

(
± k∇̃γ̇(Jγ̇) + ∇̃γ̇(σ(γ̇, γ̇))

)

=
1√

k2 + c− c̃

(
± k∇γ̇(Jγ̇)± k · σ(γ̇, Jγ̇)−Aσ(γ̇,γ̇)γ̇ + Dγ̇(σ(γ̇, γ̇))

)

=
1√

k2 + c− c̃

(
− k2γ̇ − λ2γ̇ + (∇̄γ̇σ)(γ̇, γ̇)± 2k · σ(Jγ̇, γ̇)

)

= −
√

k2 + c− c̃ γ̇.

Therefore we can see that for each Kähler circle γ of curvature k(> 0) on CPn(c)
the curve f ◦ γ is a circle (of curvature

√
k2 + c− c̃ ), so that it is a plane curve

in M̃2n+p(c̃). ¤

Remark. Theorem 6 also holds under the condition κ ≡ 0 (see [14]).

As a consequence of Theorem 6 we establish the following corollary ([8]):

Corollary. Let f be an isometric immersion of a Kähler manifold Mn into a
real space form M̃2n+p(c̃) of constant sectional curvature c̃. If there exists a non
constant positive smooth function κ satisfying that f maps every Kähler Frenet
curve γ of curvature κ on Mn to a plane curve in M̃2n+p(c̃), then f is a totally
geodesic immersion of Mn = Cn into M̃2n+p(c̃) = R2n+p, where c̃ = 0.

Proof. By assumption, as the curvature function κ is not constant, there exists
some s0 with κ̇(s0) 6= 0. Since κ, κ̃ > 0, we find ˙̃κ(s0) 6= 0 from (8.6). In the
following, we will use the fact that ∇̄σ = 0 and equation (8.5). Then equation
(7.2) yields σ(γ̇(s0), γ̇(s0)) = 0. Now, we can see that ‖σ(γ̇, γ̇)‖ is constant along
the curve γ. In fact, we have

d

ds
‖σ(γ̇, γ̇)‖2 = 2〈(∇̄γ̇σ)(γ̇, γ̇), σ(γ̇, γ̇)〉 ± 4κ〈σ(Jγ̇, γ̇), σ(γ̇, γ̇)〉 = 0.

Hence we conclude σ(v, v) = 0 for an arbitrary unit vector v ∈ TxMn at each
point x ∈ Mn. Thus f : Mn → M̃2n+p(c̃) is a totally geodesic immersion. ¤
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