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Boundedness and asymptotic behavior of solutions and existence of periodic solutions
of the scalar generalized logistic equation N(t) = N()(a — bN(t — 1) — cN(t — 2)) are
discussed. In particular, we show partial global uniform asymptotic stability of the
constant solution N(t) = a/(b + c), and existence of nontrivial periodic solutions by using
a Hopf bifurcation and a fixed point theorem for a closed convex set.

§1. Introduction

Recently, Seifert [8] has obtained certain results concerning boundedness and
asymptotic behavior of solutions and existence of nontrivial periodic solutions of the
scalar generalized logistic equation

N(t)=N(®)(a—bN(@®) — N(t — 1)), (1)

which arises in population dynamics. Here the superposed dot denotes the right-
hand derivative, a and b are positive constants. In [8], concerning existence of
periodic solutions, it is shown that (1) has nontrivial periodic solutions for a fixed
b(0<b<1) and a near ay(b) (= /(1 + b)/(1 —b)Cos™*( — b)) by using a Hopf
bifurcation. Moreover in [3], the author has shown that if a > a4(b), then (1) has
nontrivial periodic solutions by using fixed point techniques established and
developed by Jones [4], Nussbaum [7], Chow and Hale [2], and others.

On the other hand, for differential equations with two time delays, corresponding
results seem to be comparatively few in spite of their similarities to (1). In fact,
concerning existence of nontrivial periodic solutions of the scalar equations

%) = — (1 + x(8) (bx(t — 1) + ex(t — 2)), o))
%(@) = — (1 — x2@) (bx(t — 1) + ex(t — 2)), 3)

corresponding results are almost nonexistent for (2), though a few results are obtained
in [4, 6] for (3) with b =c.
In this paper, for the several results in [3, 8] on boundedness and asymptotic
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behavior of solutions and existence of nontrivial periodic solutions of (1), we obtain
certain corresponding results for the scalar equation

N(@) = N(t)(a — bN({t — 1) — cN(t — 2)), 4)

where a, b, and ¢ are positive constants, and we are concerned with solutions of (4)
such that their initial functions N,(f) are defined and positive continuous on
[ — 2, 0]. If we put x(¢) = N(t) — a/(b + c) for a solution N(z) of (4), we obtain from
(4) the equation equivalent to (4):

) = — <x(t) + ﬁ_—g)(bx(t — 1) + ex(t — 2)). 5
The zero solution of (5) corresponds to the constant solution N(t) = a/(b + ¢) of (4).
Here we note that (2) is a special case of (5) with a=5b+c.

There are various methods and many results for boundedness ans asymptotic
behavior of solutions and existence of periodic solutions of functional differential
equations [cf. 1-97. In §2, we obtain some results on boundedness and asympotic
behavior of solutions of (4). In particular, we show partial global uniform
asymptotic stability of the constant solution N(t) = a/(b + c) of (4) by employing a
few results obtained by Yoneyama and Sugie [9]. In §3, we show existence of
nontrivial periodic solutions by using a Hopf bifurcation and a fixed point theorem
for a closed convex set.

Let R denote the interval — oo <t < oo, and let C be the Banach space of
continuous functions ¢:[ — 2, 0] — R with the uniform norm |¢|= sup |¢(6)|.

—-2<0<0

For any y>0, let C(y)={¢eC:|¢| <y} and S,={¢peC:|¢|=17}. For any
continuous function x(s) defined on —2=<s<T(@O<T=Z ), and any fixed
t(0=t<T), x,eC is defined by x,0)=x(+6), —2=6=0.

§2. Boundedness and asymptotic behavior of solutions

In this section, we discuss boundedness and asymptotic behavior of solutions of
(4). For given positive continuous functions () and ¥,(t) on [0, 1] with v, (1)
=1, (0), define

t
Yi+2(t) = Y1 (1) explat — f (BYi+1(5) + e (s))ds), 0=t = 1,
0
=1,2,---. Then the solution N(t) of (4) for t = — 2 such that N(¢) = ¢, (t + 2),
—2Zts—1land N®)=y,(t+1), —1=t=<0 is given by
N(t+k_3)='//k(t)90§t§.1: k=192""‘ (6)

Corresponding to Theorems 1-3 in [8], we obtain the following theorem on
boundedness of solutions of (4).
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THeOREM 1. Let N(t) be any solution of (4) with N(t) = No(t) >0, —2 =<t < 0.
Then

(i) 0 < N(t) <max{N(0), a/(b + c)} e** for t 20,

(i) for any a > a/(b + c), there exists T= T(a) = O such that No(t) S o, —2 =t
< 0 implies 0 < N(t) < ae®*/(b + ¢) for t = T(x).

Proor. It is clear that N(t) > 0 for t = 0. First of all, we show that

2a

a ae
N(t,) = —— impli N(t , =t
(to) b+clmp1es0< ()<b+c =ty )
where t, = 0. Suppose that N(t,) = ae®*/(b + c) for some t, > t, and N(t) < ae**/
(b + c) on [ty, t;). First we show that t; —t, <2 for t, = sup{te[ty, t;]: N@) =
a/(b+c)}. If t;, —t,>2, then we have N(t) <aN(t) for t, <t =<t, + 2, which
implies

2a

ae

N(t, +2) < N(ty)e* = .

(2 +2) (t;)e bt e

Moreover, N(f)=af(b+c) for t,<t<t, implies N =0 for t,+2=t
<t,. Thus we obtain

ana

<
N(t1)=N(t2+2)<b+c,

which contradicts the choice of ;. Hence we have t; — ¢, <2 and

2a

N(t) < N@)exp((t; — £)a) S 5=,
which contradicts the choice of ¢; again. Thus (7) holds.

(i) First we consider the case N(0) < a/(b+ c). Suppose that N(t3) =
a/(b + c) for some t3 =0, and let t, = inf{t = 0: N(t) = a/(b + ¢)}}. Then (7) with ¢,
=t, implies (i). Next in the case N(0) > a/(b + ¢), it is shown similarly as in the
proof of (7) that (i) holds.

(i) It is sufficient to prove in the case o > ae®?/(b + c¢). Suppose that the
conclusion is false. Then there exists «y > ae’?/(b+c¢), and for T=4 +
(In((b + c)a/a))/a(e** — 1), there exist a solution N, (¢) of (4) and t, = T'such that 0
<N, () S for —2=t=<0 and N,(t,) = ae**/(b+ c). From (7), we have N, (?)
>a/(b + c) for 0 <t <t,. Thus we obtain N, (t) < 0 for t = 2, which implies N, (¢)
> ae**/(b +¢) for 2<t<t,. Hence we have N, (t) <(l —e*)aN,(t) for 4 <¢
<t,. Morever, since N, (4) < aye* from (i), we obtain

N, () < N, (4)exp(a(l — e*)(t — 4))

< ape*expla(l — e (t — 4)),



60 Tetsuo FURUMOCHI

which yields a contradiction such that N, (t,) < age**exp(a(l — e*9)(t, — 4))
< ae*/(b + ¢) = N, (t,). Thus (ii) holds.

The next theorem is related to Theorem 4 in [8]. This result means that we
can make the value of N(2) arbitrarily small by taking the initial function sufficiently
large.

THEOREM 2. For any ¢ >0 and any solution N(t) of (4) such that N(t) = N(t)
>0, —2=5t=0,

b f | NoGds + ¢ f " No@dsz2a+ 1n<N°T(O)> ®
1 -2

implies 0 < N(2) < e. .
Proor. By using (6) with k = 3 for y,(t) = No(t — 2), Y,(t) = No(t — 1), 0=t

<1, we have

N1 =y;5(1) = No(O)eXp(a - L (B2 (s) + C!//I(S))d8>~

From this, (6) with k =4, and (8), we obtain
1
NQ@) =y.(1) = !ﬁs(l)exp<a - L (byr3(s) + C!//z(S))dS>

< No(O)eXp(2a - br Ya(s)ds — Cfl W1(s) + l//z(S))dS) <e
(V] (4]

which proves the theorem.

Now we discuss asymptotic behavior of solutions of (4). First we prove the
following theorem, which corresponds to Theorem 3 in [3].

THEOREM 3. Let o and 6 be any numbers with 0 < <a/(b+c) <a. Any
solution N(t) of (4) with 6 E N(t) = No(t) S o, — 2 =t 20, satisfies

N(t) > dexp(2(a — (b + c)ae®?)), t = 0. )
Proor. Let # = dexp(2(a — (b + c)xe??)). If (9) does not hold, then there

exist a solution N, (t) of (4) and ¢, >0 such that 6 SN, (f) < a for —2=5¢t 0,
N, (t;) =#, and N, () >n for 0 <t < t,, which together with Theorem 1(i) imply

N<N,(@)<oae®, —2=5t<t,. (10)
Since N* () > N, (t)(@— (b + c)ae?®) for 0 <t <, from (10), we have
N, (t) > N, (0)exp((a — (b + c)ae*)t) = 5, 0 <t S min{2, t,},

and consequently, t; must be greater than 2.
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If N,(t) <a/(b+c) for 0=t <t,, then N, () > 0 for 2 <t < t;, which yields a
contradiction that N, (t;) > N,(2) >#n. Thus N, (t;)=a/(b+c) for some
t,e€[0,t). If t;, —t3>2 for ty=sup{t<t,:N,()=a/b+c)}, then we have
N* () >0 for t; + 2=t <t;, which contradicts the choice of t;. Hence t; —t;
must be not greater than 2. From (10) we obtain N* (&) > N, (?)(a — (b + c)xe*?) for
t; =t <t,. This implies

N, (t;) > N, (t3)exp((a — (b + c)ae?)(t; — t3)) > 7,
Which contradicts the choice of ¢, again. Thus (9) holds.

Now we discuss partial global uniform asymptotic stability of the constant
solution N(¢) = a/(b + c) of (4). Results on stability of solutions of equations with
two time delays such as (4) seem to be not so many. In [1], stability and instability
of solutions of linear equations with two time delays are discussed. Moreover in
[9], results on uniform asymptotic stability of solutions of nonlinear equations with
two time delays are obtained. Here we show partial global uniform asymptotic
stability of the constant solution N(t) = a/(b + c) of (4) by applying a few results in
[o].

First we state a few known results in [9]. Consider the equation
x(t) = F(t, x,) + G(t, x,), (11)

where F, G: [0, c0) x C(y) — R are continuous for a positive constant y. Moreover
suppose that there exist constants p =0, v=0, and 1 < ¢ <2 such that for t =0
and ¢eC(y), F and G satisfy Yorke conditions

—uM (@) S F@ @) = uM (- ¢), (12)
— VM (9) = G(t, §) = vM (= @), (13)

where M ,(¢) = max{0, sup ¢(s)}. Clearly (12) and (13) imply F(, O) = G(t, 0)

—p<s<0

=0. We denote by x(t,t, ¢) a solution of (11) such that x,, = ¢.

DErFINITION 1. The zero solution of (11) is uniformly stable if, for any & > Q,
there exists 6 = 6(e) > 0 such that for any tq = 0 and ¢ e C(d), any solution x(t,t,, @)
of (11) is defined for all t = ty, and |x(t,to, P)| < & for all t =ty —q.

DEFINITION 2. The zero solution of (11) is uniformly asymptotically stable if it is
uniformly stable and if there exists 8o >0 such that for any &> 0, there exists
T= T(e) > 0 such that ty =0 and ¢eC(So) imply |x(t,to, ®)| <& for all t 2 to + T.

The next result is obtained by Yoneyama and Sugie [9, Theorem 3.2].

THEOREM 4. Suppose that (12) and (13) hold, and one of the following conditions
is satisfied:
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1
N+V<q,
lSu+v and ,u(,u+v)+2vq—L<2,
q= p+v
3
1<p+vand ,u+vq<§

and further suppose that for all sequences t,— o and ¢,€C(y) converging to a
nonzero constant function in C(y), F(t, ¢,) + G(t,, @,) does not converge to 0. Then
the zero solution of (11) is uniformly asymptotically stable.

The next lemma is prepared for the proof of Theorem 4 (cf. [9, Lemma 3.2]).

LemMMA 1. Suppose that (12) and (13) hold, and p, v satisfy the conditions in
Theorem 4. If x(t) is a solution of (11) on [t, — 2q, T] such that T>t, + q and
x(t,) =0, then

[x@®)}£0 sup |x(s)| for all te[ty, T1,

t1—2g<s<ty
where 0 £ 0 =0(u, v) < 1.
We are now ready to prove the following theorem.

THEOREM 5. Suppose that one of the following conditions is satisfied :

1

2a
ae”" < —,
2

ae*® = — and ae?*(abe®* + 4c) < 2b + 3¢,

1
2
ae*® = 1 and 2ae?*(b + 2¢) < 3(b + ¢).

Then for any o> 6 >0 and ¢ > 0, there exists T= T(a,06,&) > 0 such that for any
solution N(t) of (4) with 6 S N{t)=No@®)Sa, —2=5t =<0, |N(@) —a/lb+ )| <& for
all t = T.

Proor. It is sufficient to prove that for any o > a/(b + ¢) > 6 and ¢ > 0, there
exists T= T(«, 6,¢) > 0 such that for any solution x(z) of (5) with 6 < x(t) + a/(b + ¢)
<o, —2=<t=£0,|x(t) <eforallt = T. Equation (5) can be rewritten in the form

X(8) = flx) + g(x,),

where f, g:C — R are defined by f(¢) = — (¢(0) + a/(b + ¢))b¢(— 1) and g(¢) =
—(p0) + a/(b + c))cp(—2). For n=2Jexp(2(a— (b + c)ae??)), consider the
equation

x(t) = fy(x:) + gy(x0)s (14)
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where f,, g, : C = R is defined by
—abe** ¢p(— /b +c), ¢0) > (** — Da/(b + ¢),

L@ =< f(9) n—a/(b+c) < ¢0) = (e** — Da/(b + o),
—bno(—1), #0) <y —a/b + ¢),
—abe** ¢(— 2)/(b +¢c), ¢(0) > (** — Da/(b + c),

9x(®) =1 9(9), n—af(b+ ) < ¢(0) = (€ — Da/(b + o),
—cneg(—2), #(0) <n —a/(b +c).

By the choice of #, Theorem 1(ii) and Theorem 3, there exists Ty, = To(x) = O such
that for any solution x(t) of (5) with 6 S x(t) +a/b+c)=<a, —2=t =<0, we have

2a __

L= T,
+c b+c =70

(15)
and consequently, x(t) is a solution of (14) for t = Tj,.

Next we show uniform asymptotic stability of the zero solution of (14). It is
clear that for pu = abe**/(b + ¢) and v = ace**/(b + ¢), F(t, ¢) =f,(¢) and G(z, ¢)
= g,(¢) satisfy (12) and (13) with g = 2, respectively. Thus u and v satisfy the
conditions in Theorem 4 with y = max{a/(b + ¢) — 1, (¢** — 1)a/(b + c)}, under the
assumptions of this theorem. Further for all sequences t,— oo and ¢,eC(y)
converging to a nonzero constant function in C(y), it is clear that F(t,, ¢,)
+ G(t,, ¢,) does not converge to 0. Since Theorem 4 implies uniform asymptotic
stability of the zero solution of (14), we have that there exist d, = dy(a, ) > 0 and
T, = Ty(e,6,¢) > 0 such that |¢ |< J, implies

a (e** — 1a

1£@, Pl < min{ -1 } for all t 2 0,

b+c 7 b+c
|E(t, @) <€ for all t = T,

where £(t, ¢) denotes a solution of (15) with &, = ¢. This implies that if there exists
T, = T,(®, ) = 2 such that any solution x(t) of (5) with 6 S x() +a/(b+c) =0,
— 2 <t <0, satisfies |x,,| < J, for some toe[Ty + 2, Ty + T,], then we obtain that
for T= T(a,d,8) = To(®) + Ty (e, 0,8) + Tp(a,0), |x(f)] <& for all t = T.

Hence we prove finally that there exists T, = T,(«, ) = 2 such that any solution
x(t) of (5) with 6 < x(®)+a/(b+c)<a, —2=t=0, satisfies |x,,| <O for some
to€[To+2, Ty + T,]. Let 1, =1,(2 6) and t_ = 7_(a, ) be numbers such that

(€% — Da/(b + ¢) — 6,

= (b + )oen ’ (16)

_a/lb+c)—n—230g
(b +c)don (17)
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and let k be a positive integer with y6* <8, Define T, = T,(«, 8) =kt for
t=1(n, ) = max{t,, v_} + 8. First we prove that if |x(f)| >0 on any interval
[s,6](c —s=1t—2) in [Ty, To + T,], then we have |x,| <&, Since |x(¢)| is
decreasing on [s + 2, o], we need only to prove that |x(c — 2)] < J,. In the case
that x(t) > 6, on [s + 2, 0 — 2], (15) implies for s+ 4=<t<0—2

() < — <x(t) + b%)(b + )80 < — (b + S,

and hence, we obtain from (16)

(e** — 1a

brec (b + €)dont+ = o,

x(o—2)<
which is a contradiction. Thus we have x(o — 2) < §,. We can similarly prove
that x(oc — 2) > — &, holds from (17) in the case that x(f) <0 on [s, ]. Next
divide the interval [T, T, + T,] into k subintervals as [Ty, Ty, + T,] = [Ty, Ty + 7]
UrU[To+k— D1, Ty + kr]. If |x(®)| >0 on [Ty + (j— 11, To+jr—2] for
some j(1 <j < k), then the above argument implies |Xr,4 -2/ < Jdo. On the other
hand, if x(f) has its zero point in each subinterval [T, + (j — 1)1, T + jz — 2]
(1 £j £ k), then from Lemma 1 we obtain

IxTo+k1:l é yek < 503

which completes the proof.

§3. [Existence of nontrivial periodic solutions

The linear part of (5) is

a
X = — -— 1 —_
x(t) b e (bx(t — 1) + cx(t — 2)), (18)
and the characteristic equation for (18) is
b+c -2 2
P A+ be *+ce”**=0. (19)

Clearly all real characteristic roots of (19) are negative. Let a,(b, ¢) be a function
defined for b >0 and ¢ > 0 by

ay(b, ) = b+c)p
O™ (b + 2ccos B)sin B’

where n/4 < p = Cos™*((./b* + 8¢?> — b)/4c) < m/2. Concerning complex charac-
teristic roots of (19), we have:

LemMa 2. (i) If a satisfies



Delay-differential equation N(t) = N(t)(a — bN(t — 1) — cN(t — 2)) 65

b+ orn
2

apb, c)<a =

then (19) has a simple characteristic root A =o +iff with 0 <a <a and n/4 < f
< /2.

(ii) If a=ayb,c), purely imaginary characteristic roots- of (19) are A
= % if, (n/4 < By = Cos ™ ((/b* + 8c* — b)/4c) < n/2) and both are simple. For
fixed b and c, if A= Ala)=a(a)+ if(a) is a characteristic root of (19) with
Mag (b, ©)) = ify, then (dajda)(ay(b, c)) > 0.

(i) If a < ao(b, ¢), all characteristic roots of (19) have negative real parts.

Proor. (i) From the definition of aqy(b, ¢), it is easily seen that ay(b, ¢) <
(b + c)m/2b. Let h(A) = (b + c)A/a + be™* + ce”?*, A = « + if, and let I" be a closed
curve consisting of I'j:A=t+infd(0<t=a), [,:A=a+i0(n/4 <0 = 7/2), I
A=t+inf2(00<t<a), and I',: 1 =1i0(n/4 <0 =< n/2). Clearly Ael'; UI, implies
Reh()) > 0. From the assumption a < (b + c)n/2b, Ael’s implies h() #0. If
Reh()) = 0 for some Ael,, then a > ay(b, ¢) implies Im k(1) < 0, and consequently,
I contains no zero points of h(4). Thus for w = argh, we have

_(b+c)p/a—be *sinf — ce”**sin2p
" (b + c)afa — be *cosf + ce 2*cos2B’

tan

When A =t + in/2 moves on I’y from a + in/2 to in/2, both of Reh(t + in/2) and
Imh(t + in/2) are decreasing, Reh(a + in/2) > 0, Imh(a + in/2) > 0, Reh(in/2) <O,

and Imh(in/2) = 0. These imply that there exists only one t,€(0, a) with . lin}r o
—=to

tanw = o0. Moreover, when A = il moves on I, from in/2 to in/4, Reh(i0) is
increasing, Reh(in/2) <0, and Reh(in/4)>0. Thus there exists only one
0, € (n/4, m/2) with Reh(if,)=0. Since 6, = Cos™ !((/b* + 8c? — b)/4c), a > a,(b, ¢)

implies Im h(if,) < 0, and hence, lim tanw = co. Finally the argument principle
6—+60+0

implies that (19) has a simple characteristic root 4 = a + iff with 0 <o < a and n/4
< B <2 :
(i) Suppose 1 =if, B >0, solves (19). Then

bte f“/‘;_ﬂ(b + 2ccosf). 20)
Thus i, is a root of (20) from the definitions of ay(b, ¢) and B,. For any B > B,
with bcosf + ccos2f =0, and for a = ayb, c)=(b+ c)B/(b+ 2ccosp)sinf, if
solves (20), and a,(b, ) > ag(b, ¢). These imply that for a = ay(b, c), if, is the
unique root of (20) with zero real part and positive imaginary part. The simplicity
of if, can be easily seen as in (i) by applying the argument principle for argh along a
closed curve I'® consisting of IS :A=t+in/d(—e<t<a), [5:A=a+i0(n/4 =0
<72, It:A=t+in/2(—e<t<a), and [5: A= —¢e+if(n/4 <60 =m/2) for a

bcosf + ccos2f =0 and




66 Tetsuo FURUMOCHI

sufficiently small ¢ > 0.
Next for fixed b and ¢, let A =a(a)+if(a) be a root of (19). Then a

straightforward calculation yields

dou(a) H(a)
da D)’
where
b
H(a) = ;;c (b : Co— boe~*cosf — 2coe”2*cos2p

+ bBe " *sinf — 2cﬁe‘2°‘sin2ﬁ>,

b+c

2
D(a) = < — be *cosff — 2ce‘2“c032[3>

+ (be~*sinf + 2ce”2*sin2pB)? > 0.
Since a = a, (b, ¢) implies « = 0 and n/4 < B = Cos™*((./b? + 8c? — b)/4c) < w/2, we
have

da(aodib’ <) = b:; ¢ (b + 4ccosp) Bsinf/

b+c . . 2
= bcosB — 2ccos2p)? + (bsinf + 2¢sin2p ) » > 0.

(iii) If a <ay(b, ¢), from the definition of ay(b, ¢), (b + c)/a > (b + 2ccosp)
(sin p)/p for any f > 0 with b cosf + ccos2f = 0. Thus if A =« + if solves (19), o
must be negative from (b + c)/a = (be™* + 2ce ™ 2% (sin B)/B.

From (ii) of this lemma, a Hopf bifurcation exists. For fixed b, ¢, and a near
ay(b, ¢), (5) and consequently (4), has a nontrivial periodic solution with period near
27/Cos ™ 1((/b* + 8c* — b)/4c). Since n/4 < Cos™ ((/b* + 8c®> — b)/4c) < n/2, the
periods of such solutions are between 4 and 8 (see [5, pp. 245-2497). Moreover, (iii)
of this lemma implies that if 0 <a <agy(b, c), the solution N(t) =a/(b + c) is
exponentially asymptotically stable (cf. [5] Corollary 2.2 on p. 213). These facts
and the proof of Theorem 5 imply the following corollary.

COROLLARY. Suppose that a satisfies one of the conditions in Theorem 5. Then
0 < a<ayb, c) and there exists a positive constant m such that for any o > 6 > 0,
there exists M = M (a, 8) > O such that for any solution N(t) of (4) with 6 = N(t) < a,
—22t<0,IN®)—af(b+c)| S Me™ sup |N(O) — a/(b+ c)| for all t 0.
—-2<60<0
Now we discuss existence of nontrivial periodic solutions of (5) by using a fixed
point theorem for a closed convex set. For any k > 0, the set K(k) is defined by
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#(—2)=0, 0= ¢(0) =k and |$(6,) — ¢(92)I}

K(k)z{d)eC:
<L|8,—0, for —2<86, 0, 6,<0

where L= a?e**max {1, e** — 1}/(b + ¢). Then K(k) is a compact convex set in C,
and we have:

LemMa 3. If 1 < a < In(2 + ¢/b), then there exist positive constants ko = ko (k)
and k, such that if ¢e K(k)\{0}, then

(i) x(@) =x(t, §) =0 for some te[0, 3].

(ii) x(®)= — ko as long as sup x(s) <k for t =0.

—2<s<t

(iii) There exists a finite t(P) > 4 such that

xr(¢)(¢) eK(k,),
where the set {t(¢): pe K(k)\{0}} is bounded.

Proor. (i) Suppose that x(¢t) > 0 on [0, 3]. Since x(t) is nonincreasing as
long as x(¢f) >0 for t = 0, we obtain

X(t) £ —ax(t — 1) as long as x(t) >0 for t = 2.

Thus we have
x3)=x(2)—a js x(s—1Dds=<(1 —a)x(2)<O0.
2

This contradiction shows that x(t) = 0 for some te[0, 3].
(ii) It is clear that

X)) = — (b + o)x() + a)k 21)

holds as long as —a/(b+c)<x(s)Sk, —2=s=<t for t =0. Let x,(t) be the
solution of the equation % = — ((b + ¢)x + @)k through (0,0). Then x,(t) is
decreasing on [0, 2] and — a/(b + ¢) < xo(t) £ 0. Now we show that

x(t)= — ko as long as  sup x(s) =<k for t =0, (22)
—2<s<t
where ko = ko(k) is a number with — x4(2) < ko < a/(b + ¢).

Suppose that for some t, > 0, x(to) < — ko, X(to) < x(t) S kon [ — 2, ty). First
we show that t, —t; <2 for t; =sup{te[0, t5) : x(t) = 0}. If t;, — ¢, > 2, then we
obtain x(t; + 2) = x4(2) = — k, from (21). Since we have x() =0 on [t,, t,] and
x(t) =0 on [t, + 2, ty], we obtain x(t,) = x(t; + 2) = — ko, which contradicts the
choice of t,. Thus we have t,—t, £2 and x(to) = Xo(to — t1) = — ko, which
contradicts the choice of z, again. Hence (22) holds.

(i) First we show that x(f) <O for some t > 0. Suppose that x(t) =0 for
t = 0. Then x(t) is nonincreasing for ¢t = 0, and it follows from (i) that x(t) = 0 for
t =3, and consequently, x(t) =0 for ¢t = — 2. But this contradicts the fact that
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¢ # 0. Next we show that
x() <0, 1<t <7To+2, (23)

where 1, = inf{t > 0:x(t) < 0}. If we put & = x,(¢), then

x(0) =7 i - (exp( _ Jt (b&(s — T — 1) + c&(s — 7o — 2))ds> - 1),
TSt <70+ L. @4

Since x(t) is nonincreasing on [7q, 7o + 1], we obtain on [1y + 1, 79 + 2], X(t) =

- (x(t) + ba?)(bx(to + 1) + c¢&(t — 7o — 2)), which together with (24) imply

x(t) < — —b—%+<x(to D+ i c)exp( — bx(tg + 1) — cﬁm s — t0—2)d5>

b i p (exp( - cj:: ¢(s)ds — bfl E(s)ds — bx(to + 1)> _ 1>.

-1 0
Putp= cj E(s)ds + bf E(s)ds. Since p>0and a < In(2 + ¢/b) < 1 + ¢/b, we
-1

=

-2
have

ab
b+c

cj_l E(s)ds + bfo E(s)ds + bx(tg + 1) = p + e ?—1)>0,
-1

-2
which implies x(t) <0 on [t4 + 1, 7o + 2], and consequently, (23) holds.

Define numbers «, B, and y by a =(a — 1)/(b + ¢), B =(a — (b + ¢)ky)a, and y
= (o — ko)/p. First we show that x(t) = — o for some te[ty, 7o + 7 + 4] if x(t,) <
— o for some t,e(tg, 1o + 2). If x(7o + 4) < — o, then we have x(t) > f as long as
x()< —a for t =1, +4. Thus it is easy to see that x(t)= —a for some
te[tg, 1o +y + 41.

Next let t3€[to + 2, To + ¥ + 4] be a number with — o < x(¢3) < 0. If x(t) <O
on [t;, t3 + 3], then x(¢) is increasing on [t3, 3 + 3] and we obtain X(t) = — (a —
b+ ca)x(t — 1) = — x(t — 1) on [t; + 2, t; + 3], which implies

13+3
x(t3+3)gx(t3+2)—f x(s — 1)ds = x(t3 + 2) — x(t3 + 2) = 0.
t3+2
Since this is a contradiction, x(t) = 0 for some te[tq, to + 7 + 71.
Now we show that

x(t)>0, 1, <t=rt, +2, (25)

where t, = inf{t > 7,: x(t) = 0}. By a similar argument as in the proof of (24), we
have on [7; + 1, 7, + 2]
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NUES i - <exp( _ cj:: {(s)ds — b J : £(s)ds — bx(z, + 1)) _ 1>,

-1 0
where { = x,,(¢). Putg= cj {(s)ds + b {(s)ds. Since g > — a, and since x
-2 -1
<ab(l —e /(b + ¢) holds for x = — a from a < 1n(2 + ¢/b), we obtain
-1 0 ab
CJ {(s)ds + bJ‘ {(s)ds + bx(t, + 1) =q + e?-1)<0,
- -1 b+c

which implies x(t) > 0 on [, + 1, t; + 2], and consequently, (25) holds.
Since we have x(f)> —a/(b +c) on [ —2, 7,], we obtain x(t) < a(x(t) + a/
(b + ¢)) on [t4, T, + 2], and hence, we have

0=x() <ky, 1, =t S t(eh),

where k; = a(e?® — 1)/(b + ¢) and 1(¢) = 7, + 2. Moreover we obtain on [1,, ©(¢)]
that |X(¢)| < a?e®/(b +c¢) if x(t — 1)x(t —2) >0 and that |%(t)] < ae? max{bx(t
—1), —ex(t—=2)}/(b+c) if x(t—1Dx(t—2)<0, which imply |x()|
< a’e**max{l, e** — 1}/(b + ¢) = L. Thus it follows that x,,(¢)e K(k,). Finally
4 < (@) <y + 13 implies that the set {t(¢)eK(k)\{0}} is bounded.

REMARK. Since we have ¢ > e™? — e~ 2% — g, the condition a < 1n(2 + ¢/b) can
be replaced by a weaker condition that x < ab(l1 — e™¥)/(b + ¢) holds for x =e™*
—e " —q.

Now we state a known result for (18). For any characteristic root A of (19),
there exists a decomposition of C as C = P, P Q,, where P, and Q, are invariant
under the solution operator T(¢) of (18), T(¢)¢p = x,(¢), ¢peC, and P, is finite
dimensional. Let the projection operators defined by the above decomposition of C
be n, and I — n;,, where I denotes the identity operator and the range of «, is P,.

For k> k,, let K =K(k). For ¢eK\{0}, define the mapping A by

Ap= xz(¢)(¢)-

Since we have x(t) < 0 on [, — 2, 7,) from (23) and the definition of 7,, we obtain
X(t4) > 0. Thus by the continuity of x(t, ¢) in ¢t and ¢, t(¢) is continuous on
K\{0}, and hence, 7:K\{0} —[4, ) is completely continuous from Lemma
3(ii). On the other hand, 4 is continuous and A¢eK(k;) = K on K\{0}. Thus
A takes K\{0} into K and is completely continuous. Moreover we have:

LemMAa 4. (i) Let A be the characteristic root of (19) given in Lemma
2(i). Then there exists a 6 >0 such that

inf{|m,¢|: pecKnS;s} > 0. (26)
(ii) There exists M > 0 such that A¢p = u¢, ¢eKnS,, implies u < 1.
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Proor. (i) For the characteristic root A = a + iff of (19) given in Lemma 2(i),
let &%(0) = e®cosBo, E5(0) =esinf, —2<60=<0, and n,(s)=e"* cosfs, 1,(5)
= e ®sinPs, 0 <s < 2. The adjoint equation of (18) is

a
b+c

(1) = (bz(t + 1) + cz(t + 2))

and the bilinear form is given by

0

0
(1, &) = n(0)¢©) — ¢ i C(CJ (0 + 2)£(0)do + bf n(® + 1)6(9)619)-
2 1

Define £; and &, by

1
£1(6) = —((nz, £3) €T — (12, €1) £3)
—2=50=50,

1
£2(0) = - ((n1, €1) <3 — (11, £5)&1),

where 4 = (11, &) (12, E5) — (11, E5) (5, £F) # 0. Then it is easy to see that (1, &)
=y &) =1 and (n,, &) = (13, &;) = 0. Therefore for any ¢eC, ¢ =, P&
+ (12 @) &, (cf. [5] Lemma 3.4 on p. 177).

Let 6 be a number with 0 <8 < k. If (26) does not hold, then m;¢ =0 for
some ¢peKnS;, since |m,¢| is a continuous function in ¢ on the compact set
KnSs. Thus we have (3, @) = (15, ¢) = 0. On the other hand, (1,, ¢) is given by

(12, ) =

0

B <c j e~ 2 5in (0 + 2) p(6)dO
b+c —
0
+ bf e 0+ Dgin B(6 + 1)¢(6)d0>.
-1

Since m/4 < f < /2, we have sinf(0 + 2) >0 for —2 <6 <0 and sinf(6 +1)>0
for — 1 <0 <0, and hence, ¢ KnS; implies (175, ¢) <O0. But this contradicts the
fact that (y,, ¢) =0.

(i) For M with k; < M < k, where k, is given in Lemma 3, A¢ = p¢peKnSy
implies u < 1 from Lemma 3(jii).

We are now ready to prove existence of a nontrivial periodic solution of (5) by
using the following theorem, which can be found in [5].

THEOREM 6. Suppose that the following conditions are satisfied :
(i) There exists a characteristic root A of (19) with Rel > 0.
(ii) There exists a closed convex set K = C, 0eK, and 6 > 0, such that

inf{|n, ¢|: peKnSs} > 0.
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(iii) There exists a completely continuous function t:K\{0} — [¢, 00), €¢=0
such that the mapping defined by

A¢ = xt(¢)(¢)’ ¢EK\{0}

takes K\{0} into K and is completely continmuous.
(iv) There exists M >0 such that A¢ = u¢, peKnS,, implies p < 1.
Then there exists a nontrivial periodic solution of (5) with initial function in

K\ {0}.

Among the assumptions of Theorem 6, (i) holds from Lemma 2(i), (ii) and (iv)
hold from Lemma 4, and (iii) holds for ¢ = 4 by Lemma 3 and the continuity of t(¢),
under the conditions in Lemma 2(i) and Lemma 3. Hence we have:

THEOREM 7. If max{l, ao(b, ¢)} < a < 1n(2 + ¢/b), then there exists a nontrivial
periodic solution x(t) of (5) with — ko < x(t) < ky, its period is between 4 and y + 13,
x(t) has at most one zero point in any interval of length 2, x(t) crosses the t-axis at its
zero point, and any half-open interval of length w contains two zero points of x(t),
where @ > 0 is the smallest period of x(t).
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