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Abstract. The equilibrium problem and the condenser problem have been
solved in finite networks. This note considers such problems in the context of
infinite networks and trees. The basic tool employed is the solution of a Dirichlet
problem for an arbitrary subset of an infinite network.

1. Introduction

An electrical network (V,E, c) is a simple finite connected graph, with vertex set
V and edge set E in which each edge is assigned a conductance c(x, y) > 0. The
Laplacian L of the network is a matrix of finite order whose entries are L(x, y) =
−c(x, y) if x 6= y and L(x, x) = c(x) =

∑
y∈V c(x, y). For a function u(x) on V ,

define Lu(x) =
∑

y∈V c(x, y)[u(x) − u(y)].
Considering the Laplacian as a kernel on the vertex set and using the energy

principle and the maximum principle for L, Bendito et al. [3] show that L satisfies
the equilibrium principle for the kernel L: For every proper set F ⊂ V , there exists
a unique u ≥ 0 on V (called the equilibrium measure for F ) such that u > 0 on F ,
u = 0 on V \ F and Lu = 1 on F .

As a consequence, the Green function of the Dirichlet problem and the Poisson
problems and the solution of the condenser problem are obtained solely in terms
of the equilibrium measures for suitable subsets.

Our intention is to consider these questions in the context of a (Yamasaki) infinite
network [8] or a (Cartier) tree [5]. We first obtain the solution for a version of
the Dirichlet problem which, along with the results in Yamasaki [8], is useful in
constructing the equilibrium measures of subsets that are not necessarily finite.
Also, keeping this Dirichlet solution as the basis, we extend the results proved for
the finite case in Bendito et al. [3] to the infinite network. Two of these results
are the condenser principle for finite or infinite subsets and the construction of a
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function vx,y(z) which, in the context of random walks, gives the probability that
if the walk starts at z it will reach x before it reaches y.

2. Preliminaries

Let N = {X,Y, k, r} be an infinite network in the sense of Yamasaki [8], that is
connected, locally finite and has no self-loop. Two vertices x and a of N are said
to be neighbours, x ∼ a, if there is an arc in Y connecting x and a. For a vertex
x, denote W (x) = {a : a ∼ x}, x ∈ W (x). For each pair of vertices x and a in X,
t(x, a) ≥ 0 is defined by that t(x, a) = 0 if and only if x and a are not neighbours,
also t(x, a) = t(a, x) and t(a, a) = 0. Then, for a real-valued function u(x) defined
on X, the Laplacian of u is defined as ∆u(x) =

∑
a∈X t(x, a)[u(a) − u(x)].

Suppose that u is a real-valued function defined on a subset A of X. Let us say

that a is an interior point of A, a ∈
o

A, if and only if x ∈ A for every x ∼ a. Write

∂A = A\
o

A. Then u is said to be harmonic (respectively superharmonic) on A if

and only if ∆u(a) = 0 (respectively ∆u(a) ≤ 0) for all a ∈
o

A.
A Cartier tree T is an infinite connected graph, locally finite and without any

circuits. (A circuit means a path {x, x1, . . . , xn, x} connecting a vertex x to itself,
with n ≥ 2.) A vertex x is said to be terminal if it has only one neighbour in
T . A transition probability is given to T : that is, with any two vertices x and
y is associated a real number p(x, y) ≥ 0 such that p(x, y) > 0 if and only if
x ∼ y and

∑
y∈T p(x, y) = 1 for any x ∈ T . Note that p(x, y) and p(y, x) may

not be the same. For a real function u(x) on T , the Laplacian of u is defined as
∆u(x) =

∑
y∈T p(x, y)[u(y) − u(x)].

On a tree T , fix a vertex e. For any x ∈ T , define

φ(x) =
p(e, x1)p(x1, x2) . . . p(xn, x)

p(x, xn)p(xn, xn−1) . . . p(x1, e)
,

where {e, x1, . . . , xn, x} is a path connecting e and x. Note that φ(x) is independent
of the path chosen and depends only on x; also note that for any pair of vertices x
and y, φ(x)p(x, y) = φ(y)p(y, x). Now, define the conductance t(x, y) = φ(x)p(x, y)
on T . With this conductance, T becomes a connected infinite network in the
framework of Yamasaki [8], but without circuits.

Let ∆T and ∆N denote the Laplacian on T , when T is considered as a tree and
when T is considered as an infinite network respectively. Then for any u(x) on T ,

∆Nu(x) =
∑

t(x, y)[u(y) − u(x)]

= φ(x)
∑

p(x, y)[u(y) − u(x)]

= φ(x)∆T u(x).

Note that φ(x) > 0 for every x ∈ T (take φ(e) = 1). Hence, the fact that a
function u(x) is harmonic or superharmonic on T does not depend on whether T
is considered as a tree or as a network.
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In a network N , the existence of a positive superharmonic function that is not
harmonic implies that given any y ∈ N , there exists the Green potential Gy(x) on
N such that ∆Gy(x) = −δy(x), Gy(x) ≤ Gy(y) for every x ∈ N .

Let u be a real-valued function on a finite set F in a network. The inner normal
derivative of u with respect to F at a vertex s ∈ ∂F is defined [1] as

∂u

∂n− (s) =
∑
x∈F

t(s, x)[u(x) − u(s)].

Theorem 1 (Green’s formula: Bendito et al. [2], Urakawa [7]). Let u and
v be real-valued functions on a finite set F in a network. We set (u, v)F =
1
2

∑
x,y∈F t(x, y)[u(y) − u(x)][v(y) − v(x)]. Then

(1)
∑
x∈

o
F

u(x)∆v(x) + (u, v)F = −
∑
s∈∂F

u(s)
∂v

∂n− (s).

(2)
∑
x∈

o
F

[u(x)∆v(x) − v(x)∆u(x)] = −
∑
s∈∂F

[
u(s)

∂v

∂n− (s) − v(s)
∂u

∂n− (s)

]
.

Usually, Equation 1 is called Green’s formula I and Equation 2 is called Green’s
formula II.

Theorem 2 (Minimum principle). Let F be a finite set in a network N . Let u
be superharmonic on F . Then infz∈∂F u(z) = infx∈F u(x).

Proof. Let infx∈F u(x) = β, and infz∈∂F u(z) = α. Suppose that β < α. Then at

some point x ∈
o

F , u(x) = β.
Let z 6∈ F . Connect x and z by an arc {x, x1, . . . , xn, z}. (It is possible, since

N is connected.) Let i be the smallest index such that xi ∈
o

F and xi+1 6∈
o

F . Since

xi ∈
o

F and xi+1 ∼ xi, we deduce that xi+1 ∈ F . This implies that xi+1 ∈ ∂F .
Now, since ∆u(x) ≤ 0 and since u(x) = β is a minimum value, u ≡ β on W (x),
which is the set of all neighbours of x including x. This implies that u(x1) = β.
Proceeding thus, we show that u(xi) = β. But u(xi+1) ≥ α. This is a contradiction,
since ∆u(xi) ≤ 0 and u(xi) = β, so that u(xi+1) should be β; that is, α ≤ β, a
contradiction. ¤

3. A version of the Dirichlet solution

We start with a generalized version of Theorem 2.2 in [1].

Theorem 3. Let E be a (finite or infinite) set of vertices in a network N . Let

F ⊂
o

E. Let f ≥ 0 be a function on E \ F . Suppose that there exists a function
s ≥ 0 on E such that s ≥ f on E \ Fand ∆s ≤ 0 on F . Then there exists a
function g ≥ 0 on E such that

i): ∆g ≡ 0 on F , and
ii): g = f on E \ F .
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Moreover, g is the smallest of the all non-negative functions satisfying the con-
ditions (i) and (ii). (We denote g by HE,F

f )

Proof. Let F be the family of non-negative functions u on E such that u ≡ f on
E \ F and u is superharmonic on F . Note that if

u0 =

{
f on E \ F
s on F,

then u0 ∈ F . Let y ∈ F and u ∈ F . Then t(y)u(y) ≥
∑

t(y, z)u(z).
Define

u1(x) =

{
u(x) if x ∈ E \ {y}

1
t(y)

∑
t(y, z)u(z) if x = y.

Then u1 ∈ F , u1 ≤ u on E and ∆u1(y) = 0. Taking into account the arbitrariness
of y in F and u in F , if we define g(x) = infu∈F , then we can see that ∆g ≡ 0 on
F and g = f on E \ F . If p is another such positive function satisfying i) and ii),
then p ∈ F and hence g ≤ p. ¤
Corollary 4 (Dirichlet solution). Let E be a finite set. Given a function f on ∂E,

there exists a unique function g on E such that g = f on ∂E and ∆g = 0 on
o

E.

Proof. Since we can treat f+ and f− separately, we can assume that f ≥ 0. Since

E is finite, for some α > 0, f ≤ α on E and ∆α = 0 on
o

E. Hence by the theorem
above, there exists a function g ≥ 0 on E such that g = f on ∂E and g is harmonic

on
o

E.
The uniqueness of the solution follows from the minimum principle. ¤

Corollary 5 (Reduced functions). Let s ≥ 0 be a superharmonic function on N .
Let A be a finite or infinite set. Then there exists a superharmonic function RA

s ≥ 0

on N such that RA
s = s on A, RA

s is harmonic on
o

(N \ A) and RA
s ≤ s on N .

Proof. Let E = N \ A. Define the function

RA
s =

{
s on A

HE,
o
E

s on E.

Then RA
s has all the properties stated in the corollary. ¤

Remarks. 1. RA
s is the smallest positive superharmonic function on N that ma-

jorizes s on A.
2. In the classical potential theory in Rn, a function similar to RA

s is called the
reduced function of s on A (See Brelot [4, p.33]).

From now on, let us assume that there exist Green potentials on the network
N . Then, as shown in Yamasaki [8], for any vertex a, there exists a unique Green
potential Ga(x) > 0 such that ∆Ga(x) = −δa(x); also Ga(x) ≤ Ga(a) for any
x ∈ N .

We say that a real-valued function u defined on a subset A of X is a δ-superharmonic
function on A if and only if there exist two superharmonic functions s1 and s2 on
A such that u = s1 − s2 on A.
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Theorem 6. Let F be a set of vertices in a network N such that
∑

a∈F Ga(a) < ∞.
Let f be a bounded function on F . Then there exists a function u(x) on N such
that u is δ-superharmonic on F , ∆u = −f on F and u ≡ 0 on N \ F . Moreover
u ≥ 0 if f ≥ 0.

Proof. Let E = W (F ) =
∪

x∈F W (x). For every a ∈ F , let ha(x) be the extended
Dirichlet solution (as in Theorem 3) with values Ga(x) on E \ F and harmonic on
F . Then ga(x) = Ga(x) − ha(x) in E is such that

ga(x) = |ga(x)|
≤ |Ga(x)| + |ha(x)|
≤ Ga(a) + Ga(a).

(Remark that for a, b in F , ga(b) = gb(a) by using Green’s formula II above.)
Given the bounded function f on F , write f = f+ − f−. Let

u1(x) =

{ ∑
a∈F f+(a)ga(x) if x ∈ F

0 if x ∈ F c,

and

u2(x) =

{ ∑
a∈F f−(a)ga(x) if x ∈ F

0 if x ∈ F c.

Then, u1(x) ≥ 0 on N and u1 is superharmonic on F ; similarly for u2 also.
Let u(x) = u1(x)− u2(x) on N . Then u = 0 on N \F and u is δ-superharmonic

on F such that ∆u = −f on F . ¤
Remark. In contrast to the above theorem, we can prove for a Cartier tree (with or
without Green potentials) the following : Given an arbitrary real function f on an
arbitrary subset F of T , there exists a δ-superharmonic u on T such that ∆u = −f
on F and ∆u = 0 on T \ F .

Corollary 7. Let F be a finite set of vertices in a network N . Then given a real
function f on F there exists a unique function u(x) on N such that ∆u = −f on
F and u = 0 on F c. Further u ≥ 0 if f ≥ 0, and if f > 0 on F , then u > 0 on F .

Proof. Take E = W (F ) = ∪x∈F W (x), which is the smallest set containing F and

all the neighbours of the vertices in F . Remark that F ⊂
o

E. Then the above
theorem establishes the existence of u. For the uniqueness, we proceed as follows:
Suppose that v is another such function. Let h = u − v. Then ∆h = 0 on F and
h = 0 on F c.

i) Suppose that
o

E= F . Then h is a harmonic function on the finite set
o

E, such
that h = 0 on ∂E. Hence by the minimum principle (Theorem 2), h ≡ 0.

ii) Suppose that F is a proper subset of
o

E, in which case a direct application
of Theorem 2 is not possible. Write F = ∪Fi where each Fi is connected and

Fi ∩ Fj = φ. Then W (F ) = ∪W (Fi). Write Ei = W (Fi). If
o

Ei= Fi, then by (i),

h ≡ 0 on Fi. Let Fi be a proper subset of
o

Ei. Suppose that h takes a positive

value on Fi. Then h ≡ M on Fi, where M = maxFi
h. Let z ∈

o

Ei \Fi and z ∼ y,
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where y ∈ Fi. Then h(y) = M , h(z) = 0 (since z ∈ E \ F ) and ∆h(y) = 0, a
contradiction. Hence h does not take positive values on Fi; similarly h does not
take negative values on Fi. Hence h ≡ 0 on Fi. (See Yamasaki [8, Lemma 2.1].)

Finally, by the construction of u (as in the proof of Theorem 6), we note that
u ≥ 0 if f ≥ 0. Suppose that f > 0 on F , and u(a) = 0 for some a ∈ F . Then,

−f(a) = ∆u(a) =
∑

t(a, x)[u(x) − u(a)]

=
∑

t(a, x)u(x) ≥ 0,

a contradiction. Consequently, if f > 0 on F , then u > 0 on F . ¤
Note. In particular, the above corollary contains the following equilibrium principle
with respect to the Laplacian kernel [3, Proposition 2.3]: Let F be an arbitrary
finite set on a network N . Then there exists a unique function uF ≥ 0 on N such
that uF > 0 on F , uF = 0 on N \ F and ∆uF = −1 on F . uF is called the
equilibrium measure for F .

Combining the above results we have the following Dirichlet-Poisson solution.
(See [3, Section 3] on Dirichlet and Poisson problems for finite networks.)

Theorem 8. Let F be a subset of vertices in an infinite network N , such that∑
a∈F Ga(a) < ∞. Let f and g be real-valued functions on N , g bounded on F and

f bounded on W (F ). Then there exists a function u on N such that ∆u = −g on
F and u = f on F c.

Proof. Let E = W (F ). Then F ⊂
o

E. Since f is bounded on E, there exists
(Theorem 3) a function s on E such that ∆s = 0 on F and s = f on E \F . Extend
s by f outside F .

Since g is bounded on F , from Theorem 6 there exists a function t on N such
that ∆t = −g on F and t = 0 on F c. Write u = s + t. Then u is a real-valued
function on N such that ∆u = −g on F and u = f on F c. ¤

In Bendito et al. [3, Proposition 3.3] prove the condenser principle in a finite
network, using the Poisson kernel. In an infinite network, this principle can be
stated as follows:

Theorem 9. Let A and B be arbitrary disjoint subsets of an infinite network N .
Then, there exists a function φ on N such that (i) 0 ≤ φ ≤ 1 on N and φ is
harmonic on (N \ (A ∪ B))o, (ii) on A, φ = 1 and ∆φ ≤ 0, and (iii) on B, φ = 0
and ∆φ ≥ 0. Moreover, if u is any other function satisfying i), ii) and iii), then
φ ≤ u on N .

Proof. Take f =

{
0 on B
1 on A.

Let E = N \ (A ∪ B). Then ∂E ⊂ A ∪ B. By

Theorem 3, there exists a function g on E such that g is harmonic on
o

E and g = f

on ∂E = E\
o

E. Define

φ(x) =

{
g(x) if x ∈ E
f(x) if x ∈ A ∪ B.
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Then, 0 ≤ φ ≤ 1 on N , φ(x) is harmonic on
o

E, ∆φ(x) ≤ 0 on A and ∆φ(x) ≥ 0
on B. (With these properties, φ is uniquely determined if E is a finite set.) In
any event, if u is any other function satisfying i) , ii) and iii), by the construction
φ ≤ u on N . ¤
Remarks. 1) In the above theorem, if B = ∅ and A is finite, the solution φ is the
same as the reduced function RA

1 (See Corollary 5), which defines the capacitary
potential of A; and the capacity of A is defined as −

∑
x∈N ∆RA

1 (x). The capacity

of A can be defined (using Green’s formula I, see Section 2) also as
∑

s∈∂F
∂RA

1

∂n− (s)

where F is any finite set such that
o

F⊃ A. (See Kellogg [6, p. 330] and Brelot [4,
p. 52] for similar notions in the classical potential theory.)

2) In the above theorem, if A = {y} and B = {z} such that Gz(y) < Gz(z), then

on N , φ(x) ≤ Gz(x)−Gz(z)
Gz(y)−Gz(z)

, where Gz(x) is the Green function with pole at {z}. For,

in Theorem 3, take E = N . Then
o

E= N . Let F = N \ {y, z}. Let f(y) = 0 and

f(z) = 1. Define u(x) = Gz(z)−Gz(x)
Gz(z)−Gz(y)

. Since Gz(z) ≥ Gz(x) for all x ∈ N , we note

that u ≥ 0, u = f on E \ F and ∆u = 0 on F . Then u(x) ≥ φ(x) since φ(x) is the
smallest such function. Clearly 0 ≤ φ(x) ≤ 1. Such a function φ(x) is useful in the
context of random walks.
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