Mem. Fac. Sci. Shimane Univ., 23, pp. 53-56 Dec. 20, 1989

Note on Invariant Self-Dual Connections

Dedicated to Professor Miyuki Yamada on his 60th birthday

Hiromichi MATSUNAGA

Department of Mathematics, Shimane University, Matsue, Japan (Received September 6, 1989)

It is shown that S^1 -equivariant connections in the previous paper [6] are S^1 -invariant connections due to Jaffe-Taubes [4] and vice versa. Further an existence theorem is proved.

§1. Introduction

In the previous paper [6], the author has introduced the notion of Γ -principal bundle of diagonal type and given a Γ -action on the space of connections, where Γ is a compact Lie group. Here again we mention them and use in this article.

Let $p: P \to M$ be a Γ -principal bundle with structure group G over a Γ -manifold M.

DEFINITION. The bundle $p: P \to M$ is of diagonal type if and only if there exist a covering $M = \bigcup U_i$ consisting of Γ -invariant open sets, homomorphisms $\{\alpha_i: \Gamma \to G\}$ and equivariant local trivialities $\{\phi_i: U_i \times G \to p^{-1}(U_i)\}$ with the property

$$\phi_i(\gamma x, \alpha_i(\gamma)h) = \gamma(\phi_i(x, h))$$
 for $\gamma \in \Gamma$, $(x, h) \in U_i \times G$

Now we consider the case $\Gamma = S^1$, the circle group. Let $\{A_U\}$ be a connection of an S^1 -principal bundle $P \to M$ of diagonal type with structure group G, where M is an S^1 -manifold. By Proposition 1 in [6], an S^1 -acton on the space of connections is given by

$$(\gamma A_{U})(x) = \operatorname{Ad}(\alpha_{U}(\gamma))A_{U}(\gamma^{-1}x) \text{ for } \gamma \in \Gamma, \ x \in U.$$

DEFINITION. A connection $\{A_{U}(x)\}$ is S¹-equivariant if and only if

 $\gamma A_U = A_U$ for each U and $\gamma \in S^1$.

In §2 we prove that any S^1 -equivariant connection is an invariant connection due to Jaffe-Taubes and vice versa. In §3, by making use of the method in [2], we prove an existence theorem for invariant self-dual connections on an S^1 4-manifold with non empty fixed point set and a positive definite intersection form.

§2. Equivalence of two concepts

Let $p: P \to M$ be a Γ -principal bundle of diagonal type over a smooth Γ -

manifold M, where the structure group G acts on the space P on the right. Let $\sigma_U: U \to p^{-1}(U)$ is the local section given by

$$\sigma_U(x) = \phi_U(x, e)$$
 for $x \in U$, where e denotes the unit of G.

Denote by g the Lie algebra of G, i.e. left invariant vector fields on G. We have the relation

$$\gamma^{-1}(\sigma_U^*(Y)) = R_{\alpha(\gamma)^{-1}} \sigma_U^*(\gamma^{-1} Y) \quad \text{for } \gamma \in \Gamma, \ Y \in T_x(M),$$

where $T_x(M)$ denotes the tangent space at $x \in M$, and $\alpha(\gamma) = \alpha_U(\gamma)$ for $\gamma \in \Gamma$. For a connection $\{A_U\}$, the corresponding Ehresmann connection on P is given by

$$\overline{A}_U(u)(\sigma_U^*(Y) + X^*) = A_U(x) \quad \text{for } x = p(u),$$

where X^* denotes the fundamental vector field corresponding to $X \in \mathfrak{g}$. Denote by $H_{\overline{A}}$ the horizontal subspace.

DEFINITION ([4]). A connection \overline{A} is *invariant* with respect to the Γ -action on P if and only if $\gamma H_{\overline{A}} \subset H_{\overline{A}}$ for all $\gamma \in \Gamma$.

Now we prove

THEOREM 1. A connection $\{A_U\}$ is Γ -equivariant if and only if the connection \overline{A} is Γ -invariant.

PROOF. Suppose that a connection $\{A_U\}$ is Γ -equivariant and that $\sigma_U^*(Y) + X^* \in H_{\overline{A}}$. Since a fundamental vector field X^* is left invariant,

$$\overline{A}(\gamma^{-1}u\alpha(\gamma)^{-1})(\gamma^{-1}\{\sigma_U^*(Y) + X^*\})$$

$$= \overline{A}(\gamma^{-1}u\alpha(\gamma)^{-1})(R_{\alpha(\gamma)^{-1}}\sigma_U^*(\gamma^{-1}Y) + X^*)$$

$$= \operatorname{Ad}(\alpha(\gamma))\overline{A}(\gamma^{-1}u)(\sigma_U^*(\gamma^{-1}Y)) + X$$

$$= \operatorname{Ad}(\alpha(\gamma))A(\gamma^{-1}x)(\gamma^{-1}Y) + X$$

$$= A(x)(Y) + X, \text{ by the assumption,}$$

$$= \overline{A}(u)(\sigma_U^*(Y) + X^*) = 0, \text{ where } \alpha(\gamma) \text{ denotes } \alpha_U(\gamma) \text{ for } \gamma \in \Gamma.$$

Conversely assume that $\gamma H_{\overline{A}} \subset H_{\overline{A}}$ for all $\gamma \in \Gamma$. For any $Y \in T_x(M)$, there exists $X \in \mathfrak{g}$ such that A(x)(Y) + X = 0. Since $\overline{A}(u)(\sigma_U^*(Y) + X^*) = 0$,

$$\overline{A}(\gamma^{-1}u\alpha_U(\gamma)^{-1})(\gamma^{-1}\{\sigma_U^*(Y) + X^*\}) = 0$$

= Ad(\alpha_U(\gamma))A(\gamma^{-1}x)(\gamma^{-1}Y) + X.

Therefore we have $\gamma A = A$ for each $\gamma \in \Gamma$.

§3. An existence theorem

First we prove a proposition which is intrinsically due to [1].

PROPOSITION. Let P be an S^1 -principal bundle of diagonal type with structure

group SU(2) over a smooth S¹-manifold M. Let $\{A_U\}$ be an irreducible connection such that γA_U is gauge equivalent to A_U for each $\gamma \in S^1$. Then there exists a lifting action of diagonal type which fixes the connection.

PROOF. Put $S^1 = \Gamma$ and let $\operatorname{Aut}^{\Gamma}(P)$ be all bundle automorphisms of P which cover the S^1 -action on M, and $\operatorname{Aut}^{\Gamma}_A(P)$ be the elements of $\operatorname{Aut}^{\Gamma}(P)$ which fix the connection. Denote by \mathscr{G} the gauge group. The homomorphisms $\{\alpha_U: S^1 \to G\}$ determine the lifting action $\bar{\alpha}(\gamma): P \to P$ for each $\gamma \in S^1$. Then we have an exact sequence

$$e \longrightarrow \mathscr{G} \xrightarrow{i} \operatorname{Aut}^{\Gamma}(P) \xrightarrow{j} S^{1} \longrightarrow e_{f}$$

where $i(g) = \bar{\alpha}(\gamma) \cdot g$ and $j(\bar{\alpha}(\gamma) \cdot g) = \gamma$ for $g \in \mathscr{G}$ and $\gamma \in S^1$. By assumption, for some $g \in \mathscr{G}$,

$$(\gamma \cdot A)(x) = g(x, \gamma)^{-1} A(x)g(x, \gamma) + g(x, \gamma)^{-1} dg(x, \gamma)$$
 for $x \in U$.

Then $(g(x, \gamma)^{-1})^*(\gamma \cdot A(x)) = A(x)$ and $(g(x, \gamma)^{-1} \cdot \overline{\alpha}(\gamma))^{-1} \in \operatorname{Aut}_A^{\Gamma}(P)$ for each $\gamma \in S^1$. Since the connection $\{A_U\}$ is irreducible, we obtain an exact sequence,

 $e \longrightarrow Z_2 \longrightarrow \operatorname{Aut}_A^{\Gamma}(P) \longrightarrow S^1 \longrightarrow e \quad (*),$

then $\operatorname{Aut}_{A}^{\Gamma}(P)$ = the double cover of S^{1} , or $\mathbb{Z}_{2} \times S^{1}$. Now the relation

$$\operatorname{Ad}(\alpha_U(\gamma))A_U(\gamma^{-1}x) = g_U(x, \gamma)^*A_U(x),$$

shows that for each $x \in U$, the map $g_U(x,): S^1 \to \mathscr{G}$ is a continuous map for $\gamma \in S^1$. Then the map $\bar{\alpha}(\gamma)^{-1} \cdot g(x,)^{-1}: S^1 \to \operatorname{Aut}_A^{\Gamma}(P)$ gives a section in the exact sequence (*), and also the desired lifting action.

Now we prove an existence theorem for invariant connections by the method in sections 8 and 9 [2]. In our proof, the same notations to the reference are used.

THEOREM 2. Let M be a compact, simply connected, oriented smooth S^1 4manifold whose intersection form is positive definite, and P be a principal S^1 -bundle of diagonal type with structure group SU(2) whose index is 1. Suppose that the fixed point set M^{Γ} is not empty. Then the bundle P admits a lifting action which fixes an irreducible self-dual connection.

PROOF. Let $y \in M$ be a fixed point. As in the section 8 [2], we choose invariant balls B_2 , B_4 with the center y, and C_k^{Γ} be the set of invariant C_k -metrics on B_4 . For $\omega \in \mathscr{F} = \left\{ \omega \in L^1(B_4; \Lambda^4 R^4); \omega \ge 0, \int_{B_2} \omega \ge 4\pi^2, \int_{B_4} \omega \le 8\pi^2 \right\}$. define $(\gamma \omega)(z) = \omega(\gamma^{-1}z)$ for $\gamma \in S^1$, $z \in B_4$.

Then

$$(\gamma\omega(D))(z) = \omega(D)(\gamma^{-1}z) = -\operatorname{tr}(F_{\gamma D} \wedge *F_{\gamma D})(z) = \omega(\gamma D)(z),$$

where $D = D_A$ is the covariant derivative of a connection A. For the smooth function R in the section 8 [2],

$$R: (0, 2) \times B_2 \times \mathscr{F} \times C_k^{\Gamma} \longrightarrow R, \ R(\lambda, x, \omega, g) = \int_{B_4} \beta \left[\frac{\rho_g(x, z)}{\lambda} \right] \omega(z),$$

we have

$$R(\lambda, \gamma^{-1}x, \gamma\omega, g) = R(\lambda, x, \omega, g) \qquad (**).$$

Let (**) be equal to $4\pi^2$, then by Theorem 8.28 [2],

$$x(\gamma\omega(D), g) = \gamma^{-1}x(\omega(D), g)$$
 for each $\gamma \in S^1$.

Hence by Theorem 9.1 [2], there exists a class of an irreducible self-dual connection which corresponds to some $\langle \lambda, y \rangle$. Thus by Proposition above, the theorem is obtained.

Lastly we give an

EXAMPLE. On the complex projective plane $P_2(C)$, we define an S¹-action by

$$\gamma[z_1, z_2, z_3] = [z_1, z_2, \gamma z_3]$$
 for $\gamma \in S^1$, $[z_1, z_2, z_3] \in P_2(C)$.

Then the fixed point set is the set $P_1(C) \cup [0, 0, 1]$, where the projective line $P_1(C)$ is given by $z_3 = 0$, and the action is semi-free. Let $P \to P_2(C)$ is a principal S¹-bundle with structure group SU(2) of index 1. Then by Proposition 4 [6], the bundle is of diagonal type. Hence by Theorem 2 above we obtain a lifting action which fixes an irreducible self-dual connection.

References

- [1] P. J. Braam, Magnetic monopoles and hyperbolic three-manifolds, D. Phill. thesis, Oxford, 1987.
- [2] D. S. Freed and K. K. Uhlenbeck, Instantons and four-manifolds, M. R. S. I., Springer, 1984.
- [3] M. Itoh and I. Mogi, Differential geometry and gauge fields, Kyoritsu, 1986, in Japanese.
- [4] A. Jaffe and K. Taubes, Vortices and monopoles, Birkhäuser, 1980.
- [5] S. Kobayashi and K.Nomizu, Foundations of differential geometry, vol. 1, Interscience, 1969.
- [6] H. Matsunaga, On equivariant Yang-Mills connections, Geometry of Manifolds, Academic Press, 1989.

56