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In this paper, we give a construction of balanced Freudenthal-Kantor triple systems
and investigate a structure of the Jordan triple systems associated with reduced balanced
Freudenthal-Kantor triple systems.

Introduction

The triple systems studied here are a specialization of the class of Freudenthal-
Kantor triple systems given in [21, 22, 13], which is called balanced by
ourselves. This triple system is a variation of Freudenthal triple systems [7, 18],
symplectic ternary algebras [6] and symplectic triple systems [23]. This paper is a
continuation of the previous articles [13, 14]. The main purpose of this article is to
give followings:

(i) A construction of Jordan triple systems from a vector space equipped with
relations of a cross product and a bilinear form.

(ii) A construction of balanced Freudenthal-Kantor triple systems from a class of
vector matrices as follows:

[a a] o, fed, a,beV
b Bl

where @ is a base field, V is the Jordan triple system defined by (i).
(iii) If a simple balanced Freudenthal-Kantor triple system 9t is reduced, then
M = M(V), where MM(V) is the balanced Freudenthal-Kantor triple system defined
by (ii).

We shall be concerned with algebras and triple systems which are finite
dimensional over a field @ of characteristic different from 2 or 3, unless otherwise
specified. We shall mainly employ the notation and terminology in [13, 14].
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1

In this section, we shall give a construction of Jordan triple systems and

consider the norm similarity.

THEOREM 1.1. Let V be a vector space over an arbitrary field ® equipped with a

bilinear form B(a, b) and a cross product a x b satisfying the following conditions:

)
@
3
“

axb=bxa
B(a, b) = B(b, a)
B(a, b x d)= B(a x b, d)

(@axbyxeyxd+((bxdxeyxa+((dxa)xexb
= B(a x b, d)e + B(a, e)b x d + B(b, e)d x a + B(d, e)a x b

for all a,b,d,ecV.

Then V becomes a Jordan triple system with respect to the triple product
{xyz} = B(x, )z + B(z, y)x — (x X z) X ).
Proor. By the definition of the triple product, it is clear that
{xyz} = {zyx}.

We compute as follows;

{uv{xyz}} — {{uvx}yz} + {x{vuy}z} — {xy{uvz}}
= B(u, v)(B(x, y)z + B(z, y)x — (x x 2) X y)
+ B(B(x, y)z + B(z, y)x — (x x z) X y, v)u
—(u x (B(x, )z + Bz, y)x — (x x 2) X y)) X v
— B(B(u, v)x + B(x, v)u — (u x x) X v, y)z
— B(z, y)(B(u, v)x + B(x, v)u — (u X x) X v)
+ ((B(u, v)x + B(x, v)u —(u X X) X v) X 2) X y
+ B(x, B(v, u)y + B(y, wyv — (v X y) x u)z
+ B(z, B(v, w)y + B(y, w)v — (v x y) X u)x
— (x x z) x (B(v, w)y + B(y, wv — (v X y) X u)
— B(x, y)(B(u, v)z + B(z, v)u — (u x z) X v)
— B(B(#, v)z + B(z, v)u — (u x z) X v, y)x
+(x x (B(u, v)z + B(z, v)u — (u X 2) X v)) X y
=—B((xxz)x y,v)u+ (ux((xx2)xy)xv
+ B(x, v)(u x z) x y — (x X z) X B(y, u)v
—((uxx)xv)x2)xy+(x x2)x((vxy)Xu)
+ Bz, v)(x xu) x y—(x x ((ux 2y xv) Xy
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=(B(x, V) x z)—((uxx) X)Xz
+ Bz, v)(x x u) —x x (u X 2) X)) Xy
(—(( x (x x 2)) x u) + B(x X z, wv + B(v, u)x x z) X y

(by the relation (4) of the assumption, that is, B((x X z) X y, v)u — (u x ((x x z) x y)
x v+ (x x z) x By, o — (x xvz)x((vxy)xu)=((v><(x X z)) X u) Xy
— B(x x z, Wyv x y — B(v, w)y x (x X x))

=0.
(by the relation (4))
This completes the proof. B

If N is a cubic form on a vector space V and ce V a basepoint where N(c) = 1,
then we can form the trace form

T(x9 y) = - aJ\:ay log Nlc = (alec)(alec) - axalec

of N at c. We say N is nondegenerate at c if its trace form is nondegenerate. For
nondegenerate forms we have a unique quadratic mapping x — x* in V defined by
T(x* y)=0,N|,. We say a nondegenerate cubic form N and basepoint ¢ are
admissible if the adjoint identity x* = N(x)x holds under all scalar extensions
(see [17]). We denote this vector space V by J(N, ¢). For ch @ # 2,3, to apply
the case of our construction, we put 2x* = x x x, T(x, y) = B(x, y) and N(x)
=1/3T(x*, x). We can easily show that if N(x)x =x*, then 4/3B(x x x, x)
x =(x x x) x (x x x). Also these identities yield the relation x x (x* x y)=N(x)y
+ T(x, y)x* (by the argument of density of V). Hence this result implies that

((x x x) x y) x x =1/3B(x x x, x)y + B(x, y)x X X,

which reduce the relation (4) of the assumption in Theorem 1. Thus we obtain the
following corollary.

COROLLARY [17]. If the cubic form N and basepoint c are admissible then
S(N, ¢) is a Jordan triple system with respect to the triple product

{xyz} = T(x, y)z + T(z, Y)x — (x X 2) X ).

THEOREM 1.2. Let V be a vector space over a field ® of characteristic # 2 or 3
equipped with a bilinear form B(a, b) and a cross product a x b satisfying the relations
(1) ~ (4) of Theorem 1.1 and the following conditions;

(5) (axbyx(exd+(bxexdxa)+(exa)x(bxd
=B(axb,e)d+B(axe,d)b+B(axd,b)e+B(bxe,d)a,

(6) there exists an element ceV such that
x x ¢ = B(x,c)c — x for all xeV.

Then it holds
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x>~ T(x)x? + S(x)x — N(x)c =0

and x x x =2x% — 2T(x5x + 28(x)c for all xeV,
where  x* = 1/2{xxx}, x*=1/2{xex}, T(x)= B(x, ¢), S(x)=1/2B(x x x, ¢) and
N(x) =1/6 B(x x x, x).

PrOOF. From x* =1/2{xxx} and x? = 1/2{xcx}, we have

x> — B(x, ¢)x* = 1/2{xxx} — 1/2B(x, c) {xcx}
= B(x, X)x — 1/2(x x x) X x — 1/2B(x, ¢)(2B(x, ¢)x — (x X x) x ¢)
= (B(x, x) — B(x, ¢)*)x — 1/2(x — B(x, ¢)¢) x (x X x). (1-1)

On the other hand, we have

B(x x y,¢)=B(x,y x ¢)
= B(y, ¢) B(x, ¢) — B(x, y) (by the relation (6) of the assumption).

If we put y = x, then this implies that
B(x x x, ¢) = B(x, ¢)® — B(x, x).
Combining this with the identity (1-1), we get
x3 — B(x, c)x?> = — B(x X x, ¢)x + (x x ¢) x (x x X). (1-2)
By the relation (5) of the assumption, we have
(x x¢) x(x xx)=1/3B(x x x, x)c + B(x x ¢, x) x. (1-3)
From (1-2) and (1-3), it follows that
x* — B(x, ¢)x? + 1/2B(x x x, ¢)x — 1/6B(x x x, x)c = 0.
Hence this yields that
x* — T(x)x? + S(x)x — N(x)c = 0,

where T(x) = B(x, ¢), S(x)=1/2B(x x x,¢) and N(x)= 1/6B(x x x, x). Also, it
follows from x x ¢ = B(x, ¢)c — x that

(x><x)xc=B(xxx,c)c—x><x.
From this identity and the identity x> — T(x)x = — 1/2(x x x) x ¢, we obtain
x2—T(x)x = —1/2(B(x x x, ¢)c — x X X),
which implies x X x = 2x? — 2T(x)x + 2S(x)¢c. This completes the proof. B

THEOREM 1.3. Let V(resp. V') be a vector space over an infinite field ® of
characteristic #2 or 3 equipped with a nondegenerate bilinear form B(a, b)
(resp. B(a, b)) and a cross product a x b(resp. a’ x b') satisfying the relations (1), (2),
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(3) and (5) of Theorem 1.2 (resp. (1), ), (3) and (5)). If a mapping g is invertible
( = linear and bijective) from V onto V', then the followings are equivalent:

(i) B(ga x ga, ga) = AB(a x a, a) Ae®*, for all aeV

(i) g is an isotopy of the Jordan triple system with respect to the triple product

{xyz} = B(x, y)z + B(z, y) x — (x X z) X ).
Furthermore, in the case of (i), we have
g(x x y) = Agx x gy, dlaxb)=4""ga x gb
and B(ga, gb) = B(a, b), where B(g*a', b) = B(a', gb) and § = g* L

PRROF. (i)= (ii) If g is a bijective linear mapping, one may define a bijective
linear mapping g* of V' onto V by

B(g*d', b) = B(a/, gb)'.
Hence we have
B(ga x ga, ga) = B(g*(ga x ga), a). (1-4)

From the assumption that B(ga x ga, ga) = AB(a x a, a) and B(,) is nondegenerate,
we get

g*(ga x ga) = Aa x a
and so g(a x a) = A" 'ga x ga, where § = g*~ .. (1-5)
Using (1-5), we obtain
(ga x ga) x (ga x ga) = A*§(a x a) x §(a x a). (1-6)
By relation (5) of the assumption, we have
4B(ga x ga, ga) ga = 3(ga x ga) x (ga x ga).
The left-hand side of equation (1-6) is equal to

4/3 B(ga x ga, ga) ga
= 4/3 AB(a x a, a)ga.

Consequently, we get
4/3 B(a x a, a)ga = Ag(a x a) x §(a x a).
Replacing a by a x a, we have

4/3 B((a x a) x (a x a), a x a)g(a x a)
= A((a x a) x (@ x a)) x §((a x a) x (a X a)).

Using the relation (a x a) x (a x a) = 4/3 B(a x a, a)a, we get
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(4/3)* (B(a x a, a))® g(a x a) = A(4/3 B(a x a, a))* da x da.
By using a density argument, that is, B(a x a, a) # 0 for all a # 0 in V, we obtain
g(a x a) = Aga x ga.
In B(g*d', b) = B(d', gb), putting a = g*a’, we have
B(a, b) = B(ga, gb)'.
From the definition of the triple product
{xyz} = B(x, y)z + B(z, y)x — (x X 2) X y,
we can see that

g{xyz} = B(x, y)gz + B(z, ) gx — g((x x z) x y)
= B(gx, gyy gz + B(gz, §y) gx — A(d(x x 2) x Jy)
= B(gx, gy) g9z + B(gz, gy) gx — (gx x gz) x gy
= {gxdygz}'.

Similarly we have
g{xyz} = {gxgygz} .

(i)=(). Let g be an isotopy satisfying §(x x y) = A" 1(gx x gy) and g(x x y)
= Agx x gy. From g{xyz} = {gxgygz} and the definition of the triple product,
we have

B(x, y)9z + B(z, y)gx — (9x X gz) X gy (1-7)
= B(gx, gy) 9z + B(gz, §y) gx — (9x % gz) X gy.
Putting x = z in the identity (1-7), we get
B(x, y) = B(gx, 4y)" (1-8)

Replacing y by x x x in the equation (1-8), we have

B(x x x, x) = A"*B(gx x gx, gx)

(by 9(x x x) = 271 (gx x gx)).
This completes the proof. =

Theorem 1.3 can be regarded as a generalization of the following proposition
for a Jordan triple system.

ProposiTioN 1.4. [12] Let V and V' be reduced simple exceptional Jordan
algebras. Then the following conditions are equivalent:
(1) Vand V' are isotopic,
(2) Vand V' are norm similar.
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If A is a linear mapping of a vector space ¥ equipped with a bilinear form
B(x, y) and a cross product x x y into itself satisfying

B(Ax, x x x) = pB(x x x, x) for all xeV (1-9)

where pe ®* is fixed and satisfying (1-9) for all field extensions of @, then A is said
to be a Lie similarity of V. Then we have the following;

THEOREM 1.5. Let V be as in Theorem 1.3. If A is a linear mapping of V into
itself, then the followings are equivalent;
(i) A is a Lie similarity of V.
(i) There exists a linear mapping A of V into itself satisfying

A{xyz} = {Axyz} + {xA*yz} + {xyAz}
where A* is the linear mapping of V into itself defined by B(A*x, y) = — B(x, Ay).

REMARK. The above theorem implies that the notion of structure algebra of the
Jordan triple system V coincides that of Lie similarity. (for the definition of structure
algebra, see [13]). In particular, if the cross product is zero, then an arbitrary linear
mapping A of Vis a Lie similarity, hence if V has a nondegenerate bilinear form, the
mapping A is a structure algebra of V.

2

In this section, we shall study a construction of the prototype of a balanced
Freudenthal-Kantor triple system with & = 1.

For ¢ = + 1, a triple system U (¢) with the triple product { —, —, — ) is called
a Freudenthal-Kantor triple system if

(U1 [L(a, b), L(c, d)] = L({abc), d) + eL(c, {bad)) 2-1)
(U2) K(K(a, b)c, d) — L(d, c) K(a, b) + eK(a, b) L(c, d) = 0, 2-2)
where L(a, b)c = {abc) and K(a, b)c = {acb) — {bca).

DermniTION. A Freudenthal-Kantor triple system is balanced if there exists an
anti-symmetric bilinear form ¢, such that K(x, y) = <x, y> 1d, <x, y) e D*.

REMARK. From results in [14], we note the following:

(i) The case of e=—1 does not occur in a balanced Freudenthal-Kantor triple
system.

(ii) A balanced Freudenthal-Kantor triple system is simple if and only if the anti-
symmetric bilinear form {,) is nondegenerate.

(i) The derivation of semisimple Freudenthal-Kantor triple systems over a field of
characteristic 0 is a finite sum of inner derivations of L(a, b) + eL(b, a)(denoted by
S(a, b)).



40 Noriaki KaMiya

Let V be a vector space over an arbitrary field @ equipped with a bilinear form
B(a, b) and a cross product a x b satisfying the following conditions:

(1) axb=bxa
(2) B(a, b) = B(b, a)
(3) B(a,b xd)=B(axb,d

4 (@xbyxeyxd+((bxdyxe)yxa+((dxa)xexb
=B(a x b,d)e + B(a, e)b x d + B(b, e)d x a + B(d, e)a x b
S) (@axb)x(exd+(bxe)xdxa)+(exa)x(bxd
=B(a x b,e)d + B(a x e,d)b + B(a x d, b)e + B(b x e, d)a
for all a. b. d. eeV.
In particular, for ch @ # 2, 3, 3(a x a) x (a X a) = 4B(a, a x a)a holds under

two conditions that “a x b =0=>a =0 or b = 0” (division property) and ((a x a) x b)
x a=1/3B(a x a, a)b + B(a, b)a x a.

ExamPLE. J(N, c) satisfies the conditions (1) ~ (5).
We can consider the set of vector matrices with coefficients in the vector space V

as follows:
o a
n = Kb B)

In M(V), we shall introduce an operation e, that is,

(‘11 ‘11)0(0‘2 a2> _ ( a0, + Blay, by) o8, + Bra; + by x b2>
b, B1 b, B> azby + Bib, + ay x a, B2B1 + Bl(a,, by)

o, fed, a, be V}

Next we shall use the following mapping to consider a triple product

A R G
-G =0 2

Thereby we can define a triple product on (V) as follows:

and

{x1%2%3) = X1 °(Px50°x3) + X3°(Px,°x,) — Px;°(x 1 °X3) (2-3)
where x; = (“i “f)eim(V).
b; B
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We have the following result on this vector matrix M(V).

THEOREM 2.1. Let M(V) be the set of vector matrices of the above. Then
V), { —, —, =) is a balanced Freudenthal-Kantor triple system with respect to
the above triple product (2-3).

Proor. From the assumptions (1), (2), (3), (4) and (5) of vector space ¥, we can
obtain this theorem by straightforward but very long calculations and we omit it.
B

We call M (V) the balanced Freudenthal-Kantor triple system induced from the
Jordan triple system V satisfying the conditions (1) ~ (5).

RemarRK. For ch @ # 2, we note that

(X1, X530 = Brot; — a1 B, + B(ay, by) — B(by, a,) (2-4)
and
P(x1, X5) = 4<xy, X3 (2-5)
where y(x;, x;) = 1/2[tr2(R(xy, X3) — R(x3, X1)) + L(xy, X5) — L(x3, x1)].
DeFINITION [7, 18]. A Freudenthal triple system is a vector space Mt with
trilinear product (x, y, z) —» [xyz] and anti-symmetric bilinear form (x, y) - {x, y>r
such that
(A1) [xyz] is symmetric in all arguments;

(A2) qg(x, y, z, w) = {x, [yzw] > is a nonzero symmetric 4-linear form,;

(A3) [[xxx]xy]l = <y, x> [xxx] + <y, [xxx]DpX
for x,y,z,we M.

ProposITION 2.2. If (M, { —, —, — ») is a balanced Freudenthal-Kantor triple
system equipped with K(x, y) = {x, y) Id over a field ch ® # 2, then (M. [ —, —,
— 1) is a Freudenthal triple system satisfying {x, y>r = 1/2{x, y) with respect to the
triple product

[xyz]i= 1/2({xyz) + {xyz)).
Proor. (i) By the balanced condition, we have
{xyzy — Kyxzy = — Kxzy) + {yzx).

Hence we have

[xyz] = 1/2({xyz) + {xzy7)
= 1/2(yzx) + {yxz7)
= [yzx].

From the definition of triple product, we have
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[xyz] = [xzy].
(ii) Since L(x, y) — L(y, x) = {y, x>Id, we have
[L(x, y) — L(, x), L(z, w)] = 0.

Similarly, [L(y, x), L(z, w) — L(w, z)] = 0 holds. Hence we get [L(x, y), L(z, w)]

= [L(y, x), I{w, z)]. From (Ul) with ¢ = 1, it follows that

L(<{xyz), w) + L(z, {yxw)) — L({yxw), z5> — L(w, {xyz}) = 0.

Therefore we obatain

Lxyzp, wy + (z, {yxwy ) = 0.
Similarly, {({xyz), w) + {x, {wzy>)> =0 holds.
On theother hand, we have

<z, ywx10p = 1/4(<z, <ywx) ) + <z, {yxw) ))

(2-6)
2-7)

(2-9)

where <a, b)p = 1/2<a, b} (i.e., {,)p: the anti-symmetric bilinear form induced from
an anti-symmetric form (,)> of balanced Freudenthal-Kantor triple system).

Combining this with (2-7), we get

<z, ywx1>p = <y, [z2wx] D
(iii) From (U1l) with ¢ = 1, we have

xxxxyy) = — {{xxx)XY).

Putting z = x in K(y, 2) x = {zyx) — {yzx), we have

2<yxx) = {xyx) + {xxy).
Linearizing this relation, we get

yxz)y + (yzx) = 1/2({xyz) + {xzy) + {zyx) + {zxy)).

Replacing z = {xxx)>, we have

yx {xxx) ) + {y {xxx) x»
= 1/2({xy {xxx) ) + {x {xxx)y)
+ {xxx> yxd> + {xxx) xy)).

Combining this with (2-9), we have

yx {xxxp 5 + <y {xxx) X

= 1/2(xy (xxx) ) + {{xxx) yx)).

From K(x, y){xxx> = — L(x, y) {xxx> + L(y, x){xxx), we have

2-9)

(2-10)

(2-11)

(2-12)
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(xy (xxx)yy — {yx {xxx)y = — X, yp XXX (2-13)
From L({xxx}, y)x — L(y, {xxx))x = — K({xxx}, y)x, we have
(xxxy yxy — y {xxxy x) = — XXX, y) X (2-14)

Therefore by (2-13) and (2-14), we have

Cxy Cexx) Y + {exxd yxy — yx (exxy ) — Ly £xxx) x)
= — %, py {xxx)y — (XXX, ) X (2-15)

From (2-12) and (2-15), we obtain

(yx (xxxyy + Ky exx) x)
= — {x, pp Cxexx)y — {{xxx), p) x.

Consequently, by means of [xyz] = 1/2({xyz) + (xyzy) and {x, yDop = 1/24x, y>,
we have

[yx [xxx]] = <y, xDp [xxx] + <y, [xxx]Dp X

This completes the proof. [ ]
PROPOSITION 2.3. If (M, [ —, —, — 1, {,)p) is a Freudenthal triple system over
a field of ch @ # 2, then (M, { —, —, — ») is a balanced Freudenthal-Kantor triple

system with respect to the triple product
Cxyzy= [xyz] + <y, 22r X + <%, 22p Yy + ¥ X)p 2.
In this case, it holds K(x, y) = 2{x, yyr 1d.
Proor. From the definition of triple system. we have
{xyzy — {yxz)y = 24y, X)p 2
and
{xzyy — yzx) = 24%, y)F 2.
Hence we get

K(x, y) = — L(x, y) + L(y, x) = 2<{x, y)>r Id (balanced property). Consequently,
this yiels that

K(K(x, y)a, b) — L(b, a) K(x, y) + K(x, y)L(a, b) = 0.
We shall next show that the following equality holds,
xy {abz)) = ({xyz) bz) + {a {yxb)z) + {ab {xyz)).

This is verified by using (A2) and the following relation, which can be obtained from
linearizations of (A3):
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[[xaz]by] — [[byz] ax] — [[bya] zx] — [[byx] za]
= —<b, [xaz])r y — <y, [xaz] ) u + <y, app [xbz] + <y, z)F [xbal
+ s x> [baz] + <b, z)r [yax] + <b, a>p [xyz] + <b, x>p [yza].

This completes the proof. ]

The Freudenthal triple system (MR, [ —, —, — ]) defined above is called the
Freudenthal triple system associated with a balanced Freudenthal-Kantor triple
system.

Let V= 3J(N, c), and let the base field be characteristic zero. Then combining
the above propositions with Satz 8, 4 in [18], we have dimensional formulas as
follows;

THEOREM. 2.4. Under the assumption of above, let T(MM(V)) be the Lie triple
system associated with M(V) and L(M(V)) be the standard imbedding Lie algebra. If
dim (V) = n, then we have

dim Der M(V) = 3n(n + 1)/(n + 16).

dim Anti-Der IR(V) =1,

dim T(OR(WV)) = 2n and

dim LR(V)) = (5n% + 38n + 48)/(n + 16).

Proor. Since the correspondence between the inner derivation S(x, y) of a
simple balanced Freudenthal-Kantor triple system and the derivation D(x, y) of the
Freudenthal triple system associated with it is given by

S(x’ y)Z = 2D(Xa_y)21= z[x,VZ] - 2<Z, y>F X — 2<Z9 x>F Y,
the theorem is verified. ]

On the other hand, we have

dim A 1 2 4 8

dim V] e 9 15 27

dim M) 14 20 32 56

& ¢ by|¢éedab,ce. (acomposition
where V= [( c &, a) algebra over a field @)
b a &3/ ' — :involution of the algebra A

(For composition algebras, see [12, 19]).
Therefore, for simple balanced Freudenthal-Kantor triple system over an algebrai-
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cally closed field of characteristic 0, from the fact that 3i(}') is simple if and only if
LOR(V)) is simple [14], we can obtain simple Lie algebras;

dim A ‘1 2 4 8

Lie alg L(‘)JI(V))’ F, E; E, Eg

For Eg, we note the followings: From dimension 78 of simple Lie algebras, it follows
that there exist the type Bg, C¢ and Eg. In our case, since the dimension of the
simple Lie triple system is 40’s, we can obtain the type of Eg.

Remark. If dim U = 0, then we have

woff )

and B(a, b) = &y + Eny + Eanza x a = 2(885, &1, &182).  Hence by
straightforward calculations it is shown that the Lie algebra L(Mi(V)) is a simple Lie
algebra of type D,.

ur%@:ﬁg 9

and cross product be identically zero. Then it is clear that this matrix set (D)
satisfies conditions (1) ~ (5). Therefore if @ is an algebraically closed field of
characteristic 0, then the standard imbedding Lie algebra L(9(®)) is a simple Lie
algebra of type G,.

a= (51, '523 63)9 b = (111’ M2, 773)> £i9 ﬂiedi},

a,ﬁ,y,éeqﬁ} B(a, f) = aff

3

In this section, we shall consider a coordinatization theorem of simple reduced
balanced Freudenthal-Kantor triple systems.

From now on we restrict our attention to simple balanced Freudenthal-Kantor
triple systems 9 over a field of characteristic # 2 or 3.

DEerFINITION. ueI is rank one if
L(u, u) = 0. (3-1)

ReMARK. If an element a is rank one in the vector space V equipped with the
conditions (1) ~ (5) in Section 2(thatis,a x a =0 and a # 0), then the element

(g g) is rank one in M(V), where « is an arbitrary element in @.

Lemma 3.1. Let (M,{ —, —, — ) be a balanced Freudenthal-Kantor triple
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system and M,[ —, —, —]) be the Freudenthal triple system associated with it.
Then an element u is rank one in (M,{ —, —, — ) if and only if u is strictly regular
inM,[—, —, —1). (for the definition of strictly regular element, for example [7])

Proor. “only if”: Let <{uux) =0 for all xe¥. Since <u, x)u = (uux)
— {xuuy, we get '

4 Cxuny = — {uy x> u. (3-2)
On the other hand, by the balanced property, we have
lu, xdDu= — {uxu)y + {xuu). (3-3)
Form (3-2) and (3-3), it follows that
luxu) = — 2<u, x> u. (34)

By the definition of the triple product
[xyz] = 1/2({xyz) + <xzy),
we obtain
[uxu] = — {u, x> u,

which implies that u is strictly regular in (¢.[ —, —, —]).

“if”: Let u be strictly regular. From the equation (5) in [7, p317], we have [uuy]
= 2{y, uppu, where {,>p is the anti-symmetric bilinear form of Freudenthal
triple sytem. From Proposition 2.3. we get

Cuuyy = [uuy] + 2<u, y)¢ u.
Therefore we obtain {uuy) = 0 for all ye9. This completes the proof. &

DEFINITION. A balanced Freudenthal-Kantor triple system 9t is said to be
reduced if 9 contains a rank one element u.

DErFINITION. A pair of rank one element (u, v) is said to be supplementary if
K(u, v) = 21d. (3-5)

PROPOSITION 3.2. Let M be a simple balanced Freudenthal-Kantor triple system.
Then M is reduced if and only if M contains a pair of supplementary rank one
elements.

Proor. Combining the above lemma 3.1 with Theorem 3.3 in [7], we can
easily show the proposition. =

COROLLARY. Let M be a simple balanced Freudenthal-Kantor triple system and
q(x):= {{xxx), x) be a nonzero 4-linear form of M. Then M is reduced if and only
if M contains an element x with q(x) = — 24>, fe ®*.
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REMARK. Let M be a balanced Freudenthal-Kantor triple system. Then for
the 4-linear form q(x,y,z,w) = {{xyz)>, w) in x,y,z,weIM, we have the following
identies by straightforward calculations;

a(x,y,z,w) = qw,2,5,X) = q(y, X, w, 2) = q(z, W, X, ).
In particular,
a(x,x,x,y) = q(x, X, 5,X) = q(X,, X, X) = q(, X, X, X).
Furtheremore, we have
q(S(x, ¥)z,2,2,z2) =0 for all x,y,zeM,
where S(x, y) = L(x, y) + L(y, x).

ProPOSITION 3.3. Let 9 be a simple balanced Freudenthal-Kantor triple
system. If the 4-linear form q(x) is identically zero, then it holds {xyz) =1/2({y, x
24y, 2> x +<x, 2> ), for all x,y,ze M.

PrOOF. By the fact that ¢,) is nondegenerate if and only if 9t is simple, and
from linearizing of {{xxx), x> =0 and the above remark it follows that

{xxx) =0 for all xeIM.

Linearizing the identity {(xxx)» =0, we have

{xxy)y + {xyx)> + {yxx) = 0. (3-6)
From the assumption to be balanced, we have
(xxy)y = 2<yxxy — {xyx). -7
Combining (3-6) with (3-7), we get from ch @ # 3
{yxx)y =0.
Hence we have {xyx)> = — {x, y>x. Linearizing this identity, we have
{xyzy +Kzyx) = — (X, y>z — <z, Y X. (3-9)
On the other hand, we have
{xyzy — Lzyx)y =%, 23 y- (-9
From (3-8) and (3-9), we obtain
Cxyz) = 1/2(y, Xy z + {3, 2> X + <X, 2) y). L

LemMA 3.4. Let (u, v) be a pair of supplementary rank one elements of simple
balanced Freudenthal-Kantor triple system M. Then it holds

1/4(R(u, v) + R(v, w))*> x = x + 3/2<u, x>v — 3/2{v, x> u
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for all xeIn.
_ Proor. From (Ul) with e=1,
straightforward calculations:
R(c, d)R(a, b)x = R(a, {(bed))x — L(b, ¢)R(a, d) x
— M(b, dyM(a, c)x,

we obtain the following relation by

(3-10)

where R(a, b)x = {xab) and M(a, c¢)x = {acx)>. By making use the relation (3-10),
we have
R(u, v) R(u, v)x = R(u, <vuvd)x — L(v, u) R(u, v) x

— M(v, v) M(u, u)x

= R(u, — 2{v, upv)x — L(v, u) R(u, v) x

— 4, {u, xpuyv

(by 3-4))

= 4R(u, v)x — L(v, u) R(u, v) x + 8{u, x)v.

(by <u, v> =2)

Similarly, we have
R(v, ) R(v, uyx = — 4R (v, u)x — L(u, v) R(v, u) x — 8{v, x> u.

Hence we get
(R(u, v) + R(v, w))*> x = (4R(u, v) — L(v, u) R(u, b) + R(u, v) R(v, u)
+ R(v, u) R(u, v) — 4R(v, u) — L(u, v) R(v, u)) x

+ 8<u, x>v — 8{v, xD>u. (3-11)
We compute
(4R(u, v) — L(v, u) R(u, v) + R(u, v) R(v, u)
+ R(v, w)R(u, v) — 4R (v, u) — L(u, v) R(v, u)) x
= (4R(u, v)x — 2R(u, v) x + {R(u, v)x, upv
+ 2R(v, u)x + {(R(v, u)x, v>u — 4R(v, u)x
(by means of the relations;
— L, u)y + R(w, )y = — 2y + {y, upv for all yeM
— L, v)z + R(u, v)z =2z + {z, vpu for all ze M)
= 2R(u, v) x — 2R(v, u)x + {R(u, v)x, upv + {R(v, u)x, vou
= 4x + (R(u, V) x — 2x, ud v + (R(v, u)x + 2x, vy u
(by means of the relation;
R(u, v)x — R(v, u)x = 2x + {x, vy u + {u, x)v)
(3-12)

=4x 4+ 2{x, upv — 2{x, v)u
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(by means of the relations;

xuvd, uy = — {x, Kuvu) ) = 4{x, uy
Kxvud, v) = — {x, {ouvd ) = — 4<x, v)).

Combining (3-12) with (3-11), we obtain
(R(u, v) + R(v, w))?> = 4x + 6<u, x>v — 6<v, x> u.
This completes the proof. |

We denote 1/2(R(u, v) + R(v, u))by J(u, v). Thus on (Pu@ dv)*, we have
Ju, v)*> =1d, so (Pu@ Dv)* =M, P M _,, where M, is the eigenspace for the
eigenvalue ¢ of J(u, v) for e = £ 1. Moreover, since { —, — ) is nondegenerate,
and its restriction to (Pu @ Pv)* is nondegenerate, we have

M=DPuPOvPp M, PM_,.

Since J(u, v)u = — 2u(resp. J(u, v)v = 2v), these imply u(resp. v) is the eigenspace for
J(u, v) with eigenvalue — 2(resp.2). Consequently we have the following
decomposirion of I;

M=M_,DM_; DM, DMy,

where 9, is the eigenspace for the eigenvalue i of J(u, v)(i= £ 1, £2). We call
this decomposition the Peirce decomposition of a simple reduced balanced
Freudenthal-Kantor triple system. We remark that all Peirce spaces M; are totally
isotopic (that is, (M, M_;> #0 if i=j and <M, M_;> =0 otherwise). Using
results of the coordinatization of simple reduced Freudenthal triple system, we can
prove following results in a manner analogous to that in [7].

Let M=M_,PIM_, P M, DM, be the Peirce decomposition relative to a
pair of supplementary rank one elements u and v. We define ¢:9; - IM_, as
follows;if for all yeIM,, <u, <yyy>>=0, let a,,---,a, be a basis for M;, a_4,---.a_,
adual basis for M _, relative to (a; a_;>=2 and define t by ta; = 2a_;;if there is
yeM,, with 1/2<u, {yyy)> =40, define t by ta= — 1/4({ayu) + {auy))
+ 3/827 u, Layy) ) <uyy).

Combining Propositions 2.2 and 2.3 with results of §4 in [7], we have the
following lemma.

LemMA 3.5. For t as above,
(i) {a, tb) = — {ta, b)
(ii) {v, tatata) = A/12u, aaa)
(iii) t is nonsingular
@iv) t{vtatb) = — A/12<{uab)
Sfor all a, beIn,.
We can next define a bilinear form B(,) and a cross product on M, as follows:
B(a, b) = A71/6<a, th) and a x b = — A~ 1/2({vtatb) + {vtbta)) if 1 #0.
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B(a, b) =1/6<a, th) and a x b =0, if 1 =0.

PROPOSITION 3.6. Under the above definition, we have the following identities on
M, :
(1) axb=bxa
) B(a, b) = B(b, a)
3) B(a x b, d) = B(a, b x d)
4) ((axa)xb)yxa=1/3B(a,a x a)b + B(b, a)a x a
5) (@ xa)x(axa)=4/3B(a x a,a)a

Proor. By the definition of the above bilinear form and cross product, the
relations obtained from Lemma 3.5 yield the proof. B

THEOREM 3.7. Let M be a reduced simple balanced Freudenthal-Kantor triple
system over @. Then it holds M =~ IM(V), where V is a vector space equipped with
the bilinear form B(a, b) and the cross product x satisfying the relations (1) ~ (5) of
Proposition 3.6.

Proor. We can show that if A5 0, then the map f: (V) — M defined as
follows is an isomorphism of balanced Freudenthal-Kantor triple systems;

(Zl ;1> —— 3600 + 1/7247Byu + a, + 1/62" '¢b
1 1

if A =0, similarly.

(“1 ”1) s 360,0 + 1/72B,u + a, + 1/6th,.
b, B

As the proof of this isomorphism is very long and of strightforward calculations, we
omit it. B

Finally, from results of this paper, Theorem 6.8 and Theorem 7.4 in [7]>, we
can obtain the following.

THEOREM 3.8. Let V(resp. V') be a Jordan triple system induced from an
admissible cubic form N (resp. N') with basepoint c(resp. ¢'). Then the followings are
equivalent
(i) V and V' are isotopic.

(ii) WMV) and M(V’) are isomorpic.
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