短報

鹿児島県上甑島浦内湾の現生底生有孔虫群

高田裕行1.入月俊明2.石田 桂3

Living benthic foraminifera from Urauchi Bay, Kamikoshiki-jima Island, Kagoshima Prefecture, southern Japan

Hiroyuki Takata¹, Toshiaki Irizuki² and Katsura Ishida³

Abstract: The distribution of benthic foraminifera in Urauchi Bay was investigated to learn bay foraminiferal occurrence along the eastern part of the East China Sea. *Ammonia* sp. A, *Ammonia beccarii* forma 2, *Pseudorotalia gaimardii compressiuscula*, *Pseudononion japonicum*, *Nouria textulariformis*, *Frusenkoina compactiformis* and *Nummulites ammonides* are common constituents of the living (stained) foraminiferal assemblages in Urauchi Bay. These faunal associations are similar to those of Kagoshima and Tanabe Bays. *Ammonia* sp. A and *A. beccarii* forma 2 occur in the shallows of the inner parts of the bay, whereas *P. gaimardii compressiuscula* is common in the deep part of the middle to the outer parts of the bay.

Key wards: Urauchi Bay, benthic foraminifera, Ammonia spp.

はじめに

鹿児島県薩摩川内市の上甑島の浦内湾は,東シナ 海東部に位置する内湾水域のひとつである.東シナ 海東部は日本海へ向かう黒潮の分枝の影響を受ける 水域である.このような暖流の影響を受けた温暖な 内湾水域に生息する現生底生有孔虫については,鹿 児島湾(Oki,1989)や和歌山県の田辺湾(Chiji and Lopez,1969)などで,検討されている.一方で,東シ ナ海東部の内湾水域における底生有孔虫の研究は, 有明海などの閉鎖性の強い水域の事例が多い(たと えば,Akimoto et al., 2002).浦内湾における底生有 孔虫の産状は,東シナ海東部の開放的な内湾水域に 生息する底生有孔虫の産状を理解するのに,有用と 考えられる.そこで,本論では,1)浦内湾における 底質環境の特徴を有機物の元素分析をもとに検討 し、2)同水域における現生底生有孔虫群の特徴を考 察した結果について、報告する.

調査水域と研究方法

浦内湾は, 鹿児島県上甑島の北西部に位置する Y 字型をした内湾である (図1). 奥行きは約4.5 km で,湾口部の幅は約1.2 km である. 湾の北部に小規 模な河川が流入するものの,大きな流入河川はな い. 湾内の水深は,大半の水域で水深20~25 m 前後 であり,湾口部へ向けて深くなる(水深約45 m). 同 水域における底層水の塩分はおおむね32 psu 前後で あり,底層水の酸素飽和度は70-90% である(Irizuki et al., 2006). 湾内の底質については,大半の地点で 泥~泥質細粒砂からなるが,湾の奥部の底質は,細 れき質の中~粗粒砂(UU-1, 2)や淘汰の悪い中粒砂

¹ Research Center for Coastal Lagoon Environments, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan.

² Department of Geosciences, Interdisciplinary Faculty of Science and Engineering, Shimane University, 1060 Nishikawatsu, Matsue 690-8504, Japan.

³ Department of Geology, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto 390-8621, Japan.

図1. 調査水域の地図と表層堆積物の採取地点(白丸:底生有孔虫と堆積物中の有機物を分析した地 点;黒四角:堆積物中の有機物を分析した地点).

Fig. 1. Map of the study area; showing sampling localities (open circle: samples using foraminiferal and geochemichal analysis; filled square: samples using geochemichal analysis).

(UU-11)からなる.また,湾口部の底質は,淘汰の よい中粒砂(UU-24~26)や粗粒砂(UU-27)からな る.

2004年11月6~7日にかけて野外調査を行い,調 査水域内の30地点より,エクマン・バージ式採泥器 を用いて表層堆積物試料を採取した(図1).これら の表層堆積物の表層約1 cm を,貝形虫・有孔虫分析 用試料として分取し,10%中性緩衝ホルマリンを添 加して保存した.また,有機物の元素分析用試料と して,表層堆積物の表層数 mm を同時に採取し,冷 凍保存した.このほか,湾北部の水深1m未満の浅 い地点(UU-31,32)でも,同様な手順で試料を採取 した.

有機物の元素分析に用いた試料(30 試料)は, 恒温 乾燥器にて約40℃で乾燥させた後, メノウ乳鉢を用 いて粉砕した.再び乾燥させた試料を,目安として 10 mg となるように秤量し,銀製固体用コンテナー に分取した.これらの試料から炭酸塩に含まれる無 機炭素を除去するために,110℃に設定したホット プレート上で,試料に1 mol/1の塩酸を適量滴下し て,反応・乾燥させた.これらを,錫製固体用コン テナーに封入し,分析用試料とした.これらの試料 表 1. 浦内湾表層堆積物の採取水深,全有機炭素量 (TOC)・全窒素量(TN)・全イオウ量(TS),C/N 比,含泥率

Table 1. Water depth and total organic carbon, total nitrogen and total sulfur contents, C/N ratio and mud content of surface sediments of Urauchi Bay

Station	Depth	TOC	TN	TS	C/N rotio	Mud content				
Station	(m)	(%)	(%)	(%)	C/IN Tallo	(%) *				
1	1.8	0.44	0.08	0.05	5.56	9.48				
2	3.7	0.43	0.05	0.07	8.45	9.26				
3	11.0	0.90	0.11	0.10	8.50	37.27				
4	14.1	0.53	0.06	0.12	8.35	23.47				
5	22.0	0.89	0.10	0.05	9.02	61.22				
6	23.7	1.10	0.12	0.14	9.53	78.32				
7	26.5	0.90	0.11	0.09	8.54	87.12				
8	27.3	1.04	0.12	0.06	8.71	95.20				
9	27.7	0.88	0.09	0.14	9.30	93.32				
10	28.1	0.84	0.09	0.12	8.88	84.60				
11	3.9	0.44	0.04	0.09	10.07	9.71				
12	11.4	0.54	0.06	0.09	9.35	25.80				
13	18.7	0.55	0.06	0.07	8.93	44.07				
14	22.8	0.69	0.09	0.13	8.06	59.31				
15	28.8	0.83	0.09	0.12	9.27	76.51				
16	28.3	0.76	0.09	0.12	8.90	75.44				
17	30.6	0.77	0.10	0.06	7.94	71.28				
18	28.2	0.56	0.07	0.13	8.37	43.39				
19	29.0	0.54	0.07	0.06	7.76	46.17				
20	27.9	0.53	0.07	0.10	7.79	38.88				
21	28.0	0.55	0.07	0.13	7.55	-				
22	28.5	0.59	0.08	0.07	7.81	44.66				
23	29.0	0.55	0.07	0.08	7.70	21.32				
24	15.2	0.39	0.05	0.14	7.85	5.22				
25	8.5	0.28	0.04	0.13	6.45	3.14				
26	29.6	0.40	0.05	0.10	7.52	15.41				
27	28.9	0.27	0.05	0.09	5.87	2.42				
28	27.0	0.66	0.07	0.15	8.88	63.61				
29	10.0	0.77	0.09	0.16	8.30	16.99				
30	10.0	0.80	0.09	0.13	9.00	60.58				
32	0.3	0.98	0.10	0.11	10.15	-				

* Irizuki et al. (2006)

を,島根大学汽水域研究センターに設置されている FISON 社製 CHNS 元素分析器 E.A. 1108 を用いて,分 析した.各試料の全有機炭素量・全窒素量・全イオ ウ量を,標準試料として BBOT (2,5-bis-(5-tert-butyl -benzoxanzol-2 yl)-thiophen)を用いることで,定量し た.

有孔虫の検討には, Irizuki et al. (2006)が貝形虫を 解析した試料と同一のものを用いた.これらは,粒 径 63 μm 以上の画分について,ローズベンガル法に よる生体染色が行われたものである.本論で解析し た試料は,図1に示す18 試料である.これらの試料 の検鏡用残査を,簡易試料分割器を用いて適宜分割 し,底生有孔虫の生体(染色)個体を実体顕微鏡下で 拾い出して,同定・計数した.

結果と考察

浦内湾における表層堆積物の全有機炭素量 (TOC)・全窒素量(TN)・全イオウ量(TS),全有機 炭素量と全窒素量の比(C/N比)の分析結果を,表1 に示す.TOCとTNは,湾央~湾奥部で高く,湾口 部へ低くなる傾向がある.それらは含泥率と逆相関 (ともにr=-0.86)を示すことから、本水域における TOC と TN の分布は、有機物の珪質粗粒砕屑物によ る希釈を反映すると考えられる.また、TS は 0.05~ 0.16% と低い値をとる.このような低い TS は、底層 水の溶存酸素レベルが比較的高いことを、反映して いると思われる.C/N 比は 5.56~10.15 にわたり、湾 内の多くの地点で7~9の値を取るが、湾北部の浅所 (UU-11,32)では 10 以上と高い.一般に、プランク トン起源と陸上高等植物起源の有機物の C/N 比 は、それぞれ 6 前後、15 以上とされている(たとえ ば、Müller、1977;中井ほか、1982).そのため、浦内 湾の底質中の有機物は、プランクトン起源のものが 主体と考えられるが、湾北部では小規模な河川の流 入によって、陸起源有機物の寄与が若干高くなって いると思われる.

底生有孔虫は,検討した18試料すべてで,生体(染 色) 個体の産出が認められたが, 産出個体数が100 個に満たない地点が多い(表 2).底生有孔虫優占種 の種構成は、水域によって異なり、湾奥部(UU-3,11) および湾内の支湾 (UU-26) では, Ammonia beccarii (Linné) forma 2, Ammonia sp. A, Nauria textulariformis Hada, Pseudononion japonicum Asano が多産する. な お,湾内の北部と東部で,種構成の相違は、とくに 認められなかった.また,湾口部(UU-30)では Nummulites ammonoides (Gronovius) が卓越する. それ 以外の地点では P. japonicum, Pseudorotalia gaimardii compressiuscula (Brady), N. textulariformis, Fursenkoina compactiformis (McCulloch) が多産し、地点によって Lagenammina sp. A, Eratidus? sp. A が随伴する. これ らの種の大部分は、鹿児島湾 (Oki, 1989) や田辺湾 (和歌山県) (Chiji and Lopez, 1969) からも, 見いだ される種である.これらの種は、鹿児島湾では優占 種となってないが、その理由としては、Oki (1989) が鹿児島湾の調査で対象とした深度(水深 23~225 m) が、本研究のもの(水深 1.8~29.6 m) と比べて全 般的に深いことによると考えられる.一方,他の内 湾水域の研究事例と比較すると, 有機物に富んだ底 質環境を特徴づける Ammonia beccarii (Linné) forma 1 や Trochammina hadai Uchio の産出に乏しく, 開放 的な沿岸の浅海帯にも多い種である P. gaimardii compressiuscula や P. japonicum が 多い (Matoba, 1970;秋元・長谷川, 1989). こうした特徴は, 浦内 湾に,水の密度成層や栄養塩の運搬による生物生産 を促す大きな流入河川がないことに加え,湾内の水 の溶存酸素レベルが高いことから、底質における有 機物負荷が低いためと考えられる.

日本の内湾水域で普遍的な4種の平面分布と深度 分布を,図2に示す. Ammonia sp. A と A. beccarii forma2は湾の北部・東部の浅部で多い傾向がある. それに対して, P. gaimardii compressiuscula は, 水深 20 m 以深の地点のみ産出する. P. japonicum は湾奥 部と湾央部の一部で多産するが,とくに明瞭な深度 分布は示さない. 以上のように, Ammonia spp. は他 の種と比べて、その多産が湾奥部の浅い深度に限ら れている.よって、これらの種は、湾奥部での生活 を好むものと考えられる. Chiji and Lopez (1969) は 田辺湾での現生底生有孔虫の検討から, Ammonia beccarii tepida (Cushman) (本論の Ammonia sp. A に相 当すると思われる)を,温暖な内湾水域に特徴的な 種とみなしている.一方で,彼らは本種が底層水の 塩素量 19.11‰(塩分にして 34.52 psu に相当)を下回 る地点で多いことを,示唆している.しかし,今回 の検討で, Ammonia sp. A や A. beccarii forma 2 の産 状と塩分との間に明瞭な関係は、認められなかっ た.また、一般に沿岸潟湖や内湾域で底生有孔虫の 分布に影響を及ぼす表層堆積物の含泥率(粒度組成) や TOC · TS, C/N 比(有機物の由来)との関連も, 認 められなかった. 今回, 比較に用いた水質・底質の 観測結果は,調査時のものに限られている.そのた め, 浦内湾の底生有孔虫の産状について, 他の季節 の水質・底質の観測結果と比較して、さらなる検討 を行うことは、今後の課題である.

謝 辞

島根大学総合理工学部地球資源環境学科の三瓶良 和教授には,有機物の元素分析に多大なご協力をい ただいた.海洋研究開発機構 地球内部変動研究セ ンターの坂井三郎博士には,大型有孔虫の同定につ いてご教示いただいた.なお,本研究では日本学術 振興会 科学研究費補助金 基盤研究(C)「九州か ら琉球弧の古地理の変遷に関連した貝形虫(甲殻類) の進化古生物学的研究」(研究代表者 入月俊明, 課題番号 15540451),および基盤研究(C)「新生代 後期の対馬・朝鮮海峡の開閉に伴う貝形虫の分散・ 消滅・進化に関する研究」(研究代表者 入月俊明, 課題番号 17540442)の一部を用いた.以上の方々 に,心よりあつくお礼申し上げます.

引用文献

秋元和實・長谷川四郎(1989)日本近海における現生

表 2.	浦内湾よ	り産出し	た底生有	F孔虫生体	(染色)	個体の)産出表	
Table 2. O	ccurrence c	of living	(stained)	benthic for	aminife	a from	Urauchi	Bay

	2	3	4	5	6	7	8	9	11	12	13	14	15	17	19	21	26	30
Ammonia beccarii (Linné) forma 1	2																	
Ammonia beccarii (Linné) forma 2	2	7		1		4		1	8		4	1	1					
Ammonia japonica Hada				1		6	4				1	3	3		3	5		
Ammonia sp. A	4	15	11		1	7		6	21	4	3			1		1	3	13
Amphistegina radiata (Fichtel and Moll)				1	1												1	
Bolivina cf. gultinata Egger															1	7		
Bolivina robusta Brady	1	9	3	1	1	8	6			5	3	4	4	2	1		1	2
Bolivina semicostata Cushman						1				1				2	3	1	2	
<i>Bolivina</i> sp. A		1												1				
Bolivina sp. B		1																
Bolivina sp. C			1															
Bolivina sp. indet.				1		1			3	2					1		1	
Brizalina canvallaria (Millett)							1		1	2						1		
Brizalina pacifica (Cushman and MuCulloch)						1						1						
Brizalina seminuda (Cushman)		4	3	7	2	9			1	5	2	1	4	2	3		2	2
Brizalina striatula (Cushman)		4	-	6	_	7	7	12		-	-		3	2	2	6	-	-
Bulimina marginata d'Orbigny	4	4	2	8	6	6		.=	8	1		2	5	1	-	1		3
Buliminella elegantissima (d'Orbigny)	2	·	-	Ū	0				0			-	0					0
Capcris auriculus (Eichtel and Moll)	-	2	1	14	8	Δ	10	3			1	1		5	3			
Cassidulina sn		2	'	1	0	1	10	5	1			i		5	1			
Cellanthus claticulatus (Eichtel and Moll)		1	1	'						1					'		2	
Cibicides Johatulus (Walker and Jacob)		1	'	1						'							2	
Cibicidaidas subdanrassus Asano			1	'														
Cuclogura planorhic (Schultzo)		4							n								1	
Elphidium advonum (Cushman)		4							2				1			1	1	
Elphidium crispum (Lippó)		c											1			I		
Elphidium ionsoni (Cushman)		2	1															
Elphidium kusiroonso Asano			1						1									
Elphidium ratioulocum Cushman									1	1	1		1					
									4	I	1		1					
Elphidium cp. A									0									
Elphidium sp. A		n		1					1							n		
Eiphidium sp. muei.		12		1 E	n	15	2	0		4		7	2	1	1	2		
Elalluus ? Sp. A		15		5	2	10	3	0	1	0		/	3 1	1	I	0	1	
Fissunna spp.		4		7		14		F	1	2	2	,	0	2	1	1	I	1
		4	4	/	0	14		5	2	3	2	6	8	3	1	I		1
Glabratella sp. A			I		1				2					1				
Glabratella Sp. B						1								I				
Giodocassiduina sp.						I										2		
Guillina spp.		0	4													2		
<i>Gyrolainolaes</i> sp. A		2	1	1			I								4	I		
<i>Gyrolainolaes</i> sp. indet.			3	3	4	4		4	I	4		I	I		I	2		I
Hanzawaia nipponica Asano			2		I					I	1			1				
Hapiophragmoides sp.			2															
Hyalinea balthica (Schrotor)			1															
Lagena spp.		1					1											
Lagenammina sp. A		13		3	11	5			3	11	5	1	2	2		2	2	
Loxostomina limbatum (Brady)				3		3	2				1				3	4		
Massilina inaequaris Cushman																	1	
Miliolinella sp. A	5		1			2												
Miliolinella sp. B									1									
Nonionella stella Cushman and Moyer		1				5	1		1			1	1	1				
Nouria textulariformis Hada	1	1	5	83	53	51	31	21		14	22	10	68	39	14	23	1	6
Nouria sp. A	1	1	4	2							2		1	2				

底生有孔虫の深度分布一古水深尺度の確立に向けて一.地質学論集, 32: 229-240.

- Akimoto, K., Matsui, C., Shimokawa, A. and Furukawa, K. (2002) Atlas of Holocene benthic foraminifers of Shimabara Bay, Kyushu, Southwest Japan. The Kagoshima University Museum Monographs, 2: 1– 111.
- Chiji, M. and Lopez, S. M. (1969) Regional foraminiferal assemblages in Tanabe Bay, Kii Peninsula, Central Japan. Publication of the Seto Marine Biological Laboratory, 16: 85–125.
- Irizuki, T., Takata, H. and Ishida, K. (2006) Recent Ostracoda from Urauchi Bay, Kamikoshiki-jima Island, Kagoshima Prefecture, southwestern Japan.

	2	3	4	5	6	7	8	9	11	12	13	14	15	17	19	21	26	30
Nummulites ammonoides (Gronovius)				1						7						3	71	
Patellina corrugata Williamson							1											
Planocassidulina sp.						1									1			
Planorbulina medditaranensis																1		
Pseudononion japonicum Asano	2	12	15	23	7	24	23	8	17	19	3	6	3	4	17	18		31
Pseudononion sp. A		3				6			4	1								
Pseudoparrella naraensis Kuwano		1			1								3					
Pseudoparrella tamana Kuwano		1					1			1	2		1		1	1		1
Pseudorotalia gaimardii compressiuscula (Brady)				8	18	8	10	4				4	7	4	18		1	
<i>Pyrgo</i> sp. A																	1	
Pyrgo sp. B																	1	
Quinqueloculina akneriana d'Orbigny									1									
Quinqueloculina arenata Said									5	1								
Quinqueloculina elongata Natland		2	2			3	3				1			1				2
Quinqueloculina lamarkiana d'Orbigny				1			1											
Quinqueloculina seminulum (Linné)								2										
Quinqueloculina sp. A		2				4												
Quinqueloculina sp. B	2														1			
Quinqueloculina sp. indet.												1						1
Rectobolivina raphana (Paker and Jones)															2			
Rectobolivina? sp.									1									
Reophax scorupius Monfort					1		1	1					2		1	2	2	
Reophax sp. A						3							1			1		
Reophax sp. B						4												
Reophax sp. C		2							3	2								1
Reophax sp. indet.								1			2		1					
Reusella aculeata Cushman									1							1		
Reusella pacifica Cushman and McCulloch				1													1	
Rosalina sp. indet.		2				2				1				1				
Spilocuilina communis Cushman and Todd		1		1		_				2								
Spilocuilina laevigata Cushman and Todd		2																
Spiroplectammina sp. A	4																	
Spiroplectammina sp. indet.		1																
Spiroplectinella saikaidensis Akimoto			2			1				1								
Stilostomella sp.			1								1							
Textularia sp. A					1													
Textularia sp. B	1																	
Textularia sp. C					1													
Textularia sp. D									6									
Textularia sp. E																	1	
Textularia sp. indet.			2						3	1								
Trochammina pacifica Cushman									3									
Uvigerinella glabra (Millett)	1	1			1	4	2		3	2	1							1
Uvigreina vadescens Cushman			2			2					1	2						
Valvulineria hamanakoensis (Ishiwada)			1										1					
Agg. For am. gen. et sp. indet.									4		1			1				
Calc. Porcelaneous Foram. den. et sp. indet	1	7	3	3	3	2			4	4		4			2			
Calc. Hyaline Foram. gen. et sp. indet.		1	-	-	-	3	3			1	2		2		-	2		
Total	11	38	28	38	33	67	45	16	55	43	14	17	21	11	43	29	78	37
Sample weight (g)	11.66	2.10	7.35	6.48	7.15	6.09	8.21	7.88	5.37	5.96	6.61	5.00	5.42	4.69	6.47	-	6.58	6.79

表 2. 続き Table 2. continued

LAGUNA, 13: 13-28.

- Matoba, Y. (1970) Distribution of recent shallow water foraminifera of Matsushima Bay, Miyagi Prefecture, Northeast Japan. Science Reports of Tohoku University, ser. 2, Geology, 42: 4–85.
- Müller, P. J. (1977) C/N ratio in Pacific deep-sea sediments; Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochemica et Cosmochemica acta, 41: 765–776.
- 中井信之・太田友子・藤澤寛・吉田正夫(1982)堆積 物コアの炭素同位体比・C/N比およびFeS2含有量 からみた名古屋港周辺の古気候,海水準変動.第 四紀研究, 21:169-177.
- Oki, K. (1989) Ecological analysis of benthonic foraminifera in Kagoshima Bay, South Kyushu, Japan. South Pacific Study, 10: 1–191.

図 2. 底生有孔虫 4 種の生体 (染色) 個体の平面・深度分布. UU-21 のみは, 堆積物試料の乾燥重量 が未計測なため, 産出/無産出を平面分布の図 (a, c, e, g) にそれぞれ黒三角と点で示す.

Fig. 2. Geographic and vertical distribution of living (stained) abundance per unit weight of four foraminiferal species. Presence or absence of these species at station UU-21 was shown by filled triangle or dot in diagrams (a, c, e and g), respectively, because dry sample weight at this station was not measured.

⁽a, b) Ammonia beccarii forma 2, (c, d) Ammonia sp. A, (e, f) Pseudorotalia gaimardii compressiuscula and (g, h) Pseudononion japonicum.

図版 1. 浦内湾より産出した底生有孔虫の走査型電子顕微鏡写真.

Plate 1. Scanning electron micrographs of benthic foraminifera from Urauchi Bay. Scale bars = 100μ m.

- 1 a, b. Nouria textulariformis Hada
- 2 a, b. Lagenammina sp. A
- 3 a-c. Eratidus? sp. A
- 4 a, b. Brizalina striatula (Cushman)
- 5 a, b. Bulimina marginata d'Orbigny
- 6 a-c. Fursenkoina compactiformis (McCulloch)
- 7 a–c. Ammonia beccarii (Linné) forma 2

図版 2. 浦内湾より産出した底生有孔虫の走査型電子顕微鏡写真.

Plate 2. Scanning electron micrographs of benthic foraminifera from Urauchi Bay. Scale bars = 100μ m.

- 1 a-c. Ammonia sp. A
- 2 a–c. Pseudorotalia gaimardii compressiuscula (Brady)
- 3 а-с. Pseudononion japonicum Asano
- 4 a–c. Pseudononion sp. A
- 5 a-c. Nummulites ammonoides (Gronovius)