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Boundedness and asymptotic behavior of solutions and existence of periodic solutions 

of the scalar generalized logistic equation N(t) = N(t) (a - bN(t - 1) - cN(t - 2)) are 

discussed. In particular, we show partial global uniform asymptotic stability of the 

constant solution N (t) = a/(b + c), and existence of nontrivial periodic solutions by using 

a Hopf bifurcation and a fixed point theorem for a closed convex set 

S 1. Imtroduction 

Recently, Seifert [8] has obtained certain results concerning boundedness and 

asymptotic behavior of solutions and existence of nontrivial periodic solutions of the 

scalar generalized logistic equation 

N(t) = N(t)(a - bN(t) - N(t - 1)), (1) 

which arises in population dynamics. Here the superposed dot denotes the right-

hand derivative, a and b are positive constants. In [8] , concermng exrstence of 

periodic solutions, it is shown that (1) has nontrivial periodic solutions for a fixed 

b (O 

bifurcation. Moreover in [3], the author has shown that if a > ao(b), then (1) has 

nontrivial periodic solutions by usmg fixed pomt techmques established and 
developed by Jones [4] , Nussbaum [7] , Chow and Hale [2] , and others 

On the other hand, for differential equations with two time delays, corresponding 

results seem to be comparatively few in spite of their similarities to (1). In fact, 

concerning existence of nontrivial periodic solutions of the scalar equations 

= - (1 + x(t))(bx(t - 1) + cx(t - 2)), 

= - (1 - x2(t))(bx(t - 1) + cx(t - 2)), 

corresponding results are almost nonexistent for (2), though a few results are obtained 

in [4, 6] for (3) with b = c. 

In this paper, for the several results in [3, 8] on boundedness and asymptotic 
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behavior of solutions and existence of nontrivial periodic solutions of (1), we obtain 

certain corresponding results for the scalar equation 

N(t) N(t)(a bN(t - 1) - cN(t - 2)), (4) 
where a, b, and c are positive constants, and we are concerned with solutions of (4) 

such that their initial functions No(t) are defined and positive continuous on 

[ - 2, O] . If we put x(t) = N(t) - a/(b + c) for a solution N(t) of (4), we obtain from 

(4) the equation equivalent to (4) : 

a
 ~(t) = - x(t) + b + c (bx(t 1) + cx(t 2)) (5) 

The zero solution of (5) corresponds to the constant solution N(t) = a/(b + c) of (4) 

Here we note that (2) is a special case of (5) with a = b + c. 

There are various methods and many results for boundedness ans asymptotic 

behavlor of solutions and existence of periodic solutions of functional differential 

equations [cf. 1-9] . In S2, we obtain some results on boundedness and asympotic 

behavror of solutions of (4). In particular, we show partial global uniform 
asymptotic stability of the constant solution N(t) = a/(b + c) of (4) by employing a 

few results obtained by Yoneyama and Sugie [9] ･ In S3, we show existence of 
nontrivial periodic solutions by using a Hopf bifurcation and a fixed point theorem 

for a closed convex set. 

Let R denote the interval - co 

contmuous functions ip : [ - 2,'O] H, R with the uniform norm I ipl = sup I ip(O)l 

-2
For any y > O, Iet C(y) = {ipeC:lipl 

continuous function x(s) defined on - 2 ~ s 
t (O 

S2. Boundedmess and asymptotic behavior of solutions 

In this section, we discuss boundedness and asymptotic behavior of solutions of 

(4). For given posrtrve continuous functions ~l(t) and ~2(t) on [O, I] with ~l(1) 

= ~2(O), define 

~k+2(t) = ~k+1(1)exp(at - (b~k+ 1(s) + c~k(s))ds), O ~ t ~ 1, 

k = 1,2, ･･･. Then the solution N(t) of (4) for t ~ - 2 such that N(t) = ~l(t + 2), 

- 2 ~ t ~ - I and N(t) = ~2(t + 1), - I ~ t ~ O is given by 

N(t + k - 3) = ~k(t). O ~ t ~ 1, k = 1,2,･･･. (6) 

Corresponding to Theorems 1-3 in [8] , we obtain the followmg theorem on 
boundedness of solutions of (4) 
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THEOREM 1. Let N(t) be any solution of (4) with N(t) = No(t) > O, - 2 ~ t ~ O 

Th en 

(i) O 

(ii) for any oc > a/(b + c), there exists T= T(oc) ~ O such that No(t) ~ oc, - 2 ~ t 

~ o implies O 

PROoF. It is clear that N(t) > O for t ~ O. First of all, we show that 

N(to) = b + c nnplies O b+c' t~to' 

where .to ~ O. Suppose that N(tl) = ae2./(b + c) for some tl > to and N(t) 

(b + c) on [to' tl)' First we show that tl ~ t2 ~ 2 for t2 = sup{te[to' tl] : N(t) = 

a/(b + c)}. If tl ~ t2 > 2, then we have N(t) 

implies 

N(t2 + 2) 

b+c' 

Moreover, N(t) ~ a/(b + c) for t2 ~ t ~ tl implies N(t) ~ O for t + 2 

~ tl' Thus we obtain 

N(tl) ~ N(t2 + 2) 

b+c' 

which contradicts the chcuce of tl' Hence we have tl ~ t 

N(tl) 

b+c' 

which contradicts the choice of tl again. Thus (7) holds 

( i ) First we consider the case N(O) ~ a/(b + c). Suppose that N(t3) = 
a/(b + c) for some t3 ~ O, and let t4 = inf{t ~ O : N(t) = a/(b + c)}. Then (7) with to 

= t4 implies (i). Next in the case N(O) > a/(b + c), it is shown similarly as in the 

proof of (7) that (i) holds. 

(ii) It is sufficient to prove in the case oc > ae2./(b + c) . Suppose that the 

conclusion is false. Then there exists oco > ae2~/(b + c), and for T=4+ 
(In((b + c) cco/a))/a(e2. - 1), there exist a solution N* (t) of (4) and t* ~ T such that O 

> a/(b + c) for O ~ t 

> ae2./(b + c) for 2 ~ t 

N* (t) 

4 ~ t ~ t*' 
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which yields a contradiction such that N* (t*) 

~ ae2./(b + c) = N* (t*)' Thus (ii) holds 

The next theorem is related to Theorem 4 in [8] . This result means that we 

can make the value of N(2) arbitrarily small by taking the initial function sufficiently 

large. 

THEOREM 2. For any 8 > O and any solution N(t) of (4) such that N(t) = No(t) 

> O, - 2 ~ t ~ O, 

b N (s)ds + c N (s)ds > 2a + In No(O) (8) 

implies O 

PRooF. By using (6) with k = 3 for ~ (t) N (t 2) ~ (t) N (t 1) O 

~ 1, we have 

N(1) = ~3(1) = No(O)exp a - (b~2(s) + c~l(s))ds 

From this (6) with k = 4, and (8) we obtam 

N(2) = ~4(1) = ~3(1)exp a - (b~3(s) + c~2(s))ds 

which proves the theorem 

Now we discuss asymptotic behavior of solutions of (4). First we prove the 

following theorem, which corresponds to Theorem 3 m [3] 

THEOREM 3. Let oc and ~ be any numbers with O 
solution N(t) of (4) with 6 ~ N(t) = No(t) ~ Qc, - 2 ~ t ~ O, satisfies 

N(t) > ~ exp(2(a - (b + c)cce2.)), t ~ O. (9) 

PRooF. Let n = ~ exp(2(a - (b + c) oce2.)). If (9) does not hold, then there 

exist a solution N* (t) of (4) and tl > O such that ~ ~ N* (t) ~ oc for - 2 ~ t ~ O, 

N* (tl) = n' and N* (t) > n for O ~ t 

n 
Smce _N:* (t) > N* (t) (a - (b + c) oce2.) for O ~ t 

N* (t) > N (O)exp((a (b + c)oce2.)t) > n O 

and consequently, tl must be greater than 2 
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If N* (t) 

 O for 2 contradiction that N* (tl) > N* (2) > n. Thus N* (t2) = a/(b + c) for some 
t2e[O, tl)' If tl ~ t3 > 2 for t3 = sup{t 

N* (t) > O for t3 + 2 ~ t ~ tl' which contradicts the choice of tl. Hence tl - t3 
must be not greater than 2. From (10) we obtain N* (t) > N* (t) (a - (b + c) cce2.) for 

t3 ~ t ~ tl' This rmplies 

N* (tl) > N* (t3) exp((a - (b + c)oce2.)(tl ~ t3)) > n, 

Which contradicts the choice of tl again. Thus (9) holds 

Now we discuss partial global uniform asymptotic stability of the constant 

solution N(t) = a/(b + c) of (4). Results on stability of solutions of equations with 

two time delays such as (4) seem to be not so many. In [1], stability and instability 

of solutions of linear equations with two time delays are discussed. Moreover in 

[9] , results on uniform asymptotic stability of solutions of nonlinear equations with 

two time delays are obtained. Here we show partial global uniform asymptotic 
stability of the constant solution N(t) = a/(b + c) of (4) by applying a few results in 

[9] -

First we state a few known results in [9] . Consider the equation 

~(t) = F(t, xt) + G(t, xt)' (11) 
where F, G : [O, oo) x C(y) -> R are continuous for a positive constant y. Moreover 

suppose that there exist constants p ~ O, v ~ O, and I ~ q ~ 2 such that for t ~ O 

and ip e C(y), F and G satisfy Yorke conditions 

- 1(c) ~ F(t, c) ~ ,4M1( - lp), (12) l/ M 

- q(c) ~ G(t, c) ~~ vMq( - c), (13) VM 

where Mp(lp) = max{O, sup ip(s)}. Clearly (12) and (13) imply F(t, O) ; G(t, O) 

-p
E O. We denote by x(t, to, c) a solution of (11) such that xt* = c 

DEFlNITION 1. The zero solution of (11) is umformly stable tf, for any 8 > O, 

there exists 5 = 6(8) > O such that for any to ~ O and ipe C(6), any solution x(t, to, lp) 

of (11) is defined for all t ~ to and lx(t, to, c)1 

DEFINITION 2. The zero solution of (11) is umformly asymptotically stable tf it is 

umformly stable and tf there exists ~0 > O such that for any 8 > O, there exists 

T= T(e) > O such that to ~ O and ipeC(80) imply lx(t, to, c)1 

The next result is obtained by Yoneyama and Sugie [9, Theorem 3.2] . 

THEOREM 4. Suppose that (12) and (13) hold, and one of the following conditions 

is satisfied: 
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1
 //+v q
 

1 ~ // + v and l/(// + v) + 2vq v 

3
 1 

and ip~ e C(y) converging and further suppose that for all sequences t~ -> oo to a 
nonzero constantfunction in C(y), F(t~, c~) + G(t~, c~ Then ) does not converge to O. 

the zero solution of (11) is umformly asymptotically stable. 

The next lemma is prepared for the proof of Theorem 4 (cf. [9, Lemma 3.2] ) 

LEMMA 1. Suppose that (12) and (13) hold, and //, v satisfy the conditions in 

Theorem 4. If x(t) is a solution of (11) on [tl - 2q, T] such that T> tl + q and 

x(tl) = O, then 

lx(t)1 ~ e sup lx(s)1 for all te[tl, T], 
t* - 2q 

where O ~ O = e(/1, v) 

We are now ready to prove the following theorem. 

THEOREM 5. Suppose that one of the following conditions is satisfied 

2* 1 
ae 

1
 ae2. > - and ae2~(abe2. + 4c) 

=2 
ae2. ~ I and 2ae2*(b + 2c) 

Then for any oc > 6 > O and 8 > O, there exists T= T(oc, 8, e) > O such that for any 

solution N(t) of (4) with 8 ~ N(t) = No(t) ~ oc, - 2 

all t ~ T. 

PRooF. It is sufficient to prove that for any oc > a/(b + c) > ~ and e > O, there 

exists T= T(Qc, ~, 8) > O such that for any solution x(t) of (5) with 5 ~ x(t) + a/(b + c) 

~(t) =f(xt) + 9(xt)' 

where f, g:C -> R are defined by f(c) = - (c(O) + a/(b + c))bc( - 1) and g(c) = 

- (c(O) + a/(b + c))cip( - 2). For ~ = ~exp(2(a - (b + c)oce2~)), consider the 

equation 

~(t) =fn(xt) + 9n(xt)' (14) 
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- abe2.ip( - 1)/(b + c), ip(O) > (e2. - 1)a/(b +_c), 

f (ip) = f(c), n - a/(b + c) ~ c(O) ~ (e2. - 1)a/(b + c), 

- bnip( - 1), ip(O) 

- abe2.ip( - 2)/(b + c), c(O) > (e2. - 1)a/(b + c), 

9n(ip) = g (ip), n - a/(b + c) ~ ip(O) ~ (e2. - 1)a/(b + c), 

- cnip( - 2), ip(O) 

By the choice of n, Theorem I (ii) and Theorem 3, there exists To = To (cc) ~ O such 

that for any solution x(t) of (5) with 6 ~ x(t) + a/(b + c) ~ c(, - 2 ~ t ~ O, we have 

a 

n ~ b + c b + c ' (15) 
and consequently, x(t) is a solution of (14) for t ~ To' 

Next we show uniform asymptotic stability of the zero solution of (14). It is 

clear that for p = abe2./(b + c) and v = ace2./(b + c), F(t, c) =fn(c) and G(t, c) 

= 9n(c) satisfy (12) and (13) with q = 2, respectively. Thus p and v satisfy the 

conditions in Theorem 4 with y = max {a/(b + c) - n, (e2. - 1)a/(b + c)}, under the 

assumptions of this theorem. Further for all sequences t~ ~* oo and c* e C(y) 

converging to a nonzero constant function in C(y), it is clear that F(t~, c~) 

+ G(t~, c~) does not converge to O. Since Theorem 4 implies uniform asymptotic 

stability of the zero solution of (14), we have .that there exist ~0 = ~0(oe, ~) > O and 

T1 = Tl (Qc, 6, e) > O such that I ip I 

a _ n (e2. - 1)a for all t > o 
l~(t c)1 

' b+c 
l~(t, c)1 

where ~(t, ip) denotes a solution of (15) with ~o = ip. This implies that if there exists 

T2 = T2(oc, 6) ~ 2 such that any solution x(t) of (5) with 6 ~ x(t) + a/(b + c) ~ oc, 

- 2 ~ t ~ O, satisfies lxtol 

for T= T(oc,~,8) = To(oc) + T1(o(,~,8) + T2(oe,~), Ix(t)1 

Hence we prove finally that there exists T2 = 'T2 (cc, 6) ~ 2 such that any solution 

x(t) of (5) with ~ ~ x(t) + a/(b + c) ~ oc, - 2 ~ t ~ O, satisfies I xt* I 

toe[To + 2, To + T2]' Let T+ = T+(oc, 6) and T_ = T_(oc, ~) be numbers such that 

_ (e2~ - 1)a/(b + c) - o 8
 

T+ ~ (b + c)~0n ' (16) 
a/(b + c) - n - 80 

T~ = (b + c)60n ' (17) 
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and let k be a positive integer with yek 

T = T(oc, ~) = max{T+' ?-} + 8. First we prove that if lx(t)1 > O on any interval 

[s, a] (a - s = T - 2) in [To' To + T2]' then we have lx.1 

decreasing on [s + 2, a] , we need only to prove that I x(a - 2)1 

that x(t) > 60 on [s + 2, a - 2] , (15) implies for s + 4 ~ t ~ a - 2 

a
 x(t) 

and hence, we obtain from (16) 

x(er 2) 

b+c 
which is a contradiction. Thus we have x(a - 2) 

that x(a - 2) > - 60 holds from (17) in the case that x(t) 

divide the interval [TO To + T2] into k subintervals as [To' To + T2] = [To' To + T] 

U "'U[To + (k - 1)T, To + kT]. If [x(t)1 > O on [TO + (j - 1)T, To +fr - 2] for 

some j(1 ~ j ~ k), then the above argument implies I xT.+j'-21 

hand, if x(t) has its zero point in each subinterval [TO + (j - 1)T, To + fa: - 2] 

(1 ~ j ~ k), then from Lemma I we obtain 

. I ~ yOk lxT +k* 

which completes the proof. 

S3･ Existence of nomtrivial periodic solutions 

The linear part of (5) is 

a
 x(t) = - b + c (bx(t 1) + cx(t 2)) (18) 

and the characteristic equation for (18) is 

b + c~+ be + ce 2h O 

Clearly all real characteristic roots of (19) are negative. Let ao(b, c) be a function 

defined for b > O and c > O by 

(b + c)p 
a (b, c) = (b + 2c cos P) sinP ' 

where lc/4 

teristic roots of (19), we have : 

LEMMA 2. ( i ) If a satisfies 
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(b + c)1c 

a (b c) 

then (19) has a simple characteristic root h = oc + ip with O 

(ii ) If a = ao(b, c), purely imaginary characteristic roots' of (19) are ~ 

= :1: ipo (1cl4 

fixed b and c, tf ~ = A(a) = oc(a) + ip(a) is a characteristic root of (19) with 

~(ao(b, c)) = ipo' then (da/da) (ao(b, c)) > O. 

(iii) If a 

PROOF. (i) From the definition of ao(b, c), it is easily seen that ao(b, c) 

(b + c)1c/2b. Let h(~) = (b + c)~/a + be~A+ce~2A, ~ = oc + ip, and let F be a closed 

curve consisting of F1 : ~ = t + ilc/4 (O ~ t ~ a), F2 : ~ = a + ie(1c/4 ~ e ~ lcl2), r3 

A = t + i7c/2 (O ~ t ~ a), and F4 : ~ = ie (1c/4 ~ e ~ 7c/2). Clearly ~ e F1 U F2 implies 

Re h(A) > O. From the assumption a ~ (b + c)1c/2b, A e F3 implies h(~) ~ O. If 

Re h(A) = O for some A e F4, then a > ao(b, c) implies Im h(A) 

F contains no zero points of h(A). Thus for co = arg h, we have 

(b + c) p/a - be~" sin p - ce~2* sin2p 
tan co = (b + c) oe/a - be~" cos p + ce~2*cos2P ' 

When ~ = t + ilr/2 moves on F3 from a + ilc/2 to ilcl2, both of Re h(t + ilc/2) and 

Im h(t + ilc/2) are decreasing, Re h(a + i7c/2) > O, Im h(a + ilc/2) > O, Re h(ilt/2) 

and Im h(ilc/2) ~~ O. These imply that there exists only one to e (O, a) with lim 
t+t.+0 

tan co = oo. Moreover, when A = iO moves on F4 from i7c/2 to ilcl4, Re h(iO) is 

increasing, Re h(i7c/2) 

 O. Thus there exists only one Oo e (1cl4, Ic/2) with Re h(ieo) = O. Since Oo = Cos~1((~/~~ - b)/4c), a > ao(b, c) 

implies Im h(iOo) 
o-o*+0 

implies that (19) has a simple characteristic root ~ = oc + Ip wrth O 

(ii) Suppose h = ip, p > O, solves (19). Then 

b + c sinp 
bcosP + ccos2P = O and a = p (b + 2ccosp) (20) 

Thus ipo is a root of (20) from the definitions of ao(b, c) and po' For any p > po 

with b cosp + c cos2p = O, and for a = ap(b, c) = (b + c)p/(b + 2c cosP) sinp, ip 

solves (20), and ap(b, c) > ao(b, c). These imply that for a = ao(b, c), ipo is the 

unique root of (20) with zero real part and positive Imaginary part. The simplicity 

of ipo can be easily seen as in (i) by applying the argument principle for arg h along a 

closed curve F' consisting of F~ : A = t + ilc/4 ( - 8 ~ t ~ a), F2' : A = a + ie (1c/4 ~ 6 

~ lcl2), F'3 : ~ = t + i7c/2 ( - 8 ~ t ~ a), and F'4 : A = - 8 + i6 (7c/4 ~ e ~ lc/2) for a 
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sufficiently small 8 > O 

Next for fixed b and 
straightforward calculation 

Tetsuo 

c, Iet 

yields 

F URUMO Crn 

~ oc(a) + Ip(a) be a root of (19). Then a 

da(a) H(a) 
da D (a) ' 

where 

H(a) = b + c b + c 2cae~2acos2p oc - boce~acosP -

a2 a 
+ bpe~asinP 2cPe 2a sm2P 

D(a) = b + c be cosP 2ce~2acos2p 

' a 
+ (be~"sinp + 2ce~2*sin2P)2 > o 

Since a = ao(b, c) implies oc = O and l~l4 

have 

doc(ao(b, c)) _ b + c (b + 4c cos p) p sinp/ 

a2 d a 

b + c b cosp 2c cos2P) + (b sinP + 2c sin2P > o 
a
 

(hi)' If a 

 (b + 2c cosp) (sinp)/p for any p > O with b cosP + c cos2p = O. Thus if A = oc + ip solves (19), c( 

must be negative from (b + c)/a = (be ~" + 2ce ~ 2.) (sin P)lP 

From (ii) of this lemma, a Hopf bifurcation exists. For fixed b, c, and a near 

ao(b, c), (5) and consequen,tly (4), has a nontrivial periodic solution with period near 

27c/Cos~ I ((fiT~ _ b)/4c) . Since lc/4 

periods of such solutions are between 4 and 8 (see [5, pp. 245-249] ) . Moreover, (iii) 

of this lemma implies that if O 

exponentially asymptotically stable (cf. [5] Corollary 2.2 on p. 213). These facts 

and the proof of Theorem 5 imply the following corollary 

COROLLARY. Suppose that a satisfies one of the conditions in Theorem 5. Then 

O 

 ~ > O, there exists M = M(cc, ~) > O such that for any solution N(t) of (4) with 6 ~ N(t) ~ oc, 

2 
' -2

Now we discuss existence of nontrivial periodic solutions of (5) by usmg a fixed 

point theorem for a closed convex set. For any k > O, the set K(k) is defined by 
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K(k) ipe C ' c( ~ 2) = O, O ~ ip(e) ~ k and I ip(el) ~ c(02)I 

' ~ Llel ~ e21 for - 2 ~ 6, el' e2 ~~ O 

where L = a2e2' max{1, e2' - 1}/(b + c). Then K(k) is a compact convex set in C, 

and we have : 

LEMMA 3. If I 

and kl such that tf ceK(k)¥{O}, then 

( i ) x(t) = x(t, c) = O for some te[O, 3]. 

(ii) x(t) ~ - ko as long as sup x(s) ~ k for t ~ O. 
-2

(iii) There exists a finite T(ip) > 4 such that 

x.(c) (c) e K(kl) ' 

where the set {T(ip): ceK(k)¥{O}} is bounded. 

PRooF. ( i ) Suppose that x(t) > O on [O, 3] . Since x(t) is nonincreasing as 

long as x(t) > O for t ~ O, we obtain 

~(t) ~ - ax(t - 1) as long as x(t) > O for t ~ 2. 

Thus we have 

x(3) ~ x(2) - a x(s - 1)ds ~ (1 - a)x(2) 

This contradiction shows that x(t) = O for some t e [O, 3] 

(ii) It is clear that 

~(t) ~ - ((b + c)x(t) + a)k (21) 
holds as long as - a/(b + c) 

solution of the equation ~ = - ((b + c)x + a)k through (O, O). Then xo(t) is 

decreasing on [O, 2] and - a/(b + c) 

x(t) ~ - ko as long as sup x(s) ~ k for t ~ O, (22) 
-2

where ko = ko(k) is a number with - xo(2) ~ ko 

Suppose that for some to > O, x(to) 

we show that to ~ tl ~ 2 for tl = sup{te[O, to) : x(t) = O}. If to ~ tl > 2, then we 

obtain x(tl + 2) ~ xo(2) ~ - ko from (21). Since we have x(t) ~ O on [tl' to] and 

)~(t) ~ O on [tl + 2, to] , we obtain x(to) ~ x(tl + 2) ~ - ko' which contradicts the 

choice of to' Thus we have to ~ tl ~ 2 and x(to) ~ xo(to ~ tl) ~ - ko' which 

contradicts the choice of to again. Hence (22) holds 

(iii) First we show that x(t) 

 O. Suppose that x(t) ~ O for t ~ O. Then x(t) is nonincreasing for t ~ O, and it follows from (i) that x(t) ; O for 

t ~ 3, and consequently, x(t) ; O for t ~ - 2. But this contradicts the fact that 
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ip ~ O. Next we show that 

x(t) 

where To = inf{t > o : x(t) 

a
 x(t) = b + c exp (b~(s 1: 1) + c~(s T 2))ds - I , 

'" 

? 

(2 3 ) 

(24) 

Smce x(t) is nonincreasing on [To' To + I], we obtain on [1:o + 1, To + 2], ~(t) ~ 

- x(t) + a (bx(To + 1) + c~(t - To ~ 2)), which together with (24) imply 

b+c 

x(t) ~ - b+c+ x(T + 1) + b + c exp bx(T + 1) c ..+1 ~(s-1:0~2)ds 

a
 

=b+c 

Put p = c ~(s)ds + b ~(s)ds Since p > O and a 

have 

ab 
c ~(s)ds + b ~(s)ds + bx(1' + 1) = p ~ b + c (e~P - 1) > O 

which implies x(t) 

Define numbers oc, p, and v by oc = (a - 1)/(b + c), p = (a - (b + c)ko)oc, and y 

= (cc - ko)/p. First we show that x(t) = - oc for some te [To' To + y + 4] if x(t2) 

- oc for some t2 e (To' To + 2). If x(To + 4) 

 p as long as x(t) - oc for some 
te [To' fo + v + 4]' 

Next let t3 e [TO + 2, To + y + 4] be a number with - oc ~ x(t3) 

on [t3, t3 + 3], then x(t) is increasing on [t3' t3 + 3] and we obtain ~(t) ~ - (a -

(b + c)oc)x(t - 1) ~ - x(t - 1) on [t3 + 2, t3 + 3], which implies 

t3 + 3 

x(t3 + 3) ~ x(t3 + 2) - x(s - 1)ds ~ x(t3 + 2) - x(t3 + 2) = O 
t3 + 2 

Smce this rs a contradiction, x(t) = O for some t e [To, To + y + 7] 

Now we show that 

x(t) > O T 
where Tl = inf {t > Io : x(t) = O} . By a similar argument as in the proof of (24), we 

have on [TI + 1, Tl + 2] 
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a
 

x(t) ~ b + c exp - I , c ~(s)ds - b ~(s)ds - bx(T + 1) 

where ~ = x**(c). Put q = c ~(s)ds + b ~(s)ds. Since q > a, and since x 

ab 
~(s)ds + b ~(s)ds + bx(T + 1) = q + b + c(e~q - 1) 

which implies x(t) > O on [TI + 1, T1 + 2] , and consequently, (25) holds 

Since we have x(t) > - a/(b + c) on [ - 2, Tl]' we obtain )~(t) 

(b + c)) on [Tl' T1 + 2], and hence, we have 

O ~ x(t) 

where kl = a(e2. - 1)/(b + c) and T(c) = T1 + 2. Moreover we obtain on [T1, T(c)] 

that l~(t)1 ~ a2e2./(b + c) if x(t - 1)x(t - 2) > O and that l~(t)1 ~ ae2.max{bx(t 

- 1), - cx(t - 2)}/(b + c) if x(t - 1)x(t - 2) ~ O, which imply I~(t)l 
~ a2e2.max{1, e2. - 1}/(b + c) = L. Thus it follows that x.(c)(c)eK(kl)' Finally 

4 

REMARK. Since we have q > e~" - e~2. - a, the condition a 

be replaced by a weaker condition that x ~ ab(1 - e~*)/(b + c) holds for x = e~" 
- e~2* - a. 

Now we state a known result for (18). For any characteristic root h of (19), 

there exists a decomposition of C as C = PA ~ QA, where PA and QA are invariant 

under the solution operator T(t) of (18), T(t) ip = xt(c)' ipeC, and P;L is finite 

dimensional. Let the projection operators defined by the above decomposition of C 

be 7c;L and I - 7ch, where I denotes the identity operator and the range of ICA is PA 

For k > kl' Iet K = K(k). For ipeK¥{O}, define the mapping A by 

A c = x.(c)(c). 

Since we have x(t) 

~(Tl) > O. Thus by the continuity of x(t, c) in t and c, T(c) is continuous on 

K¥{O}, and hence, T : K¥{O} -> [4, oo) is completely continuous from Lemma 

3(iii). On the other hand, A is continuous and A ceK(kl) c K on K¥{O} . Thus 

A takes K¥{O} into K and is completely continuous. Moreover we have 

LEMMA 4. ( i ) Let ~ be the characteristic root of (19) given in Lemma 
2(i). Then there exists a ~ > O such that 

inf { 1lcAipl : ce K n S6} > O. (26) 

(ii) There exists M > O such that Aip = Ilc, ipeKnSM implies /1 
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PROOF ( I ) For the charactenstic root A = oc + ip of (19) given in Lemma 2(i), 

~~(6) = e"ocosP6, ~~(6) = e"osinp6, - 2 

~ sinPs, O ~ s ~ 2. The adjoint equation of (18) is "* 

a
 z(t) = b + c (bz(t + 1) + cz(t + 2)) 

the bilinear form is given by 

a
 (n ~) n(O)~(O) - b + c _ c n(e + 2)~(e)de + b n(e + 1)~(e)de 

Define ~l and ~2 by 

~ (O) ~ ((n2' ~~)~~ - (n2' ~~) ~~), 

- 2 ~ e ~ O, 

~ (e) i((nl' ~~)~~ - (nl' ~~)~~), 

where A = (nl, ~~)(n2' ~~) - (nl' ~~)(n2' ~~) ~ O. Then it is easy to see that (nl, ~l) 

(n2' ~2) = I and (nl, ~2) = (n2' ~l) = O. Therefore for any ipeC, 7cAc = (ni, ip) ~1 

+ (n2' c) ~2 (cf. [5] Lemma 3.4 on p. 177) 

Let 6 be a number with O 

some ceKnSa' since 17cAipl is a continuous function in c on the compact set 
K n S8' Thus we have (~l, c) = (n2' c) = O. On the other hand (n2' c) Is grven by 

a O (n2' c) = - c e~"(0+2) sinp(e + 2)c(e)de 
b + c _2 

+ b e "(0+1)sinp(e + 1)ip(e)de 

Since 7c/4 

 O for - 2 

 O 

for - I 

fact that (n2' c) = O. 

(ii) For M with kl 

rmplies // 

We are now ready to prove existence of a nontrivial periodic solution of (5) by 

using the following theorem, which can be found in [5] 

THEOREM 6. Suppose that the following conditions are satisfied 

( i ) There exists a characteristic root A of (19) with Re~ > O. 

( ii ) There exists a closed convex set K c C, O e K, and ~ > O, such that 

inf{ 1lchipl : ipeK n S3} > O. 
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(iii) There exists a completely continuous function T : K¥{O} -> [e, co), 8 ~ O 

such that the mapping defined by 

Aip = x.(c)(c), ceK¥{O} 

takes K¥{O} into K and is completely continuous. 

(iv) There exists M > O such that Ac= pip, ipeKnSM implies // 

Then there exists a nontrivial periodic solution of (5) with initial function in 
K ¥ {O} . 

Among the assumptions of Theorem 6, (i) holds from Lemma 2(i), (ii) and (iv) 

hold from Lemma 4, and (iii) holds for 8 = 4 by Lemma 3 and the continuity of T(c), 

under the conditions in Lemma 2(i) and Lemma 3. Hence we have 

THEOREM 7. If max {1, ao(b, c)} 

periodic solution x(t) of (5) with - ko 

x(t) has at most one zero point in any interval of length 2, x(t) crosses the t-axis at its 

zero point, and any half-open interva/ of length co contains two zero points of x(t), 

where co > O is the smallest period of x(t). 
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