Some Remarks on Subdirect Products of Completely Regular Semigroups

Miyuki Yamada

Department of Mathematics, Shimane University, Matsue, Japan (Received September 6, 1989)

In this paper, the concept of a subspined product of completely regular semigroups are introduced. Firstly, we give a necessary and sufficient condition for a subspined product $A \otimes B$ of cryptogroups A and B to be also a cryptogroup. Secondly, it is shown that a subspined product $A \otimes B$ is necessarily a cryptogroup if one of A and B is a band and the other is a cryptogroup. It is also shown that any subspined product $A \otimes B$ coincides with the spined product $A \bowtie B$ if one of A and B is a Clifford semigroup and the other is a band.

Finally, the concept of a subspined product is extended to the concept of a P-subspined product for the class of completely P-regular semigroups, and some considerations are given for P-subspined products of P-cryptogroups.

Let S be a completely regular semigroup. Then, S is uniquely decomposed into a semilattice Y of completely simple semigroups $\{S_i: i \in Y\}$ (see [1]).

This decomposition is called the structure decomposition of S (see [3]), and denoted by $S \sim \Sigma\{S_i : i \in Y\}$. In this case, Y is also uniquely determined, up to isomorphism, and it is called the structure semilattice of S. Hereafter, "a completely regular semigroup $S \equiv \Sigma\{S_i : i \in Y\}$ " means "S is a completely regular semigroup and has the structure decomposition $S \sim \Sigma\{S_i : i \in Y\}$ ".

Let $A \equiv \Sigma\{A_i : i \in Y\}$ and $B \equiv \Sigma\{B_i : i \in Y\}$ be completely regular semigroups having the same structure semilattice Y. Put $A \bowtie B = \{(x, y) : x \in A_i, y \in B_i, i \in Y\}$. Define multiplication in $A \bowtie B$ as follows: (x, y)(u, v) = (xu, yv) for (x, y), $(u, v) \in A \bowtie B$. Then, $A \bowtie B$ is a regular subsemigroup of the direct product $A \times B$ of A and B. This $A \bowtie B$ is called the spined product of A and B (with respect to the structure decompositions of A and B). Hereafter, we shall omit the term "with respect to the structure decompositions of A and B". Now, let S be a regular subsemigroup of the spined product $A \bowtie B$ of completely regular semigroups A and B such that

(C.1) the first and the second projections ϕ , Ψ (that is, the mappings ϕ : $S \to A$ and $\Psi: S \to B$ defined by $(x, y)\phi = x$ and $(x, y)\Psi = y$, $(x, y) \in S$) are surjective homomorphisms.

Then, S is also a subdirect product of A and B. Such an S is called a subspined product of A and B (with respect to the structure decompositions of A and B). Of course, a subspined product of A and B is not necessarily unique in general.

LEMMA 1. If A and B are cryptogroups (that is, bands of groups; see [2]), then a subspined product $A \times B$ of A and B is also a cryptogroup if and only if $A \times B$ satisfies the following:

(C.2) $A \otimes B \ni (a, b)$ implies $(a^{-1}, b^{-1}) \in A \otimes B$, where x^{-1} is the group inverse of x.

PROOF. The "if" part: Let A be a band Γ_1 of groups $\{A'_{\gamma}: \gamma \in \Gamma_1\}$ and B a band Γ_2 of groups $\{B'_{\tau}: \tau \in \Gamma_2\}$. Let $e \in E_A$ (the set of idempotents of A) and $f \in E_B$. Put $C_{(e,f)} = \{(a, b) \in A \times B : aa^{-1} = e \text{ and } bb^{-1} = f\}.$ It is obvious that $(e, f) \in C_{(c,f)}$. If $(a, b) \in C_{(e,f)}$, then $(a^{-1}, b^{-1}) \in C_{(e,f)}$. Further, (a, b), $(c, d) \in C_{(e,f)}$ implies that $ac(c^{-1}a^{-1}) = aea^{-1} = aa^{-1} = e$ and similarly $(c^{-1}a^{-1})ac = e$. Further, $bd(d^{-1}b^{-1})$ $=(d^{-1}b^{-1})bd=f$. Therefore, $c^{-1}a^{-1}=(ac)^{-1}$, and $d^{-1}b^{-1}=(bd)^{-1}$. Thus, $(ac, bd) \in C_{(e,f)}$, that is, $(a, b)(c, d) \in C_{(e,f)}$. Therefore, $C_{(e,f)}$ is a group. Let e_{γ} be the identity of A'_{γ} for $\gamma \in \Gamma_1$, and f_{τ} the identity of B'_{τ} for $\tau \in \Gamma_2$. Let $x \in C_{(e_{\gamma}, f_{\lambda})}$ and $y \in C_{(e_u, f_v)}$. Put x = (a, b), y = (c, d). Then, $aa^{-1} = e_v$, $bb^{-1} = f_\lambda$, $cc^{-1} = e_u$ and $dd^{-1} = f_{\nu}$. Since $a \in A'_{\nu}$, $c \in B'_{\mu}$, it follows that $ac \in A'_{\nu\mu}$. Similarly, $bd \in B'_{\lambda\nu}$. Further, $(ac, bd) \in A \times B$. Now, $ac(ac)^{-1} = e_{\gamma\mu}$ and $bd(bd)^{-1} = f_{\lambda\nu}$. Hence, $xy \in C_{(e_{\gamma\mu}, f_{\lambda\nu})}$. Thus, $C_{(e_n,f_i)}$ $C_{(e_n,f_i)} \subset C_{(e_n,f_i)}$. This implies that $A \times B$ is a cryptogroup. The "only if" part: Suppose that a subspined product $A \times B$ of A and B is a cryptogroup. Let $(x, y) \in A \times B$. Then, (x, y) is contained in a subgroup of $A \times B$, and accordingly there exists an group-inverse (u, v) of (x, y) in $A \times B$. Since $(u, v)(x, y) = (x, y)(u, v) = (e, f) \in E_{A \times B}, \quad ux = xu = e \quad \text{and} \quad vy = yv = f.$ Further, ((u, v), (x, y)) is a regular pair. Then, ex = xe = x, ue = eu = u, vf = fv = v and yf= fy = y. Therefore, u and v are group-inverses of x and y respectively. Hence, $(x^{-1}, y^{-1}) = (u, v) \in A \times B.$

Let X(I) be a \mathscr{P} -regular semigroup (for the definition, see [4]). If X is completely regular, then X(I) is called a completely \mathscr{P} -regular semigroup. Let A(P) and B(Q) be completely \mathscr{P} -regular semigroups. Let $A \sim \Sigma\{A_{\lambda} : \lambda \in A\}$ and $B \sim \Sigma\{B_{\lambda} : \lambda \in A\}$ be the structure decompositions of A and B respectively. Let $P_{\lambda} = A_{\lambda} \cap P$ and $Q_{\lambda} = B_{\lambda} \cap Q$, and let $U = \Sigma\{P_{\lambda} \times Q_{\lambda} \text{ (direct product): } \lambda \in A\}$. Let $C = A \bowtie B$. Then, C(U) is also a completely \mathscr{P} -regular semigroup, which is denoted by $C(U) = A(P) \bowtie B(Q)$. Let D(V) be a \mathscr{P} -regular subsemigroup (see [4]) of $A(P) \bowtie B(Q)$. If D(V) satisfies the following (C.3) then D(V) is called a \mathscr{P} -subspined product of A(P) and B(Q), and some times denoted by $A(P) \bowtie B(Q)$, etc.:

(C.3) The first and the second projections $\phi: D(V) \to A(P)$ and $\Psi: D(V) \to B(Q)$ are surjective \mathscr{P} -homomorphisms.

Of course, in this case D is a subspined product of A and B. Especially, if A and B are cryptogroups and if D satisfies (C.2), then D(V) is also a \mathcal{P} -regular cryptogroup (abbrev., a \mathcal{P} -cryptogroup). Since the converse is also satisfied, we have the following:

LEMMA 2. Let A(P) and B(Q) be \mathcal{P} -cryptogroups, and assume that A and B has the same structure semilattice. Then, every \mathcal{P} -subspined product D(V) of A(P) and B(Q) is a \mathcal{P} -cryptogroup if and only if D satisfies (C.2).

THEOREM 3. Let A be a completely regular semigroup, and B a band. Assume that A and B have the same structure semilattice. Then, every subspined product of A and B satisfies (C.2). Accordingly, if A is a cryptogroup, every subspined product of A and B is also a cryptogroup.

PROOF. Let $A \sim \Sigma\{A_\lambda \colon \lambda \in A\}$ and $B \sim \Sigma\{B_\lambda \colon \lambda \in A\}$ be the structure decompositons of A and B. Hence, each B_λ is a rectangular band. Suppose that C is a subspined product of A and B. Let $(b,e) \in C$. Then, there exists f such that $(b^{-1},f) \in C$. Of course, if $(b,e) \in A_\lambda \times B_\lambda$ then $(b^{-1},f) \in A_\lambda \times B_\lambda$. Now, (bb^{-1},ef) , $(b^{-1}b,fe) \in C$, and $(bb^{-1},ef)(b^{-1}b,fe) = (b^{-1},e) \in C$ since B_λ is a rectangular band. Hence, (C.2) is satisfied.

COROLLARY. Let A(P) be a completely \mathcal{P} -regular semigroup, and B(Q) a \mathcal{P} -band. Assume that A and B have the same structure semilattice. Then, every \mathcal{P} -subspined product of A(P) and B(Q) satisfies (C.2). Hence, if A(P) is a \mathcal{P} -cryptogroup then every \mathcal{P} -subspined product of A(P) and B(Q) is also a \mathcal{P} -cryptogroup.

THEOREM 4. Let $A \equiv \Sigma\{A_{\lambda}: \lambda \in \Lambda\}$ be a Clifford semigroup (that is, a semilattice Λ of groups $\{A_{\lambda}: \lambda \in \Lambda\}$), and $B \equiv \Sigma\{B_{\lambda}: \lambda \in \Lambda\}$ a band. Then, a subspined product of A and B coincides with $A \bowtie B$.

PROOF. Let C be a subsined product of A and B. Now, $A \bowtie B \equiv \Sigma\{A_{\lambda} \times B_{\lambda} \colon \lambda \in A\}$. Let $C_{\lambda} = C \cap (A_{\lambda} \times B_{\lambda})$. Then, $C \equiv \Sigma\{C_{\lambda} \colon \lambda \in A\}$. If $(a, e) \in C_{\lambda}$, it follows from Theorem 3 that $(a^{-1}, e) \in C_{\lambda}$. Hence, $(aa^{-1}, e) \in C_{\lambda}$. Now, for any $b \in A_{\lambda}$, there exists f such that $(b, f) \in C_{\lambda}$. Therefore, $(aa^{-1}, e)(b, f)(aa^{-1}, e) \in C_{\lambda}$. That is, $(b, e) \in C_{\lambda}$. Next, let $u \in B_{\lambda}$. Then, there exists $c \in A_{\lambda}$ such that $(c, u) \in C_{\lambda}$. Since $cc^{-1} = aa^{-1}$, $(aa^{-1}, u) \in C_{\lambda}$. Therefore, $(aa^{-1}, u)(b, f)(aa^{-1}, u) = (b, u) \in C_{\lambda}$. Thus, $C_{\lambda} \supset A_{\lambda} \times B_{\lambda}$, and accordingly $C = A \bowtie B$.

COROLLARY. Let A(P) be a \mathcal{P} -Clifford semigroup (a Clifford semigroup which is \mathcal{P} -regular), and B(Q) a \mathcal{P} -band. Assume that A and B have the same structure semilattice. Then, every \mathcal{P} -subspined product of A(P) and B(Q) coincides with $A(P) \rightleftharpoons B(Q)$.

REMARK. Let A be a Clifford semigroup, and E_A the semilattice of idempotents of A. Let $P \subset E_A$. If A(P) is \mathscr{P} -regular, then every \mathscr{L} -class and \mathscr{R} -class (where \mathscr{L} and \mathscr{R} are Green's L and R relations respectively) contain an element of P. Hence, we have $P = E_A$. Conversely, it is obvious that $A(E_A)$ is \mathscr{P} -regular. Therefore, A(P) is \mathscr{P} -regular if and only if $P = E_A$.

LEMMA 5. Let A be a rectangular band, and B a completely simple semigroup. Then, a subdirect product C of A and B is the direct product $A \times B$ of A and B if and only if C contains all idempotents of $A \times B$.

PROOF. Let B be a rectangular band Γ of groups $\{B_{\gamma}: \gamma \in \Gamma\}$. Let C be a subdirect product of A and B. If $C = A \times B$, then it is obvious that C contains all idempotents of $A \times B$. Conversely, suppose that C contains all idempotents of $A \times B$. Let $(e, b) \in C$. For $f \in A$, $(f, h) \in C$, where $h = bb^{-1}$. Then, $(f, h)(e, b)(f, h) = (f, b) \in C$. Hence, $C = A \times B$.

This is extended to the following result:

THEOREM 6. Let $A \equiv \Sigma\{A_{\lambda}: \lambda \in \Lambda\}$ be a band, and $B \equiv \Sigma\{B_{\lambda}: \lambda \in \Lambda\}$ a completely regular semigroup. Then, a subspined product of A and B is the spined product $A \bowtie B$ of A and B if and only if it contains all idempotents of $A \bowtie B$.

PROOF. Now, $A \bowtie B = \Sigma\{A_{\lambda} \times B_{\lambda} \colon \lambda \in A\}$. Let C be a subspined product of A and B. Let $C_{\lambda} = C \cap (A_{\lambda} \times B_{\lambda})$. Then, it is obvious that C_{λ} is a subdirect product of A_{λ} and B_{λ} . The "only if" part is obvious. Suppose that C contains all idempotents of $A \bowtie B$. Then, it follows that C_{λ} contains all idempotents of $A_{\lambda} \times B_{\lambda}$. Hence, it follows from Lemma 6 that $C_{\lambda} = C_{\lambda} = A_{\lambda} \times B_{\lambda}$. Therefore, $C = A \bowtie B$.

LEMMA 7. Let A(P) and B(Q) be a completely simple \mathscr{P} -regular semigroup and a rectangular \mathscr{P} -band. Let C(U) be a \mathscr{P} -subdirect product of A(P) and B(Q) (that is, C is a subdirect product of A and B, $U = C \cap (P \times Q)$, and C(U) is \mathscr{P} -regular). Then, $C(U) = A(P) \underset{\sim}{\times} B(Q)$ if and only if $C \supset P \times Q$.

PROOF. The "only if" part is obvious. The "if" part: It is obvious that $U^2 = E_A \times E_B = E_{A \times B}$ Since $U = P \times Q$. Therefore, $C \supset E_{A \times B}$. It follows from Lemma 5 that $C(U) = A(P) \underset{\sim}{\nearrow} B(Q)$.

By using Lemma 7, we obtain the following result:

THEOREM 8. Let A(P) and B(Q) be a completely \mathscr{P} -regular semigroup and a \mathscr{P} -band respectively. Let $A \equiv \Sigma\{A_{\lambda} \colon \lambda \in \Lambda\}$ and $B \equiv \Sigma\{B_{\lambda} \colon \lambda \in \Lambda\}$. Then, a \mathscr{P} -subspined product of A(P) and B(Q) is the \mathscr{P} -spined product $A(P) \underset{\bowtie}{\triangleright} B(Q)$ if and only if it contains $\Sigma\{P_{\lambda} \times Q_{\lambda} \colon \lambda \in \Lambda\}$, where $P_{\lambda} = P \cap A_{\lambda}$ and $Q_{\lambda} = Q \cap B_{\lambda}$.

PROOF. Let C(U) be a \mathscr{P} -subspined product of A(P) and B(Q). Let $C_{\lambda} = C \cap (A_{\lambda} \times B_{\lambda})$ and $U_{\lambda} = C_{\lambda} \cap U$. Then, $C_{\lambda}(U_{\lambda})$ is a \mathscr{P} -subdirect product of $A_{\lambda}(P_{\lambda})$ and $B_{\lambda}(Q_{\lambda})$. Hence, if C_{λ} contains $P_{\lambda} \times Q_{\lambda}$ then $C_{\lambda} = A_{\lambda} \times Q_{\lambda}$, and $U_{\lambda} = P_{\lambda} \times Q_{\lambda}$, and accordingly $C_{\lambda}(U_{\lambda}) = A_{\lambda}(P_{\lambda}) \underset{\mathscr{P}}{\times} B_{\lambda}(Q_{\lambda})$. Hence, $C(U) = A(P) \underset{\mathscr{P}}{\hookrightarrow} B(Q)$. The converse is obvious.

References

- [1] Clifford, A. H. and Preston, G. B.: Algebraic theory of semigroups, Vol. 1, Amer. Math. Soc., Providence, R. I., 1961.
- [2] Pastijn, F. J. and Petrich, M.: Regular semigroups as extensions, Research Notes in Mathematics 136, Pitman Advanced Publishing Program, Boston, 1985.
- [3] Yamada, M.: The structure of quasi-orthodox semigroups, Mem. Fac. Sci., Shimane Univ. 14 (1980), 1-18.
- [4] Yamada, M. and Sen, M. K.: P-regular semigroups, Semigroup Forum 39 (1989), 157-178.