論 文

諫早湾閉切り前後における底質の元素組成の変化

道前香緒里^{1)*}·石賀 裕明*·近藤 寛**

Changes of geochemical compositions of bottom sediments related to the sea dyke in Isahaya Bay of Ariake Sea, Japan

Kaori Dozen^{1)*}, Hiroaki Ishiga* and Hiroshi Kondo*

Abstract

Isahaya Bay was the largest intertidal mud flat in Japan. In April 1997, the bay was closed by a dyke for reclamation and was isolated from the Ariake Sea. This resulted in the formation of stagnant and deteriorated condition in the bay, especially in the inner side of the dyke. Core samples from both the inner and outer sides of the dyke confirm the abrupt changes in lithology, biota, and various geochemical parameters. Mud samples in the upper parts which were deposited after the closure show higher concentrations of Pb, Zn, Cu, P₂O₅, TOC and TN, suggesting element accumulation in sediments under reducing conditions. This enrichment may be related to the disappearance of an ecosystem which previously effected bioremediation.

Key words: Isahaya Bay, Ariake Sea, dyke, reclamation, geochemistry, heavy metal

はじめに

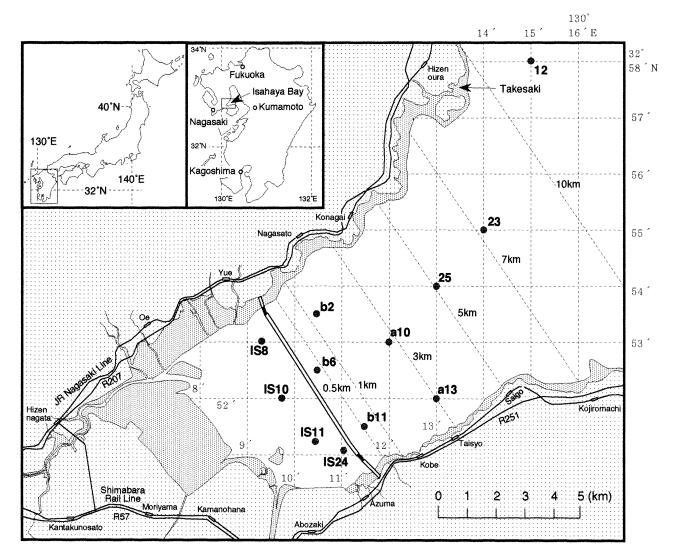
諫早湾は国内に残された最大規模の泥質干潟であったが, 1997年4月14日諫早干拓事業の最後の矢板落とし(ギロチ ン) によって有明海から遮断された. これにより諫早湾は北 部廃水門, 南部廃水門を除いて堤防内部の調整池と外側の有 明海の海水との混合は途絶える事になった. もとより有明海 は干満の差が4~6mと大きく干潮時には広大な干潟が形成 され、多様な生物を育んできたことは良く知られている(有 明海研究グループ, 1965;鎌田ほか, 1979;菅野, 1993). しかし、潮の干満を経験していた堤防内部はこの堤防閉切り によって完全に干満は無くなった. したがって干潟が果たし てきた浄化能力は著しく低下し、本明川から流入する有機物 や栄養塩は分解及び生物に吸収されないまま底質に濃縮する 事となった. また, 同時に調整池は淡水化が進んで, 海棲生 物は死滅した(東, 1999;佐藤ほか, 2001;早坂, 2000). 今回この閉切りの前後でどれほど湾内の環境が変化したかを 解明するため、2000年9月17日に調整池内の4地点におい て約1mの柱状採泥を行い、堆積物の層相の変化、および 元素組成の変化を検討した.また,堤防の外側についても堆 積環境の変化を評価するために堤防の外側においても 0.3 km から 10 km まで系統的に柱状試料を採集して同様に堆積物の岩相と元素組成の変化を検討した。結論からすれば柱状試料における堤防の閉切時期は浚渫による細砂の存在や岩相の明瞭な変化により示される。また、この層準は重金属や有機物の含有量の急激な増加によりマークされる。これらの変化はいかに堤防の閉切による環境の変化が大きかったかを物語っている。本論ではこれまでに行った柱状試料の記述と元素組成の変化を記述し、それらの考察については稿を改めて報告する。

試料採集地点および試料

潮受け堤防の内側:潮受け堤防の内側では 2000 年 9 月 17 日に潮受け堤防より約 1 km 内側の IS 10, IS 11 および本明川の河口にあたる IS 8 と堤防に近く南部廃水門付近の IS 24 において柱状試料 (約 1 m)の採取を行った。これらの試料採集位置の決定については著者の一人近藤が長崎大学の東教授との共同研究においてすでに多数のコアを採集しており堆積物の概要を把握している。それにより潮受け堤防付近で最も厚い堤防閉切後 (新規)の堆積物が形成されていることから、堤防からは数 100 m 離れた地点において、閉切前後の堆積物の境界が底層から数 10 cm の層準に見られることを考慮して IS 10, IS 11 を採集した。

IS 10, IS 11 では貝殻を多く含む下部 (閉切り前) とほとんど含まない上部 (閉切り後) に区分される. この下部の泥は暗緑灰色を示すが,上部ではより色調は濃くなり黒色やオリーブ黒を呈する. 上部は硫化水素臭を持つ. また, IS 11

[&]quot; 日本学術振興会特別研究員 (PD)

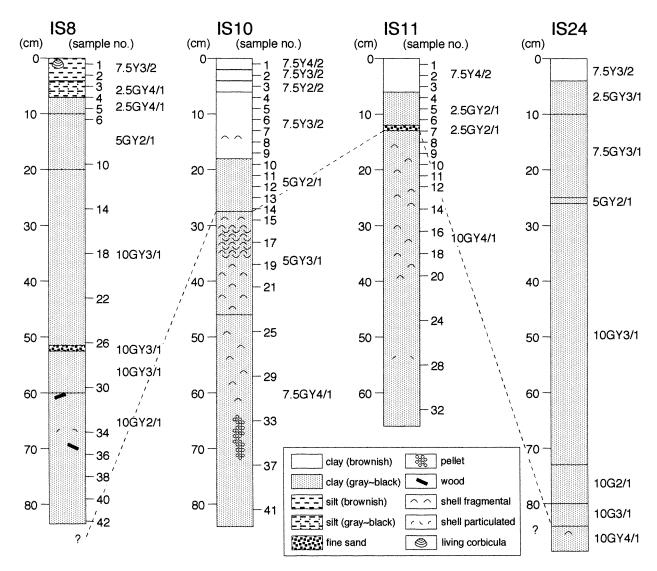

^{*} 島根大学総合理工学部地球資源環境学科 690-8504 松江市西川津町 1060

Department of Geoscience, Shimane University, Matue 690-8504, Japan

^{**}長崎大学教育学部地学教室

⁸⁵²⁻⁸⁵²¹ 長崎市文京町 1-14

Department of Education, Nagasaki University, Nagasaki, Japan



第1図 諫早湾の位置図,潮受け堤防,柱状試料の採集位置を示す図.

に見られるようにこの境界は細粒砂が挟まれており堤防工事のための浚渫された砂が被覆したものと考えられる。この砂は堤防内部の広い範囲で認められており(近藤未公表)閉切り堤防の建設時期を示すマーカー(第2図に破線で示した)と言える。本明川の河口にあたる IS 8 と南部廃水門に近い IS 24 では、1 m の柱状のすべてが堤防閉切り後の堆積物と考えられる。 IS 24 地点については 1999 年 10 月の新期堆積物の厚さは約30 cm と報告されており(近藤、2000)、1 年間で50 cm 以上の泥が堆積したことになる。調整池内で泥が移動し、船外機を用いての航行が難しい程、浅海化しており2000年にはすでに調整池内では干拓事業による堆積物の蓄積が進行していたと言える。

潮受け堤防外側:堤防の外側の試料は長崎大学,日本自然保護協会との共同調査により2001年3月9日-10日に採集した。潮受け堤防の外側では堤防に平行に0.5km,1km,3kmから10kmまで測線を設定して,グリッド上で同様に柱状試料を採集した(第1図).b6,b11が最も堤防に近く(0.5

km), b11 は南部廃水門近くである. b2 は北部廃水門近く で、水門付近における人工的な底層の改変の影響をさけるた めに1km付近で採取した。a10, a13 は3km付近, 25, 23 はそれぞれ 5 km, 7 km 付近の湾中央部で採取した. 12 は 10 km をこえる竹崎港沖合いに位置し、この地点は試料採取時 では水深27.7 mあり最も深い、これは堤防建設による浚渫 のためである。この凹地の内部は還元的環境にあると考えら れ,比較のため試料を採取した.堤防の外側の柱状試料でも 泥試料の色調の変化によって、閉切り前後の境界を推定でき る. 例えば、b 11 では表層から 23 cm までは暗緑灰色である が、これよりも下位ではより明るい色調を呈する。また、こ の境界よりも下位ではペレットを頻繁に含む. b6, a10, a 13, 25, 23 ではこの予想される境界の上部で特徴的な貝殻 が多量に含まれる. これは小型で薄い殻を持つ. コア 12 で は岩相の変化はなく 57 cm のコア全体が暗青灰色で硫化水素 臭をもつ.

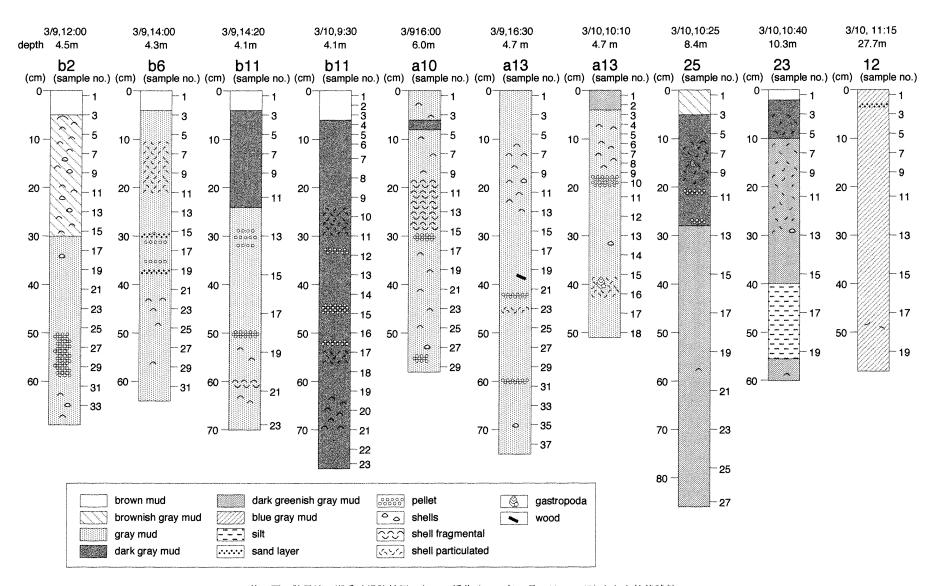
第2図 諫早湾の潮受け堤防内部において採集(2000年9月17日)された柱状試料.

元素組成の測定

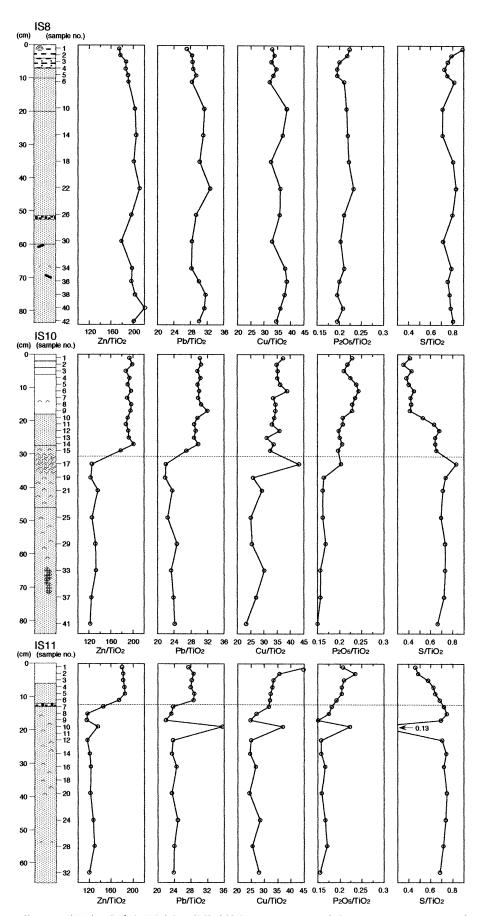
全岩組成

蛍光 X 線分析装置 (リガク電気 RIX 2000, 島根大学) を用い粉末プレス法により Fe₂O₃, TiO₂, CaO, P₂O₅, TS と 14 種類の微量元素 (As, Pb, Zn, Cu, Mo, Ni, Cr, V, U, Sr, Y, Nb, Zr, Th) の含有量を測定した.

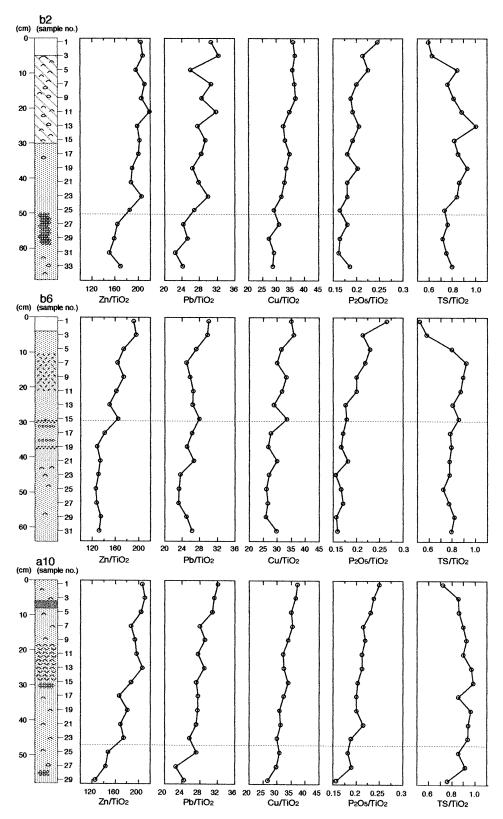
TOC (全有機炭素) および TN (全窒素)

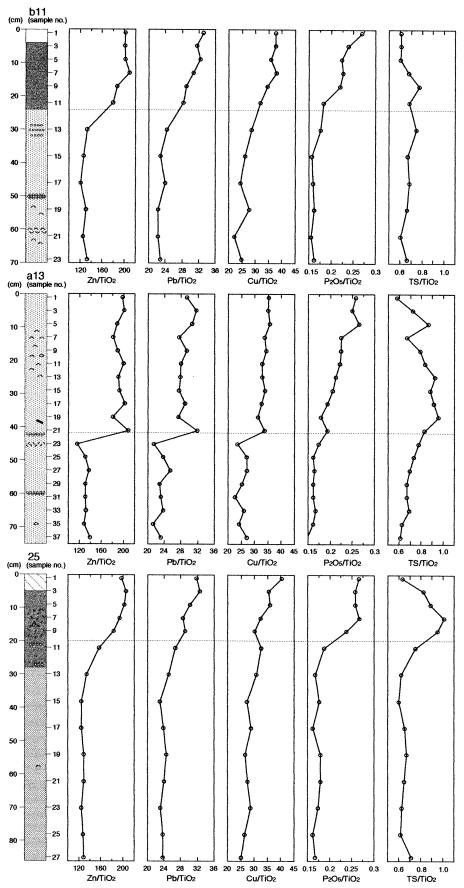

堤防の内側においては IS 10, IS 11 の 2 本の試料について, 外側では b 2, a 10, b 11 について CHNS コーダー (島根大学 汽水域研究センター) により TOC, TN を測定した.

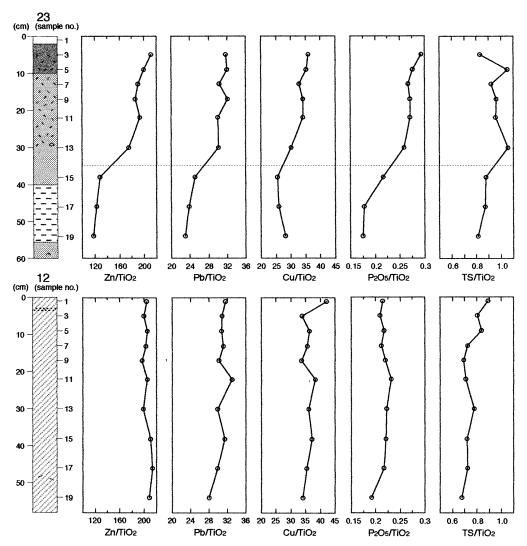
全岩元素組成の変化


堆積物の元素組成は後背地の地質、風化作用、運搬作用、 堆積環境、続成作用など様々な作用の総和である。一般に TiO₂, Th, Nb, Zr などは堆積環境とくに酸化還元環境の変化には影響を受けない。これらの元素は後背地の地質や粒度組成に関係して濃縮率が変化する。一方, As および重金属元素の多くは堆積環境に関係して濃縮率を変化させる。

それぞれの分析値を概観するとコア IS 10, IS 11 についてそれぞれ試料番号 IS 10–15 および IS 11–6 において濃縮率が著しく増加する元素が認められる。これらは Fe_2O_3 , Pb, Zn, Cu, V, P_2O_3 である。また,この変化は岩相により区分された層準とほぼ一致している。この境界の上下での平均値を求め比較すると,IS 10 については Fe_2O_3 , (上部 8.0 —下部 6.8 wt%:単位以外以下同様),Pb (23.1–16.5 ppm),Zn (149.1–91.0 ppm),Cu (26.9–20.3 ppm),V (139.6–118.8 ppm), P_2O_3 (0.17–0.12 wt%)と明らかに増加する。IS 11 についてみてもこれらの元素の濃縮率の変化は同じである。


IS 8 についてはこのような元素の変化はないが、Fe₂O₃=6.98-7.66 wt% (平均値 7.4 wt%), Zn=133-159 ppm (146 ppm), Cu=24-31 ppm (26.4 ppm), V=123-134 ppm (129.2


第3図 諫早湾の潮受け堤防外側において採集(2001年3月9日,10日)された柱状試料.

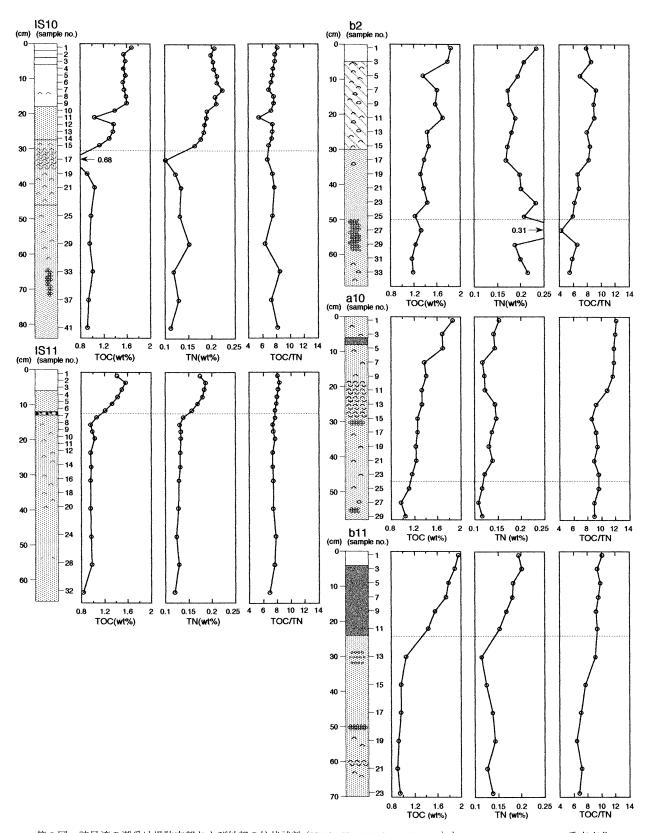

第4図 諫早湾の潮受け堤防内部の柱状試料 (IS 8, IS 10, IS 11) と Zn, Pb, Cu, P₂O₅, S の垂直変化を示す図. 堆積物の粒度組成による変化を考慮して TiO₂ で規格化している.

第 5 図 諫早湾の潮受け堤防外部の柱状試料 (b 2, b 6, a 10) と Zn, Pb, Cu, P₂O₅, S の垂直変化を示す図. 堆積物の粒度組成による変化を考慮して TiO₂ で規格化している.

第6図 諫早湾の潮受け堤防外部の柱状試料 (b 11, a 13, 25) と Zn, Pb, Cu, P_2O_5 , S の垂直変化を示す図. 堆積物の粒度組成による変化を考慮して TiO_2 で規格化している.

第7回 諫早湾の潮受け堤防外部の柱状試料 (23, 12) と Zn, Pb, Cu, P₂O₅, S の垂直変化を示す図. 堆積物の粒度組成による変化を考慮して TiO₂ で規格化している.

ppm), P_2O_5 (0.16 wt%)と IS 10,IS 11 における試料の上部の値と同じ程度となる.IS 8 と IS 10 および IS 11 の境界層の堆積物表層からの深度を比較すると IS 8 は 83 cm 以上,IS 10 は 29 cm,IS 11 は 19 cm となり本明川からの距離に関係して新規堆積物の厚さが減少していると言える.


TS は IS 10 において下部から上部にかけて減少し、平均値では上部が 0.38 wt%、下部が 0.52 wt%となっている. 調整池内の塩分濃度の低下と関連しているといえる. IS 11 では IS 11-10 において著しく低い値 (0.1 wt%)を示すが、最下部の試料 (TS=0.49 wt%)から表層試料 (TS=0.38 wt%)に向けてやや変化しながら減少する. IS 8 については大きな変化は認められず平均値では 0.58 wt%である.

As, Cr, Ni については IS 8, IS 10, IS 11 において有意な 垂直変化は示さない.

潮受け堤防の外側の試料でもこれらの試料と同様に元素の 濃縮率に垂直変化が見られる. その変化は岩相の変化とよく 対応している. ただし, b11 および a13 は境界(b11-11, お よび a 13-21)において Pb, Zn, Cu などの濃縮率急激に増加する。このことは堤防の外側においても内部と同様の環境変化が生じていることを示す。また,b2 では最下部の試料の Zn の含有率が 118 ppm であることを考慮すれば,これより下位に他の試料の下部に示されるような 80-90 ppm 程度の低い値を示す試料の存在が予想されるが,b2 では採取されていないことを示す。また,b11 および a 13 は南部廃水門から流出する泥水の影響が大きいと言える。

TiO₂による規格化

上述のように堆積物の元素組成は後背地の地質構成や粒度組成によっても影響を受ける。とくに環境評価に用いるヒ素や重金属元素は粘土鉱物,有機物,硫化物と関係して濃縮が生じるため細粒な堆積物ほど含有量は多くなる。そこで閉切り前後で変化する各元素をTiO2で規格化して垂直変化をより明瞭にあらわすようにした。堤防内部のIS 10, IS 11 では

第8図 諫早湾の潮受け堤防内部および外部の柱状試料 (IS 10, IS 11, b 2, a 10, b 11) と TOC, TN, TOC/TN の垂直変化を示す図.

sample	cm	ppm												wt	%				sample	e cm	ppm													wt%			
no.	depth	As	Pb	Zn	Cu I	Мо	Ni C	Cr V	U	Sr	Y	Nb	Zr T	h Fe	₂ O ₃ TiC	₂ C	aO P₂C	s TS	no.	depth	As	Pb	Zn	Cu	Мо	Ni (Or '	v u	Sr	Υ	Nb	Zr	Th	Fe₂O₃ 7	ΓiO₂ Ca	O P₂O₅	TS
IS8-1	1	10.1	21	133	25	2	26	62 1	24 25	3 225	21	11	154	9 7	.67 0.	e n	. E	7 000	LO 4		8.7	04	141	05	0.0	28	co .	00 0	4 470		40	444	0.7	c 00	0.00 1	B5 0.17	0.44
IS8-2	3	9.6	22	138	26			62 13				11					.33 0. .31 0.1			1 5	8.0	23				28 29		26 2. 19 2.				141 143	10		0.70 1.		0.41
IS8-3	5	8.9	21	141	25	2	30		32 2.3		21	11				5 2		15 0.57		9	7.6	16			2.2			02 1.			8		9				0.53
IS8-4	7	9.5	22	143	27					204	21	11			.58 0.7		.33 0.1	15 0.56	b2-7	13	9.4	21	147	26	2.2	28	58 1	22 2.	2 218	20	10	139	10	6.96	0.70 2.	44 0.14	0.53
IS8-5	9	9.6	23	146	26	2			37 2.4						.61 0.7		.05 0.1		b2-9	17	9.7	21			2.2				2 223			139	10		0.74 2.		0.60
IS8-6 IS8-10	11 19	9.5 9.4	22 23	145 151	24 29	2		60 12 65 13	25 2.4 32 2.5		21 21	11			.59 0.7		.15 0.1		b2-11	21	10.9				2.2	30	61 1					146	10		0.73 1.		0.64
IS8-14	27	8.9	23	150	27				29 2.4		21				.66 0.7 .53 0.7		.43 0.1 .45 0.1		b2-13 b2-15	25 29	8.2 8.9	19 21			2.2	22 27		10 1. 21 2.	8 449 1 273		8	99 132	6 8		0.68 6. 0.73 3.		0.68 0.60
IS8-18	35	8.8	22	145	24					170	21	10			.26 0.7		.90 0.°		b2-13	33	10.3	20			2.3	29		26 2.				132	9		0.73 3.		
IS8-22	43	9.1	23	146	25	2	32	63 12	26 2.4	161	21	11	147		.27 0.6		.76 0.1	6 0.57		37	8.8	18		23	2.2	22		14 1.				116	8		0.69 5.		
IS8-26	51	8.9	21	140	26	2		62 12			21				.01 0.7		.30 0.1		b2-21	41	9.8	20			2.1			25 2.			11	141	9		0.72 2.		
IS8-30 IS8-34	59 67	7.9 9.9	21 21	132 150	24 29	2			25 2.4		21					4 2			b2-23	45	9.7	22			2.3			29 2.				145	10		0.72 1.		0.60
IS8-36	71	9.9	24	157	31				32 2.3 33 2.3	192 150	20 20	11			.28 0.7 .44 0.8		.19 0.1 .60 0.1		b2-25	49	9.3	20			2.2	29		18 2.				141	10		0.73 2. 0.72 3.		0.54 0.55
IS8-38	75	9.2		157	29					143	21	11				71		0.00	b2-27 b2-29	53 57	9.0 8.6	18 18		22 20	2.2	26 27		16 2. 24 2.			10	129 133	8 10		0.72 3.		0.52
IS8-40	79	9.0	23	159	26	2	35	64 12		136		11				2 1		5 0.56	b2-31	61	8.9		111		2.2			16 2.				125	9			51 0.12	
IS8-42	83	9.6	23	155	27	2	32	65 13	6 2.3	146	21	11	155	11 7	.47 0.7	7 1	.52 0.1	5 0.62	b2-33	65	8.1	17	118	20	2.2	26	55 1	21 2.	1 348	18	9	118	9	6.44	0.70 3.	85 0.13	0.56
IS10-1	1	10.0	24	153	29	2	36	66 14			-00	40					40.0														_		_			<u>.</u>	
IS10-1	3	8.3	24	155	27				13 2.5 18 2.5	146	23 22	12			.40 0.7 .25 0.7		.42 0.1 .37 0.1		b6-1 b6-3	1 5	7.3 8.1	19 21	123 137	22 25	2.1 2.1	26 29		10 2. 14 2.			10	124 136	8 9			91 0.17 87 0.15	0.33
IS10-3	5	9.3	24	152	29			71 14			22	12			.26 0.8		.40 0.1			9	6.7	17			2.1	20		99 2.			8	83	7			21 0.14	
IS10-4	7	8.5	24	155	28			68 14			23	12		12 8	.30 0.8	0 1	.37 0.1	8 0.30	b6-7	13	7.4	16			2.2			02 2.			8	92	7	5.78	0.64 5.	45 0.14	0.59
IS10-5	9	9.5	24	152	29	_			2.5		23	12			.31 0.8	-	.38 0.1		b6-9	17	8.0		113		2.3			08 2.			_	111	8			00 0.13	
IS10-6 IS10-7	11 13	9.6 9.0	23 24	154 153	30 27				4 2.5		23	12			.35 0.7		.51 0.1		b6-11	21	7.2		105	21	2.2	22		93 2.			8	98	7		0.65 4.		0.57
IS10-7	15	8.8		156	27			68 14 69 14		150	23 23	12			.27 0.8 .27 0.7	1 1	.43 0.1 .38 0.1		b6-13 b6-15	25 29	8.8 8.8	18 19		20 22	2.2			12 2. 14 2.			9 10		10 9				0.54 0.57
IS10-9	17	8.4	25	155	27			68 14			23	12			.21 0.7		.33 0.1		b6-17	33	9.2				2.2			22 2.				137	9		0.70 2.		0.55
IS10-10	19	9.2	23	147	26	2	35	68 14		147	22	11			.99 0.7			6 0.41	b6-19	37	9.3	18			2.3	31		21 2.				141	11		0.72 1.		0.57
IS10-11	21	9.5		144	26				6 2.5		22	12			.96 0.7			6 0.49	b6-21	41	7.9	18	88	20	2.2			10 2.				131	10		0.66 2.		
IS10-12 IS10-13		8.6 8.6	22 22	145 144	27 23			66 13 64 13		145	22	11 1			.84 0.7		.41 0.1		b6-23	45	8.3	17			2.2			16 2.				138	10		0.71 2.		0.55
IS10-13		7.7		147	25 25			64 13 67 12		135	22 21	11 1			.73 0.7 .57 0.7		.30 0.1 .62 0.1		b6-25 b6-27	49 53	9.0 8.6	17 16			2.2 2.3			14 2. 12 2.				139 136	10 9		0.72 1. 0.70 2.		0.52 0.54
IS10-15		7.0	19	126	23			60 11			19				.74 0.7			4 0.46	b6-27	53 57	9.1	18						21 2.				141	9			74 0.12	
IS10-17	33	6.7	14	80	28	2	21	49 10	1 1.9	535	17				.52 0.6			3 0.53		61	8.1	18	•					18 2.				141	10		0.69 1.		0.55
IS10-19		8.1	16	90	19			57 11		309	19				66 0.7			2 0.54																			
IS10-21 IS10-25	41 49	9.1 8.9	17	101	22			62 12		158	21	10 1			.24 0.7			2 0.52	2	1	8.7				2.1	30		16 2.				139	10		0.67 1.		0.41
IS10-25	49 57	8.1	17 18	93 94	19 18			63 12 60 12		159 154	21 21	10 1			.17 0.7 .08 0.7			2 0.51 2 0.52	b11-3 b11-5	5 9	8.2	21 22		25 24	2.2	29 29		13 2. 13 2.			10	138 138	9 10		0.67 1. 0.67 1.		0.41 0.41
IS10-33	65	8.0	16	93	21			63 12		160	20	10 1			.07 0.7			1 0.51	b11-5	13	7.6 8.3	20			2.1			16 2.				140	10			57 0.15	
IS10-37	73	7.7	17	87	19	2			1 2.5		20	10 1			99 0.7			1 0.50	b11-9	17	8.5	20			2.2	27		22 2.				148	10		0.68 2.		0.53
IS10-41	81	7.2	18	89	17	2	32	61 11	3 2.4	173	20	9 1	38	10 6	92 0.7	3 1	.82 0.1	1 0.48	b11-11	22	8.3	20	128	23	2.2	30	58 1	14 2.	3 184	19	10	138	10	6.71	0.71 1.	89 0.13	0.49
IS11-1	1	9.2	23	147	37	2	37	65 14	- 04	405	-00	40							b11-13	30	7.6	17		19	2.2	28		14 2.				137	9		0.68 2.		
IS11-1	3	10.3		147	29			69 15	5 2.4 3 2.4		22 23	12 1			.08 0.8 34 0.8			7 0.38 9 0.39	b11-15 b11-17	38 46	7.2 6.7	16 17		18 17	2.3	28 27		19 2. 12 2.				139 133	9 10		0.70 2. 0.69 2.	07 0.11 63 0.11	
IS11-3	5	10.2		147	27			66 14			22	12 1			28 0.8			7 0.47	b11-17	46 54	6.8	15			2.2		54 1				_	133	9			46 0.11	
IS11-4	7	10.3	22	144	26	2	33	64 14	6 2.4	167	22				10 0.7			6 0.49	b11-21	62	6.7							15 2.				138	9		0.71 2.		0.43
IS11-5	9	10.2		144	25			62 13			22	12 1			03 0.7			6 0.50	b11-23	69	7.5	16	90	17	2.3	28	61 1	19 2.	4 199	20	9	139	9	6.71	0.68 2.	22 0.11	0.45
IS11-6 IS11-7	11 13	9.7 9.8		136 112	25			62 13			21	11 1			84 0.7		.89 0.1																				
IS11-7	15	9.5	18 17	87	25 20			64 13 55 12		212 240	21 21				43 0.7 12 0.7			4 0.55 3 0.55	a10-1	1	8.3	21 20		24 23	2.1 2.2	28 27		05 2. 07 2.				134 132	9 8		0.64 1. 0.63 1.	93 0.16 98 0.15	
IS11-9	17	9.6	17	92	20			50 12			21				30 0.7			2 0.55	a10-3 a10-5	5 9	8.1 7.8	20			2.2			07 2.				133	9		0.65 2.		0.56
IS11-10	19	14.6	27	104	28	2	28	32 15		176	21		46 1		03 0.7			7 0.10	a10-7	13	7.9	18			2.2			02 2.				126	9		0.65 3.		0.58
IS11-12	23	9.1	18	89	19	-		58 12			21				22 0.7			2 0.54	a10-9	17	7.7	19		22	2.1	23	50	96 2.	2 309	18	9		9		0.64 4.		0.00
IS11-14	27	8.6	18	92	19			51 12		185	21				20 0.7		.96 0.1		a10-11	21	8.3	18			2.2			07 2.			-	116	8			86 0.14	
IS11-16 IS11-20	31 39	8.8 8.8	18 18	89 92	19 18			59 13 33 12		194 175	21 21	10 1			16 0.7 21 0.7		.02 0.1 .86 0.1	2 0.52	a10-13	25	8.0	18			2.2	21 21		98 2.			8	108 113	8 8		0.61 5. 0.64 4.	04 0.13 96 0.13	
IS11-24	47	8.6	18	92	20			50 12			21					2 1.		2 0.53	a10-15 a10-17	29 33	8.6 8.8	17 18			2.3			01 2. 11 2.				124	8			96 0.13 69 0.13	
IS11-28	55	8.5	17	91	18			59 12		191	20	10 1					.93 0.1		a10-17	37	8.7	18		20	2.2	20		00 2.				110	8			18 0.13	
IS11-32	63	6.8	17	86	20	2	28 !	59 11	9 2.4	207	20	10 1	41 1	0 6	82 0.7	1 2	.16 0.1	1 0.49	a10-21	41	8.1	18	110	20	2.2	24	54 1	07 2.	2 287		9	126	8			86 0.14	
																			a10-23	45	8.1	18		21	2.3			01 2.			-	113	8			90 0.13	
																			a10-25	49 52	8.1	18			2.3 2.3			12 2. 03 2.			_	137 116	10 8				0.57 0.58
																			a10-27 a10-29	53 57	7.9 8.2	14 17						03 2. 07 2.				136	10			03 0.12	
																			2.020	٥,	٠.٠	• • •	00				'										

餌

第1表つづき

sample	cm	ppm														wt%				
no.	depth	As	Pb	Zn	Cu	Мо	Ni	Cr	v	U	Sr	Υ	Nb	Zr	Th	Fe ₂ O ₃	TiO ₂	CaO	P_2O_5	TS
													-							
a13-1	1	8.8	19	131	23	2.2	25	57	117	2.3	218	19	10	139	8	6.38	0.66	2.60	0.17	0.38
a13-3	5	8.2	20	129	22	2.1	24	53	110	2.3	222	19	10	136	9	6.46	0.64	2.66	0.16	0.46
a13-5 a13-7	9 13	8.6 8.3	20 18	121 121	23 23	2.1 2.1	22 22	50 48	107	2.2	294 262	19 19	9 10	128 136	8	6.16 6.13	0.64	3.98	0.17 0.15	0.55 0.45
a13-7	17	7.9	20	127	23	2.1	24	52	111	2.2	246	19	10	135	9	6.32	0.67	3.11	0.15	0.43
a13-11	21	8.2	18	126	21	2.2	22	49	99	2.2	302	18	10	126	9	5.93	0.63	4.25	0.14	0.53
a13-13	25	7.4	18	125	22	2.2	20	48	99	2.0	375	17	9	117	8	5.75	0.66	5.47	0.14	0.61
a13-15	29	8.6	19	131	23	2.2	23	51	106	2.1	318	18	9	124	9	6.15	0.68	4.40	0.14	0.60
a13-17	33	8.5	19	135	22	2.2	23	53	110	2.1	332	18	9	124	9	6.13	0.67	4.54	0.13	0.61
a13-19	37	8.9	18	121	21	2.3	24	48	112	2.2	293	18	9	129	9	6.37	0.67	3.73	0.12	0.64
a13-21	41	8.2	21	140	23	2.2	27	57	111	2.3	235	19	10	136	9	6.54	0.67	2.89	0.13	0.56
a13-23	45	7.1	15	80	16	2.2	22	54	106	2.0	377	18	9	124	8	5.90	0.69	5.40	0.12	0.53
a13-25	49	7.7	16	89	18	2.2	27	58	114	2.4	197	20	9	139	8	6.63	0.68	2.21	0.11	0.50
a13-27	53	6.9	17	92	18	2.2	29	59	118	2.5	162	20	9	133	10	6.68	0.67	1.69	0.11	0.47
a13-29	57	8.0	16	89	17	2.3	30	57	118	2.4	192 188	20 20	9	135	9	6.60	0.68	2.16 2.04	0.11	0.46
a13-31 a13-33	61 65	7.1 6.6	16 16	89 87	15 17	2.3	29 29	59 59	115 117	2.4	213	20	9 10	137 139	7	6.64 6.62	0.66	2.42	0.11 0.11	0.46 0.46
a13-35	69	6.8	15	88	16	2.2	28	58	118	2.4	222	20	9	136	8	6.58	0.68	2.47	0.11	0.43
a13-37	73	7.1	16	93	18	2.3	30	61	114	2.4	205	20	9	138	8	6.74	0.67	2.25	0.10	0.41
41007				•			-	٠.					·		ŭ	0	0.0.	2.20	0.10	0
25-1	1	7.4	20	126	26	2.1	26	50	105	2.3	248	19	9	128	9	6.19	0.64	3.06	0.17	0.41
25-3	5	7.5	20	127	22	2.1	23	51	103	2.3	254	19	9	128	8	6.09	0.62	3.33	0.16	0.51
25-5	9	7.5	19	125	22	2.3	24	56	107	2.2	295	18	9	122	9	5.87	0.62	4.11	0.16	0.55
25-7	13	7.2	17	116	19	2.2	20	46	93	2.1	365	18	9	112	8	5.52	0.60	5.66	0.16	0.61
25-9	17	7.4	18	115	19	2.2	19	49	98	2.1	360	18	9	115	9	5.71	0.63	5.22	0.15	0.60
25-11	22	8.3	17	100	21	2.3	28	56	109	2.4	211	20	10	134	9	6.48	0.64	2.33	0.12	0.48
25-13	30	7.7	17	89	20	2.2	27	54	112	2.4	212	20	10	134	10	6.40	0.66	2.19	0.11	0.41
25-15	38	8.0	16	85	19	2.3	28	53	113	2.4	211	20	9	135	10	6.45	0.68	2.05	0.12	0.41
25-17	46	7.7	16	85	20	2.3	27 28	55 57	109 111	2.4	215 200	20	10	133	9	6.41 6.49	0.68 0.67	2.27	0.11 0.12	0.44 0.45
25-19 25-21	54 62	7.7 8.1	16 16	86 86	18 18	2.3	29	57	118	2.4	200	19 20	9 10	134 134	10	6.54	0.67	2.00	0.12	0.43
25-21	70	8.3	16	86	20	2.3	28	54	117	2.4	212	20	9	133	10	6.62	0.69	2.27	0.12	0.43
25-25	78	8.6	16	87	18	2.3	30	57	111	2.4	198	20	9	134	10	6.69	0.68	2.02	0.12	0.42
25-27	85	8.5	16	85	17	2.4	29	56	119	2.4	198	20	9	135	10	6.70	0.66	2.11	0.11	0.47
20 27	-			•••												•				
23-3	5	6.9	18	123	21	2.1	21	44	95	2.3	311	19	9	119	8	5.59	0.58	4.06	0.17	0.48
23-5	9	7.3	19	116	20	2.2	21	46	94	2.2	362	19	9	115	7	5.54	0.58	5.09	0.16	0.61
23-7	13	6.8	18	114	20	2.2	18	46	92	2.2	377	19	9	110	8	5.47	0.60	5.40	0.16	0.55
23-9	17	6.6	19	110	20	2.1	19	45	92	2.2	392	19	9	112	8	5.37	0.59	5.69	0.16	0.57
23-11	22	7.4	18	114	20	2.1	21	47	93	2.2	362	19	9	114	7	5.56	0.59	5.09	0.16	0.56
23-13	30	6.5	18	102	18	2.2	17	45	94	2.1	427	18	8	108	7	5.31	0.58	6.18	0.15	0.61
23-15	38	7.2	15	77	15	2.2	18	49	103	2.2	382	19	9	112	7	5.59	0.60	4.97	0.13	0.53
23-17	46	7.3	15 15	76 75	16	2.2	22 22	47 48	102 95	2.2	363 370	19	9 8	115	8 8	5.85 5.76	0.62 0.63	4.56 4.84	0.11 0.11	0.54 0.51
23-19	54	7.1	15	/5	18	2.2	22	46	90	2.2	3/0	19	٥	112	٥	5.76	0.63	4.04	0.11	0.51
12-1	1	8.1	22	143	30	2.1	32	60	116	2.4	171	19	10	136	10	6.67	0.70	1.83	0.15	0.62
12-3	5	8.1	22	144	24	2.1	30	61	120	2.4	161	20	9	135	10	6.81	0.72	1.61	0.15	0.58
12-5	9	8.4	21	142	25	2.1	31	60	121	2.4	161	19	10	135	8	6.80	0.69	1.63	0.15	0.58
12-7	13	7.8	22	144	25	2.2	31	64	118	2.4	159	19	10	136	9	6.94	0.71	1.51	0.15	0.52
12-9	17	7.9	22	143	25	2.1	30	60	124	2.4	158	19	10	136	9	6.94	0.73	1.49	0.16	0.51
12-11	22	7.9	23	141	27	2.1	29	61	122	2.4	157	20	10	137	10	6.88	0.69	1.52	0.16	0.49
12-13	30	8.8	22	143	26	2.1	30	62	120	2.4	183	19	10	137	10	6.87	0.72	1.94	0.16	0.56
12-15	38	8.1	21	143	25	2.1	30	58	121	2.4	182	20	10	138	9	6.88	0.68	1.90	0.15	0.49
12-17	46	8.9	21	148	25	2.1	29	58	119	2.3	229	20	10	132	9	6.72	0.69	2.56	0.15	0.50
12-19	54	9.8	20	152	25	2.1	31	61	123	2.4	143	20	10	140	10	7.32	0.73	1.35	0.14	0.50

第2表 諫早湾の潮受け堤防内部および外部の柱状試料(IS 10, IS 11, b 2, b 11, a 10)の TOC (有機炭素), TN (全窒素), CC (炭酸塩炭素), water c, (含水率), TOC/TN.

215 /	, **	atti t	, (=	3 /1 < -	H/, 1	OCHI	١.						
sample	cm	wt%					sample	cm	wt%				
no.	depth	TOC	TN	CC	water c.	TOC/TN	no.	depth	TOC	TN	CC	water c.	TOC/TN
IS10-1	1	1.68	0.21	-	65.9	8.2	b2-1	1	1.84	0.23	•	67.2	7.9
IS10-2	3	1.55	0.20	0.03	69.2	7.8	b2-3	5	1.79	0.21	-	64.9	8.6
IS10-3	5	1.58	0.20	-	66.8	7.8	b2-5	9	1.36	0.19	2.36	59.3	7.0
IS10-4	7	1.55	0.20	-	72.7	7.6	b2-7	13	1.61	0.17	0.41	62.6	9.3
IS10-5	9	1.58	0.21	0.03	73.2	7.5	b2-9	17	1.57	0.18	0.31	61.3	9.0
IS10-6	11	1.53	0.21	0.07	72.8	7.3	b2-11	21	1.71	0.19	0.09	63.8	9.0
IS10-7	13	1.55	0.22	-	72.8	6.9	b2-13	25	1.44	0.18	2.48	74.9	7.9
IS10-8	15	1.59	0.21	0.03	72.9	7.6	b2-15	29	1.46	0.17	0.93	60.7	8.5
IS10-9	17	1.60	0.21	-	73.5	7.6	b2-17	33	1.39	0.17	1.08	76.2	8.2
IS10-10	19	1.40	0.19	-	72.3	7.3	b2-19	37	1.32	0.20	2.08	60.4	6.7
IS10-11	21	1.05	0.19	0.35	71.9	5.5	b2-21	41	1.37	0.20	0.86	60.4	6.8
IS10-12	23	1.37	0.18	-	70.1	7.5	b2-23	45	1.44	0.23	0.01	64.6	6.2
IS10-13	25	1.37	0.18	-	70.2	7.5	b2-25	49	1.23	0.21	0.16	62.3	5.9
IS10-14	27	1.30	0.18	0.43	69.3	7.4	b2-27	53	1.33	0.31	0.73	60.8	4.3
IS10-15	29	1.13	0.16	1.74	67.4	6.9	b2-29	57	1.24	0.19	0.81	61.3	6.6
IS10-17	33	0.68	0.10	2.76	51.3	6.7	b2-31	61	1.17	0.20	1.02	59.8	5.9
IS10-19	37	0.91	0.12	1.21	60.3	7.5	b2-33	65	1.19	0.22	1.42	58.5	5.5
IS10-21	41	1.04	0.14	0.04	65.2	7.7							
IS10-25	49	0.98	0.13		65.7	7.4	b11-1	1	1.96	0.19	0.01	67.6	10.1
IS10-29	57	0.96	0.15	0.03	66.9	6.4	b11-3	5	1.90	0.20	0.03	69.0	9.4
IS10-33	65	1.01	0.12		64.2	8.5	b11-5	9	1.79	0.18	-	68.8	9.9
IS10-37	73	0.94	0.13	0.07	64.2	7.3	b11-7	13	1.74	0.18	-	71.4	9.6
IS10-41	81	0.92	0.11	0.08	64.1	8.1	b11-9	17	1.56	0.17	0.06	68.5	9.3
							b11-11	22	1.44	0.15	0.09	65.6	9.4
IS11-1	1	1.41	0.18	0.02	63.1	8.1	b11-13		1.05	0.11	0.36	61.6	9.2
IS11-2	3	1.57	0.19		65.0	8.4	b11-15		0.97	0.13	0.07	63.0	7.7
IS11-3	5	1.50	0.18	0.03	66.6	8.1	b11-17		0.97	0.14	0.20	61.8	7.1
IS11-4	7	1.43	0.18	0.05	67.1	8.0	b11-19		0.93	0.14	0.46	62.9	6.5
IS11-5	9	1.33	0.17	0.01	65.4	7.9	b11-21	62	0.91	0.13	0.05	59.6	7.2
IS11-6	11	1.21	0.16	0.16	65.9	7.7	b11-23	69	0.95	0.14	0.06	59.1	6.8
IS11-7	13	1.07	0.14	0.27	63.0	7.7							
IS11-8	15	0.96	0.13	0.58	61.3	7.4	a10-1	1	1.86	0.15	0.03	67.6	12.1
IS11-9	17	1.00	0.13	0.10	62.6	7.4	a10-3	5	1.69	0.14	0.06	71.2	11.9
IS11-10	19	1.03	0.13	0.03	61.3	7.8	a10-5	9	1.69	0.14	0.18	69.4	11.8
IS11-12	23	0.96	0.13	0.07	62.8	7.3	a10-7	13	1.38	0.12	0.72	60.3	11.8
IS11-14	27	0.97	0.13	0.27	64.8	7.4	a10-9	17	1.40	0.12	0.95	61.3	11.6
IS11-16	31	0.96	0.13	0.12	57.1	7.5	a10-11	21	1.33	0.12	1.47	58.5	10.8
IS11-20	39	0.96	0.13	0.13	62.8	7.4	a10-13		1.33	0.14	1.33	59.8	9.2
IS11-24	47	0.97	0.12	0.15	62.1	7.9	a10-15	29	1.26	0.15	1.24	59.8	8.6
IS11-28	55	0.98	0.13	0.11	64.0	7.7	a10-17	33	1.26	0.14	1.26	62.5	9.2
IS11-32	63	0.84	0.12	0.18	62.1	7.0	a10-19		1.22	0.13	1.43	58.7	9.4
							a10-21	41	1.24	0.14	0.86	60.6	8.9
							a10-23	45	1.17	0.12	1.82	55.2	9.6
							a10-25	49	1.11	0.12	0.38	63.0	9.6
							a10-27	53	0.97	0:11	1.97	58.6	8.9
							a10-29	57	1.05	0.12	0.09	63.1	9.0

閉切り前後における変化がより明瞭となった. IS 10 では小型で薄殻の貝殻の密集する層の上部が Zn および Pb の急増する層準に相当する. IS 10 では Zn/TiO_2 比が閉切前では 120前後から 200前後へと 1.7 倍に増加していることがわかる. また, Pb/TiO_2 比は 23 から 30 へと 1.3 倍となっている. Zn/TiO_2 比および Pb/TiO_2 比は閉切後に急速に高くなりその後試料採集日までほぼ一定の値を示すのに対して, Cu/TiO_2 比 P_2O_3/TiO_2 比は次第に増加している. コア IS 11 においても同様の傾向を示す. Zn/TiO_2 比は次第に増加している。 コア Zn/TiO_3 比は次第に増加している。 コア Zn/TiO_3 比 Zn/TiO_3 Zn/TiO_3 Zn/TiO_3 Zn/TiO_3 Zn/TiO_3 Zn/TiO_3 Zn/TiO_3 Zn/TiO_3 Z

堤防の外部においてもコア 12 を除いて多くのコアで漸移的に増加する様子がわかる。コア b 11 および a 13 については閉切り前後において急激に変化していることがより明瞭である。従って堤防の外側においても各元素の濃縮率が変化していることは有明海の堆積環境にも堤防の建設が大きく関わっていることを示す。また、b 2 のように 65 cm のコアが閉切り後の堆積物であると推定され、北部水門からの懸濁水の廃水が堆積物の堆積速度を最も速くしていることになる。

TOC および TN

堤防内部については IS 10, IS 11 ともに境界の前後で TOC, TN は著しく増加する. IS 10 では TOC の含有率は下部層では 0.95 wt% (平均値) から上部層 1.48 wt%へと増加する. TN は下部層の 0.13 wt%から上部層の 0.20 wt%へと増加する. TOC/TN 比は下部層, 上部層ともに 8.0 で一定であり, 有機物はプランクトン起源である. IS 11 でも同様の値の変化を示す. すなわち TOC は下部層では 0.97 wt% (平均値) から上部層 1.41 wt%へと増加する. TN は下部層の 0.13 wt%か

ら上部層の 0.17 wt%へと増加する. これらは堤防による閉切りによって停滞した環境が生じたこと, 干潟の生態系の消滅によるものと言える.

謝辞

本研究は長崎大学における諫早湾干拓の研究を基礎として行ったものであり、東 幹夫教授(教育学部)、西ノ首英之教授(水産学部)と共同研究を進めさせていただいたものである。潮受け堤防外側の試料の採集は日本自然保護協会との共同調査の際に採集した。名古屋女子大学の村上哲生助教授、日本自然保護協会の程木義邦博士には調査および研究討論において日頃からお世話になっている。また、XRFの使用に際して澤田順弘教授(島根大学)には便宜をはかっていただいた。CHNSコーダー分析について三瓶良和助教授(島根大学)にはお世話になった。故中山勝博助教授には堆積物について日頃より討論いただいた。記して感謝します。

文 献

有明海研究グループ, 1965, 有明海・不知火海の第四系. 地団研専報, 11, 地学団体研究会.86 p.

東 幹夫, 1999, 諫早干拓事業による水域環境の変貌. 長崎の自然 と文化, **58**, 10-15.

早坂竜児, 2000, 干出した長崎県諫早湾泥干潟で観察された貝類の 多様性. 地質雑, 106, 783-799.

鎌田泰彦・近藤 寛・津留美恵子, 1979, 有明海沿岸の干潟堆積物の予察的研究. 長崎大学教育学部自然科学研究報告, **30**, 75-92.

近藤 寛, 2000, 諫早湾と諫早湾調整池の底質. CNCN ニュースレター, 長崎大学, **9**, 6-7.

佐藤慎一・東 幹夫・近藤 寛・西ノ首英之,2001,有明海諫早湾 干拓地の貝類相ー調整池における貝類相の時間的変化ー.第四紀 研究.40.85-95.

菅野 徹, 1993, 有明海. 東海科学選書, 東海大学出版会, 189 p.

(受付:2001年12月10日, 受理:2001年12月17日)