LAGUNA (汽水域研究) 13, 109~118 頁 (2006 年 6 月) LAGUNA 13, p.109-118 (2006)

汽水域におけるコンパクトサイドスキャンソーナーの記録例

西村清和1・上嶋正人1・徳岡隆夫2・吹田 歩2

Record examples of compact sidescan sonar in the coastal lagoons and estuaries

Kiyokazu Nishimura¹, Masato Joshima¹, Takao Tokuoka² and Ayumi Fukita²

Key words: record example; sidescan sonar; coastal lagoon; estuary; Lake Shinji; Lake Nakaumi; Ohashi River; Teshio River; Agano River

1. はじめに

2002年、汽水域での調査にも使用できるコンパク トサイドスキャンソーナー (SportScan,カナダ Imagenex 社製)を導入し、それに DGPS 受信機、地図 ソフト等を組み合わせてサイドスキャンソーナーの システム化を行い (西村ほか、2004、吹田・西村、 2005、竹内、2004)、中海等で水域実験を行った.ま た、宍道湖・大橋川・中海 (島根県)、天塩川 (北海 道)および阿賀野川 (新潟県) においてサイドスキャ ンソーナーを使用する機会があり、微地形調査を 行った.本報告ではこれらの実験・調査での記録例 を示し、コメントすることとする.図1に使用した サイドスキャンソーナートウフィッシュを示す.ト ウフィッシュには支持棒を取り付け、それをボート の舷側に固定して航走するようになっている.サイ ドスキャンソーナーの仕様概要を表1に示す.

2. コンパクトサイドスキャンソーナーの 評価実験

コンパクトサイドスキャンソーナーの性能評価の 水域実験を中海で行ってきた.最近の実験結果を報 告する. (1) 異なった周波数による画像の比較(2005年4月 9日)

発信周波数の違いによる水底画像の比較を中海弓 ヶ浜工区湖岸で行った.本サイドスキャンソーナー は発信周波数 800 kHz と 330 kHz を備えるが,同時 に 2 周波を使用することはできない.予め測線を設 定し,同一方向(北西-南東方向)に 2 回航走し,比 較記録を得た.図 2 にその画像記録を示す.上図は 発信周波数 800 kHz 指向角 0.7°×30°,下図は発信周 波数 330 kHz 指向角 1.8°×60°の記録である. 左舷側

図1. コンパクトサイドスキャンソーナートウ フィッシュ

Fig. 1. Compact sidescan sonar. Towfish.

¹ 産業技術総合研究所 National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8567, Japan

² 徳岡汽水環境研究所 Tokuoka Laboratory for Studies of Brackish Water Environments, Nishikawatsu 748-86, Matsue 690-0823, Japan

表 1. コンパクトサイドスキャンソーナーの仕様概要 **Table 1.** Basic specification of the compact sidescan sonar.

トウフィッシュ	モールドされたポリウレタン,アルミニウム
バラスト	ダイバーベルト錘
トランスデューサ	2 x 330 kHz ビーム幅 1.8° (水平) x 60° (垂直)
	2 x 800 kHz ビーム幅 0.7° (水平) x 30° (垂直)
探査レンジ (片舷)	15 m, 30 m, 60 m, 90 m, 120 m (周波数 800 kHz では 15 m, 30 m)
最大深度	30 m
通信インターフェース	RS 232 C シリアル (115,200 bps)
ケーブル	23 m 4 線 (電源, テレメトリー)
ソフトウェア	表示・記録用 OS: Windows 95, 98, me,XP
外形寸法	直径 11 cm,長さ 80 cm 空中重量 4.6 kg (錘を除外)
電源	10–16 V (12 V, 0.3 A max)
曳航速度	2–3 kt

の強い反射は湖岸を示す.右舷側にいくつかの物体 の反射が見られるが,発信周波数 800 kHz の画像の 方が鮮明である.また,右舷側水底に細かい砂連状 ものが見られるが,これも発信周波数 800 kHz の方 が鮮明に記録されている.総じて,発信周波数 800 kHz の方が 330 kHz に比べて分解能が良いことがわ かる.しかし,330 kHz の場合,探査レンジが最大 120 m (片舷) に対して,800 kHz の探査レンジは 15 m,30 m (片舷) にしか対応していない.

図 2. 異った周波数による画像の比較. 中海弓ヶ浜工 区護岸沿い. 2005年4月9日, レンジ30m, 利得9dB. **Fig. 2.** Comparison of the images of the different frequencies. Along the lake wall of the Yumigahama koku, Lake Nakaumi (April, 9, 2005, range 30 m, gain 9 dB).

(2) 水中物体の探索実験(2004年9月1日)

水中または水底に存在する物体が,サイドスキャ ンソーナーでどのように画像として映るかは,きわ めて興味深いところである.これらの情報の蓄積に より,水中物体の探索や画像の解釈が,より正確に

図 3. 水中物体の探索実験. プラスチックのかご(下) と係留系(上).

Fig. 3. Search experiment of the submerged object. A plastic cage (lower) and mooring system (upper).

行えるようになる. その一例として、 プラスチック の「かご」を水底に係留し、サイドスキャンソーナー をその周りに周回させ、水中物体を探索する実験を 行った.実験水域は中海(江島南岸,江島港付近)で ある. 箱型の「かご」は 0.62×0.15×0.45 m(高さ×幅 ×奥行) で片端にブロックを取り付け, 高さの部分 が直立するようにした(図3).図4の航跡図に示す ように、「かご」の周りを何回か回り、「かご」に対応 する画像を得た(図5のA~D).「かご」の反射波は 「かご」の周囲の後方散乱強度と同程度の音圧を示 し、「かご」が海底より高くなった量だけ影を形成し ている.影を作っている周囲を詳しく見ると、トウ フィッシュ側から見て、影として白く抜ける手前で 若干, 値が高くなっているのがわかる. 図5のA~D に示すように、「かご」の影の幅または奥行きは、「か ご」とサイドスキャンソーナーの位置関係により変 化している. 画像表示ソフトに付属する [Target Calculation |を用いて、影の長さから「かご |の高さと 幅(奥行)を求めた.図5のAでは、高さ0.7m、幅 (奥行) 0.6 m, B では, 高さ 0.8 m, 幅 (奥行き) 0.4

図 4. 水中物体の探索実験の航跡図 Fig. 4. Surveyed route of the search experiment of the submerged object.

図 5. 水中物体の探索実験の画像表示 2004 年 9 月 1 日, レンジ 15 m, 利得 8 dB, 800 kHz Fig. 5. Image record of the search experiment of the submerged object (Aug., 31, 2004, range 15 m, gain 8 dB, Frequency 800 kHz).

図 6. 湖岸地形と対応するサイドスキャンソーナー画 像記録. 中海弓ヶ浜工区護岸沿い. 2005 年 8 月 31 日, レンジ 30 m, 利得 9 dB, 周波数 330 kHz, 速度 3.2 kt. **Fig. 6.** Image record of the sidescan sonar that corresponds to the topography of shore. Along the lake wall of the Yumigahama koku, Lake Nakaumi (Aug., 31, 2005, range 30 m, gain 9 dB, Frequency 330 kHz, ship speed 3.2 kt).

m, Cでは, 高さ0.7 m, 幅0.2 m, Dでは, 高さ0.7 m, 幅0.1 mと算出された. 図5A, Bは, 高さ×奥行を見込んだ影であり, C, Dは, 高さ×幅を見込んだ影である. これらは妥当な値といえる.

(3) 湖岸地形とサイドスキャンソーナー画像 (2005 年 8 月 31 日)

中海弓ヶ浜工区護岸沿いにおいて,湖岸地形と対応するサイドスキャンソーナー画像を図6に示す. 図6下図のサイドスキャンソーナー画像を図6に示す. 友舷側の白く抜けた部分は陸上を示す.湖岸の水際 (A-B, C-D)には強い反射が認められる.この間は 石垣状になっている所である.また B-Cの間は水没 した棚状の地形で,水際の捨石が画像として表示さ れている.サイドスキャンソーナー画像に対応した 湖岸の写真を図6上図に示す.それぞれの符号 A, B, C, Dが対応する.写真とサイドスキャンソー ナー画像との位置関係が明瞭である.

3. 宍道湖, 大橋川, 中海での探査記録

2005 年 8 月 31 日 宍道湖から大橋川を通り中海 に至る水域において,サイドスキャンソーナーによ る微地形探査を行った(図7).サイドスキャンソー ナーは探査レンジを 30 m,画像濃度調整のための利 得を 9 dB,周波数を 330 kHz とし,測線開始から終 了まで,設定を変えることはなかった.その中で代 表的な記録を図 8 の A (宍道湖),B (大橋川上流), C (大橋川下流),D (中海)に示した.図中の宍道湖 A と中海 D の記録の濃度を比較すると,D が薄いこ

図 7. 宍道湖・大橋川・中海でのサイドスキャンソーナー調査測線 (国土地理院, 1998). **Fig. 7.** Surveyed route of the sidescan sonar at the Lake Shinji, Ohashi River and Lake Nakaumi.

図 8. 宍道湖・大橋川・中海のサイドスキャンソーナー画像記録(2005 年 8 月 31 日, レンジ 30 m, 利得 9 dB, 周 波数 330 kHz).

Fig. 8. Image record of the sidescan sonar in the Lake Shinji, Ohashi River and Lake Nakaumi (Aug., 31, 2005, range 30 m, gain 16 dB, Frequency 330 kHz).

とがわかる.これは散乱強度の違いによるものであ ることから, 宍道湖 A の底質が砂質であるのに対し て, 中海 D の底質が泥質であることが推定され

る.以下,各記録の特徴を述べる.

(1) 宍道湖 (図 8-A)

宍道湖ではしじみ漁が行われ,画像にはしじみ掻 き跡と思われる線条が多数認められる.

(2) 大橋川上流,新大橋付近(図 8-B)

図中1,2は新大橋の各橋脚からの反射を示す.図 の3,4は,各橋脚1,2の二重反射と思われる.左 右に設置されているトランスデューサに片方からサ イドローブなどにより反対側の音を受信してしまう 現象が起き,片舷に大変強い反射ある場合,音響的 なクロストークが生じる.5は左舷側の橋脚1に対 応するクロストークによる偽像である.6には橋脚 から下流に向かって高まりがあり,それによる影7 が記録されていると思われる.8付近には岩石が分 布するように見える.

(3) 大橋川下流 松島付近 (図 8-C)

図中の1はブイを示し,その係留索は線状の影と

して記録されている.この付近の河床は岩盤で,多数の石が存在することは散乱強度が強いことから判断される.

(4) 中海 (図 8-D)

図中の1はブイを示し、その係留索は線状の物体 として記録されている.2,3は,白い影とそれに続く 強い散乱強度の像になっていることから溝を示し、 その大きさは,深さ0.5m,幅1m程度と思われる.

4. 天塩川,パンケ沼での探査記録

2004 年7月7~8日に北海道の天塩川, サロベツ 川,パンケ沼において,塩水溯上の調査を実施した. それに合わせて,サイドスキャンソーナー(周波数 330 kHz)による河床の微地形探査を行った(図9). (1)パンケ沼の弧状の模様

天塩川, サロベツ川, パンケ沼ではしじみ漁が盛んで, 底引きの金網で, しじみ掻きを行っている(図10).図11はサロベツ川近くのパンケ沼の河床画像記録で, 多数の弧状の模様が一面に認められる(図

図 9. 天塩川・パンケ沼の索引図. **Fig. 9.** Index map of the Teshio River and Lake Panke.

9索引図のAに対応).この模様はしじみ漁の底引きの痕跡と推定される.

(2) 天塩川の砂漣

図 12 は天塩川の河口から約 12 km 地点, サロベツ 川出合い近くの河床の画像表示例である(図 9 索引 図の B に対応).河床一面に拡がる砂連が認められ る.30 m レンジ(片舷)で探査を行ったが, 記録の端 部でも散乱波が受信でき, 実用的な記録となってい る.同時に塩水楔音響プロファイリングシステム (航走式, SC-3 型, 周波数 200 kHz, 徳岡ほか, 2005)

図 10. しじみ漁 (天塩川). Fig. 10. Fishing of corbiculas (Teshio River)

図 11. サイドスキャンソーナー画像記録. パンケ沼 A(2004 年 7 月 6 日,レンジ 15 m,利得 9 dB,周波数 330 kHz,速度 3 kt).

Fig. 11. Image record of the sidescan sonar from the Lake Panke A (July, 6, 2004, range 15 m, gain 9 dB, Frequency 330 kHz, ship speed 3 kt).

図 12. サイドスキャンソーナー画像表示(上)と河床地形プロファイル(下). 天塩川 B(2004年7月7日,レンジ30m,利得8dB,周波数330kHz).

Fig. 12. Image record of the sidescan sonar (lower) and profiling record of the riverbed topography (upper) from the Teshio River B (July, 7, 2004, range 30 m, gain 8 dB, Frequency 330 kHz).

図 13. 天塩川における画像マッピング(国土地理院, 2004). 天塩大橋付近 C (2004 年 7 月 6 日, レンジ 30 m, 利得 9 dB, 周波数 330 kHz).

Fig. 13. Image mapping in the Teshio-ohashi Bridge of the Teshio River. (July, 6, 2004, range 30 m, gain 9 dB, Frequency 330 kHz).

を用いて河床地形プロファイルを得た.サイドス キャンソーナーの記録の河床変化に比べ, SC-3型で は記録の縦横比を大きくとっているため,砂連によ る河床地形の凹凸が強調されてわかりやすい.

(3) 天塩大橋付近のマッピング画像

図 13 は, 天塩川の河口から 16~19 km 地点, 天塩 大橋付近の画像記録をモザイクマッピングソフトで 処理し, 地形図に貼り付けたものである(図9索引図 のCに対応). さらに, 天塩大橋付近の画像を拡大し て示した.図 13 の拡大画像において, 画像記録は, 中央の縦断記録 A, 横断記録 B および右岸(北岸)側 の縦断記録 C を合成したものである.これらの画像 記録から川の中心部は散乱強度が強く, 砂礫が分布 し, 一方, 両岸付近は散乱強度が弱く, 泥質である ことが推定される.記録 C において, 左舷側(北側) の岸に沿ってヤマトシジミの漁場として造成された 水深 1 m の棚の張り出しが, また右舷側(南側)では 露岩が続いていることがわかる.

5. 阿賀野川でのサイドスキャンソーナー 探査記録

2005年10月16~17日,阿賀野川 (図14) において,塩水楔音響プロファイリングシステムによる塩

図 14. 阿賀野川の索引図. Fig. 14. Index map of the Agano River.

されている.記録を見る と,船体の半分が船影と して表示され,船首と船 尾が区別できる. 大部分 の船の船首が河口 (NW) 方向を向いている.また 左舷側の岸壁付近(6)に は、直線が3本並んでい るが,対応する写真(図 16-b) から船の船尾の反 射と思われる.また,規 則的な点状の反射が見ら れるが、写真(図 16-b)か ら,係留用のパイプが反 射しているものと思われ る.7,8の薄い線はクロ ストークによる偽像であ る.7は左舷側トランス ジューサが2の岸壁の反 射をとらえたもので,8

図 15. サイドスキャンソーナー画像表示. 阿賀野川, 松浜漁港 A(2005 年 10 月 16 日, レンジ 30 m, 利得 16 dB, 周波数 330 kHz, 速度 3.9 kt).

Fig. 15. Image record of the sidescan sonar from the fishing port Matsuhama of the Agano River A (July, 6, 2004, range 30 m, gain 16 dB, Frequency 330 kHz, ship speed 3 kt).

水溯上調査およびサイドスキャンソーナーによる河 床の微地形調査を行った.ここではいくつかのサイ ドスキャンソーナー(周波数 330 kHz)の記録画像を 示す.

(1) 松浜漁港での画像記録

図 15 は阿賀野川河口域の松浜漁港入り口付近の 画像記録である(図14の索引図のAに対応).図中の 1,2は岸壁による反射を示す.3は突堤による反射 を示し,突堤の周りには石積みと思われる画像が得 られている.対応する写真を示す(図16-a).突堤の 形状が良く一致している.両岸には多数の漁船が係 留されているが,それらが画像記録4,5などに記録 は右舷側トランスジューサが1の岸壁の反射をとら えたものである.クロストークは殆どのサイドス キャンソーナーで発生し,サイドローブの影響を抑 圧しきれないので,防止し難いものとなっている. (2) 阿賀野川の砂漣 その1

図 17 は, 阿賀野川河口より約4km上流での縦断 記録で, 図 14 の索引図のBに対応する. 画像記録に は, その中央部に砂連(直線状カレントリップル)が 見られる. 同時に取得した SC-3 による河床地形記 録にも, 砂連の凹凸が明瞭に記録されている. (3) 阿賀野川の砂連 その 2

図 24, 25 は阿賀野川河口より約 10 km 上流の地点

図 16. 図 15 の画像に対応する周辺の写真 (阿賀野川, 松浜漁港). Fig. 16. Photograph of the surrounding correspond to the image record of Fig. 15 (Fishing port Matsuhama, Agano River).

図 17. サイドスキャンソーナー画像表示(下)と河床地形プロファイル(上). 阿賀野 川 B. 2005 年 10 月 16 日, レンジ 30 m, 利得 16 dB, 周波数 330 kHz, 速度 4 kt. **Fig. 17.** Image record of the sidescan sonar (lower) and profiling record of the riverbed topography (upper) from the Agano River B (Oct., 16, 2005, range 30 m, gain 16 dB, Frequency 330 kHz, ship speed 4 kt).

図 18. サイドスキャンソーナー画像表示. 阿賀野川 C. 2005 年 10 月 17 日, レンジ 30 m, 利得 16 dB, 周波 数 330 kHz, 速度 3 kt.

Fig. 18. Image record of the sidescan sonar from the Agano River C (Oct., 17, 2005, range 30 m, gain 16 dB, Frequency 330 kHz, ship speed 3 kt).

の横断記録で,図 18, 19 の記録は図 14 の索引図の C, D にそれぞれ対応する.C, D の記録は共に砂漣 (舌状カレントリップル)が表示されている.CとD の舌状カレントリップルを比較するとその大きさに 違いがあり,河床中央のCの方が,リップルの波長 が長くなっていることが観察される.

6. おわりに

このコンパクトサイドスキャンソーナーを導入し て以来,汽水域を中心に探査実験を行ってきた. ローコストな機種で,その性能に限界はあるもの

図 19. サイドスキャンソーナー画像表示. 阿賀野川 D (2005 年 10 月 17 日,レンジ 30 m,利得 16 dB,周 波数 330 kHz,速度 3 kt).

Fig. 19. Image record of the sidescan sonar from the Agano River D (Oct., 17, 2005, range 30 m, gain 16 dB, Frequency 330 kHz, ship speed 3 kt).

の,種々の工夫により,調査機器として汽水域の研 究に活用できることが明らかになってきた.これら の記録例が,これから同種のサイドスキャンソー ナーを使用する人への参考になれば幸いである.

謝 辞

探査実験を行うにあたり,島根大学汽水域研究センターには中海分室および船の利用でお世話になった.また松本貞夫氏(島根大学汽水域研究センター) には船の操船でご協力いただいた.安間恵博士(川 崎地質(株)),立石雅昭教授,本多結氏(新潟大学理 学部),竹内倶佳博士(電気通信大学名誉教授),植木 俊明氏((株)海洋先端技術研究所)には,探査実験お よびデータとりまとめに関しお世話になった.以上 の機関と各氏に厚くお礼申し上げる.

参考文献

吹田歩・西村清和 (2005) フリーソフト 「カシミール 3 D」を用いた汽水・沿岸域調査用ナビゲーション

システム,海洋理工学会誌,11,1,81-87.

国土地理院 (1998) 数值地図 25000 (地図画像) 松江, 国土地理院, CD-ROM.

国土地理院 (2004) 数值地図 25000 (地図画像) 稚内,

国土地理院, CD-ROM.

- 西村清和・上嶋正人・徳岡隆夫・上野博芳・吹田 歩・竹内倶佳(2004)汽水域調査のためのローコス ト・コンパクトな音響調査機器(サイドスキャン ソーナー)のシステム化, LAGUNA(汽水域研 究), 11,43-51.
- 竹内倶佳(2004)サイドスキャンソーナーの基礎 1, 海洋理工学会誌, 10, 2, 59-73.
- 徳岡隆夫・吹田 歩・立石雅昭・西村清和・安間 恵・松田滋夫・川澄敏治・関 達雄(2005)音響探 査機(SC-3)と曳航式水質計(TPM CLOROTEC)を 用いた塩水くさび・塩分躍層調査,LAGUNA(汽 水域研究), 12, 81-87.