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ABSTRACT. On a finite set of vertices E in a Cartier tree, using the Green’s
formula, the Dirichlet semi-norm is defined and the Dirichlet solution on E is
obtained as the projection on the closed subspace of harmonic functions on FE.

1. INTRODUCTION

In the context of the classical potential theory in R", n > 2, let Q be a
bounded domain; let F, be the class of finite continuous functions on 2, with
a square summable finite continuous gradient. For f, g in Py, denote by (f,g) =
J(gradf, gradg)dz the inner product and by | f|lo the corresponding Dirichlet

semi-norm. Suppose f € F, is a continuous function on 2. Then the classical
Dirichlet Principle states (see Brelot [3, pp. 122-127]) the generalized Dirichlet
solution H} is the unique (up to an additive constant) harmonic function in P,
which minimizes ||u — f]|q, for u € F.

In the context of a Cartier tree T' [4], we know that if F is a finite set and if f is
a real function on OF, then the (classical) Dirichlet solution exists on E (see [1]);
we also know that the Dirichlet norm can be defined on F (see Yamasaki [7] in the
context of an infinite network and Urakawa [6] in the context of an infinite graph).

In this note, we prove: Let E be a finite set of vertices in a Cartier tree. Let f be
a finite-valued function on OF and h be the Dirichlet solution on F with boundary
values f. Then, for any finite-valued function g on F such that g = f on OF, we
have ||h||lg < |lglle and ||h||z = ||g]|e if and only if h = g. (See Murakami and
Yamasaki [5] for a version of this Dirichlet Principle in the context of an infinite
network.) Conversely, the (classical) Dirichlet solution on E always comes out as
a projection.

2. PRELIMINARIES

In a graph, two vertices  and y are said to be neighbours, x ~ y, if there exists
an edge joining them; a graph is said to be locally finite if any vertex has a finite
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number of neighbours; a graph is said to be connected if any two vertices can
be joined by a finite number of edges; a path {x = s¢,$1,...,8,-1,8, = x} with
distinct vertices s;, 1 < i <n, and n > 3 is called a circuit. A Cartier tree 17" [4, p.
208] is an infinite graph which is connected and locally finite and has no circuit.
A vertex xp in T is said to be terminal, if it has only one neighbour in 7. Given
a subset F of vertices in T, x € E is said to be an interior point if x is not terminal

and if all the neigbours of x are in E. Let E? denote the collection of all the
interior points of E; let OE = E\ E. On a tree T, it is assumed that a transition
probability is given: that is, with any two vertices z and y is associated a real
number p(x,y) > 0 such that p(z,y) > 0 if and only if z ~y and > ;p(z,y) =1
for any x € T.

Fix a vertex e in T'. For a vertex z, let {e, x1,...,2,, 2} be a path joining e and
z. Write ¢(z) = —2espltne).pltnd) . oo ¢(e) = 1. Since there are no circuits in
p(xzwn)p(xnvx’nfl)“'p(xl76)

T, it is easy to see that ¢(x) remains the same for any path joining e and z; note

H(2)p(z,y) = Hy)p(y, ) for any pair of vertices z and y. Set $(z,y) = H(x)p(z, y).
Then ¢(z,y) = ¥(y,z) > 0 and ¥ (z,y) > 0 if and only if x ~ y.

If u is a real-valued function on 7', the Laplacian Au at a vertex x is defined
as Au(z) = > rp(x,y)[u(y) — u(x)]. The function u is said to be harmonic at z
if Au(x) = 0. Suppose v is a real function defined on a subset E of T. Then we
define the inner normal derivative of v at a point s € OF as

2 ) = S pls,a)le) — ()L

zelR

3. DIRICHLET SEMI-NORM
Theorem 1. [1, Theorem 2| Let f be a real function on the boundary OF of a finite
subset of vertices E in a Cartier tree. Then there exists unique bounded function

u on E such that u is harmonic on f? and u = f on OF.

Proof. Since OF is finite, we can find constants a and 3 such that § < f < a on
OE. Since we can consider fT and f~ separately, we can assume 3 > 0. Then

_ ) « if xEEC
U<x)_{ f(z) if z€oF

is a superharmonic function on F.

Let F be the family of all subharmonic functions v on LO?, such that u < v on
E. Then as in (1], h(z) = supz u(z) is the Dirichlet solution on E, with boundary
values f.

The uniqueness is proved using the minimal principle, similar to the one given
in Yamasaki [7, Lemma 2.1] for the case of infinite networks. O

Let E be a (possibly infinite) set of vertices in 7. Let uw and v be two real
functions on E such that > p(z,y)u(x)[v(y) —v(z)] is absolutely convergent.
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Then write
(w,0)e = = 3 0l y)u(o)v) - v(w)
z,yel
and note, by rearranging the terms in this double sum, we can write in this case

(wv)e =Y (@ y)uly) — u(@)]o(y) — v(@).

r,yel

Remark that if £ is finite, the above condition on absolute convergence is redun-
dant; for any two functions u, v on the finite set E, (u,v)g is always defined.

The following form of the Green’s formula is given in [1], which is a variant of
the results given in Urakawa [6] and Bendito et al. [2].

Theorem 2. Let u and v be two real-valued functions on a finite set E of vertices
i T. Then

3" ola)ulx) Av(a) + () = — 3 Gls)uls) oo (s).

xeé seokE

Definition. Let u be a real-valued function on a subset of vertices F2. Write

lullz = (ww)p = Y dlx,y)uly) - u@)],

z,yeE

if the double sum is finite.

In the following, we shall consider only connected subsets F with a finite number
of vertices. Since ||u||g = 0 implies that u is a constant on F, ||u||g is a semi-norm
which is called the Dirichlet semi-normon E. Let F denote the equivalence classes
f of real-valued functions on E, so that two finite functions on F are in the same
class if and only if they differ by a constant. Note that F is an inner product space;
if f and g are any two finite functions on E and if f and g are the equivalence
classes defined by f and g, then ||f|| = ||f|| and ||f — gl = ||f — g]l-

Let 'H denote the subspace of F, determined by the harmonic functions on E.

(Recall, h is harmonic on £ when h is defined on E and Ah(x) = 0 at every x € ﬁ)
Proposition 3. H is a closed subspace of F.

Proof. Let %n € H be a Cauchy sequence in F. For each equivalence class ﬁn,
extract a harmonic function h,, from the class h, so that h,(e) = 0 where e is a
fixed vertex in E. Since |[hn — hum|| = |Bn — Am| — 0 when n,m — oo, for any
r € F,
Y(x, e)[(hn — him)(€) — (hn — hm)(x)]Q < |[hn = bl — 0

when n,m — oo. Since (h, — hy,)(e) = 0, we deduce that the sequence h,(x)
converges at every x ~ e. Then we show that there is convergence at all the
neighbours of each x ~ e. Thus proceeding, we see that h, converges on E. If
we write h(z) = lim, h,(z), h(x) is harmonic on E and ||h, — h|| — 0. Hence
hy — h € ‘H; that is ‘H is closed in F. U
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Consequence For every f € F, there exists a unique h € H such that Hh fll is
minimum; % is the projection of f on H, so that ||&|| < ||f]| and ||A] = ||f] if and
only if f cH.

Notation Let Fj be the subspace of F such that f € Fy if and only if the equiv-
alence class represented by f contains a function f on E, which is 0 on OF.

Theorem 4. Fy is the orthogonal complement of H in F; that is, F = Fo ®H,
and Fy L H.

Proof. Remark that if fl, fg € F, and if we take some f; (respectively fs) from the
equivalence class fi (respectively f2) then (f1, f2)r is independent of the choice
of the functions f; and f,. We define (fl, ]?Q)E = (f1, f2)e- Now Fy L H. For let
]7 € Fp and h € H. Choose f from the class fsuch that f = 0 on OF; choose a
harmonic function / from the class h. Note that (h, f)g = 0 (by taking v = h and
w = f in Theorem 2). Hence (h, f)p = 0.
N Suppose ]76 Fo(VH. If f is harmonic on E and 0 on OF, then f = 0, so that
f=0.

Let now ]? € F. Choose some f in the class f Let h/b\(_a/the Dirichlet solution
with boundary values f on JF (Theorem 1). Then f—h € Fy, h € H and

f=f—h+h. O

To conclude, we shall reformulate the above result, without any reference to the
equivalence classes, to obtain the Dirichlet Principle in the framework of a Cartier
tree. For a similar result in an infinite network, see Murakami and Yamasaki [5,
Section 2].

Theorem 5. Let f be a real-valued function on OF and h be the Dirichlet solution
on E with boundary values f. Then, for any finite-valued function g on E such
that g = f on OF, we have ||h||g < ||g|lg and ||hl|le = ||g||z if and only if h = g.

Proof. From what we have proved, we deduce that I is the projection of g € F onto
H. Hence |[h||z < [|gl|z which implies that [[h|z < ||g][s. Suppose ||Al|z = ||| &;
then ||h||z = ||g]|g, which shows that h = g by the property of projection. This
means that h — ¢ is a constant on F; but h = f = g on OF, so that h = g. U

Dirichlet solution as a projection. Let E be a finite set of connected vertices
in a Cartier tree. Let f be a finite-valued function on OF. Giving arbitrary values
at the vertices in E we can assume that f is defined on E. Then (by Theorem 4)
f can be written uniquely as f =g+ he FoDH.

Take a harmonic function H in the equivalence class h. Then (by the definition
of Fy), f — H is a function on E taking a constant value ¢ on 0F. Consequently,
h = H + ¢ is a harmonic function on F, with boundary values f on OF.
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