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Fine properties of Royden boundary of an infinite network are discussed in this paper. In 

parucular, we study the problem whether every one-point set of the Royden boundary is a 

G~set or not. 

S1. Introductiom 

The concept of Royden boundary is one of the most important notions in the theory 

of Riemann surfaces. In order to obtain a fine theory of the ideal boundary of an infinite 

network, we studied in [1] and [6] discrete analogues of Royden boundary F= F(P) and 

harmonic boundary Fh = F(P) of an infinite network N= {X, Y, K, r} of order p > 1. Our 

aim is to study the discrete analogue to the fact in [3] that a point x of the Royden 

compactification of a Riemannian manifold is a Royden boundary point if and only if the 

set {x} is not a G~-set. 

We shall show in S2 that if x is a Royden boundary point and not a Royden harmonic 

boundary point, i.e., xeF-Fh, then the set {x} is not a G6-set. This result was proved in 

[1] in case p = 2. In contrast with the continuous case, we can not assure that the set {x} 

is not a G6-set for xeFh (cf. [3; Chap. 111, Theorem 2D]). Our proof in S3 shows a 

difference between the continuous case and the discrete case. Some supplementary 

remarks will be given in S4･ We shall give an example which shows that F=Fh is a 

singleton and a G6-set. It should be noted that the closure of F-rh in the Royden 

compactification is equal to F in the continuous case (cf. [3; Chap. 111, Theorem 2E]). In 

S5, we shall study the Royden boundary of a network defined by a binary tree. For this 

network, there exists xeFh Such that the set {x} is not a G6-set 

We shall freely use the notation in [2], [5] and [6] 

S2. ~&oydem boumdary 

Let L (X) be the set of all real functions on X and Lo (X) be the set of all ueL (X) with 

finite support. For ueL(X), its discrete derivative dueL(Y) and its discrete Dirichlet 

integral Dp(u) of order p (1 
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du(y) = - r(y) ~ 1~.~x K(x, y)u(x) , 

Dp(u) = ~y=Y r(y)Id u(y)l P. 

Denote by D(P)(N) the set of all ueL(X) with finite Dirichlet integral of order p. It is 

easily seen that D(P)(N) is a reflexive Banach space with the norm llullp=[Dp(u) 

+ Iu(b)lP]i/P (beX). Let D(P)(N) be the closure of Lo(X) in D(P)(N) with respect to this 

norm. We call an element of D(P) (N) a Dirichlet potential of order p. Denote by 

BD(P) (N) and BD(P) (N) the subsets of D(P)(N) and D(P) (N) which consist of bounded 

functions respectively 

By a compactification of X which is a locally compact Hausdorff space with respect 

to the discrete topology, we mean a compact Hausdorff space X* containing X as a dense 

open subset. There is a umque (up to a homeomorphism) compactification X* ofXsuch 

that every feBD(P)(N) can be continuously extended to X* and the class of extended 

functions separates points of X* - X. This compactification is called the Royden p-

compactification of N and F and F= F(P) = X* - X is called the p-Royden boundary of 

N. The extension of feBD(P) (N) to X* is denoted by f again 

Next, we define the Royden p-harmonic boundary Fh Of N by 

F r(p) = {xeF; f (x) = O for all feBD(P)(N)} 

Note that Fh is a compact subset of F 

We proved in [4] that N is of parabolic type of order p if and only if I eD(P)(N). 

Thus we have 

THEOREM 2. I . An infinite network N is ofparabolic type oforder p tfand only tfFh 

= ip. 

Since {x} is a Ga~set for every xeX, we have 

THEORREM 2.2 IfxeX* and {x} is not a G6-set, then xeF 

We shall discuss the converse of this fact. We shall prove 

THEOREM 2.3. For any QceF-Fh, the set {Qc} is not a G8-set in X* 

In contrast with the continuous case, we can not assure that {oc} is not a G6-set for 

every cceF (cf. [3; Chap. 111, Theorem 2D]) 

S3･ Proof of Theorem 2.3 

For a subset B of X, Iet us define Y(B) and X(B) by 

(3.1) Y (B) = {ye Y; eO/)n B ~ c} , 

(3.2) X(B) = U{eO/); ye Y(B)} . 
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For the proof of Theorem 2.3, we need some lemmas 

We proved in [6] 

LEMMA 3.1. For a closed subset F ofX* such that Fnrh = lp, there existsfeBD(P) (N) 

such that f= I on F and O~

LEMMA 3.2. Let {ti~} be a sequence in D(oP)(N) which converges pointwise to 

ueL(X). If {Dp(u~)} is bounded, then ueD(oP)(N). 

We shall prove 

LEMMA 3.3. LetueBD(oP) (N) andAbe afinite subset ofX. For any 8 > O, there exists 

feLo(X) such that f= u on A, sup Ifi -

PRooF. Since ueBD(oP)(N), there exists a sequence {f~} in Lo (X) such that 

suplf~1 

0 as nH'co. Define u~ by u~(x)=u(x) on A and u.(x) =f~(x) on X-A. Then u~eLo(X). It suffices to show that Dp(u-u~)->0 as n 
->Qo. Since f*(x)->u(x) as n->co for each xeX, d(u-u*)Cv)->0 as n->00 for each 

yeY. We have 

D (u u~)

Smce Y (A ) is a finite set, we see that 

~y~Y(A)rCy)Id(u-u.)O/)IP->0 as n->00 

and hence Dp(u- u~)->0 as n~'oo. 

LEMMA 3.4. Let ueBD(oP)(N) and { V~} be a sequence ofinfinite subsets ofX. Then 

there exist a function ep eBD(OP) (N) and two sequences {a~} and {b~} of nodes satisfying the 

following conditions ' 

(3.1) b eV2~' m=1 2 ... a...eV2~_1' ~ ' ' ' 

(3.2) a~~a~ and b~~b~ for m~n, 
(3.3) q)(a~)=0 and ep(b~)=u(b~) for all m. 

PRooF. First, choose any xleVl and set A1={xl}' By Lemma 3.3, there is 
fleLo(X) such that fl(xl)=u(xl)' suplfll -

X(Sfl )UAl' where Sf= {xeX; f(x)~0} for feL(X). Since B1 is a finite set, we can 

choose x2eV2 -B1' Set A2=X(B1)U{x2}' By Lemma 3.3 again, there is f2eLo(X) 
such thatf2 = u on A2' suplf21 ~

we can find sequences {x~} in X and { f~} in Lo (X) which satisfy the following conditions 

x~e V~ -B~_ 1' where Bo = ip and B~ = X(Sf.)UA~, 

f~=u on A~=X(B~_1)U{x~}, 
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suplfnl ¥

n=1, 2,.... Note that each B is a finite set X(B 1)CBn' 

=u(xn)' n=1 2,.... n , n-' Now we define xn eBn ~ B n-1 andfn(xn) 

an d 

am ::= X2m- 1 and bm :=: x2m' m ::= 1, 2, . 

~9k(x) = u(x) -f 
2,n-1(x) if xeB2m-l~B2m-2 (m=1, 2,..., 

q)k(x) =f2m(x) if xeB2m ~ B2m i ( k), 
- m= 1, 2, ..., k), 

epk(x)=0 if xeX-B2k' 
for k= 1, 2, . . . . 

{q'k} conv Then q9ke Lo (X), epk(am) = O 
(3.2). erges to a function ~9 satisfying (3.3)and epk(bm) = u(bm) for m = 1 2 

In order to show that epeBD(P)(N), ' Obviously, {am} and {bm}'sa'tisfyk(~.1)Tahnuds 

we evaluate Dp(q'k). Let 

Y {yeY eO/)CBn~Bn-l}' 

n= l, 2 Y~ = {ye Y; eCv)nBn~ c, ee/)~Bn}' 
,"'. SinceB n+ I :) X(Bn)' we see that 

so that U~k i (Y U Yn')= Y(B2k), 

Dp(epk) =:~n2k I {~yern rcv)!depkOl)1 P +~yeYhrol)1 depkCV)iP} 

If ye Y2m-i' m¥

1 depkCy)1 p := I d(u -f2m - I ) Cv)1 p. 

IfyeY 2m9 m¥

Tf I depkCy)1 p =: I df2mOl)iP ¥

::21;o~(f;~iaC1:B:jk (ii;dh ;:;:X)({Bz:~!j; +~i eBHeannc~ ~2n (~z f)ni_ Iheann; ~ ~f: (!:~r' ;;~e_);wi;: 

n Is even' and epk(zj):=u(zj)' j=:1' 2, if n is 

Dp(epk) ¥

+ 2p- 1~yeY2mrcv) {1 duol)!P + I d(u-f2m)()1)!P}] 

¥
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for all k. Hence, by Lemma 3.2, we see that ep eBD(P) (N), and the lemma is proved 

PROOF OF THEOREM 2.3. Suppose that {oc} is a G~~set. Then there exists a sequence 

{U~} of open neighborhoods of oc in X* such that Cl(U.+1)cU. and n""= I U~ 
= {o(}. Since oceF-Fh, there exists ueBD(oP)(N) such that u(cc)= I and O 

Lemma 3.1. Set 

V~={xeU~nX, u(x)>1/2}, n=1 2 

Then each V~ is an infinite~set. Hence, by Lemma 3.4, there exist a function q) eBD(oP)(N) 

and two sequences {a~} and {b~} of nodes such that a~ e U2~_ 1' b~e U2~ and O = q) (a~) 

0c and b~ 

->0c. Therefore {oc} is not a G~-set. 

S4. Supplernentary rernarks 

By Theorems 2.1 and 2.3, we have 

THEOREM 4.1. Assume that Nis ofparabolic type oforderp. Then oceFtfandonly tf 

the one-point set {oc} is not a G6-set. 

As a criterion for a singleton to be a G6-set, we have 

THEOREM 4.2. Let c(erh. The singleton {oc} is a G~-set tf and only tf there exists 

veBD(P)(N) such that O _

PROOF. The "if" part is clear, since veBD(P)(N) is continuous on X*. To prove the 

"only if" part let { U } be a sequence of open sets m X such that n""= I U~ = {oc} and put F. 

= X* - U~. Then F~ is compact and oc~F~. There exists u~eBD(P) (N) such that u~(oe) 

1 u (x) O on F and O~
veBD(P)(N), v(oc)= I and O 

For an infinite path P, denote by e(P) the intersection of the Royden boundary and 

the closure of Cx(P). 

THEOREM 4.3. LetPbe an infinitepath. If~y=cY(P)rO/)

and e(P) c Fh. 

PROOF. Assume that ~y=cY(P)rOl)
(ueBD(P)(N)) has a limit as x tends to the ideal boundary along P, so that e(P) is a 

singleton. By Theorem 3.2 in [2], every v(x) (veBD(oP) (N)) has a limit O as x tends to the 

ideal boundary along P, so that e(P)c rh 
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COROLLARY. If e (P) contains more than two points, then 

(4. 1) ~y=cY(P) rO/) = oo. 
Now we remark that {oc} may be a G8-set for Qcerh. This is shown by the following 

example 

EXAMPLE 4. 1. Let us consider the infinite graph G = {X, Y, K} shown as in the 

following figure, where X= {x~; n = O, 1, 2, . . . } and Y= {y~; n = 1, 2, ･ . . } 

yl y~ y~ + 1 
y3 O-Oi~>'v2 o_~~ O-O- O-O-O-
~ *~ + l 

Here K(x~, y~) I and K(x 1' y~) I for every posrtrve mteger n and K(x,y) = O for 

any other pair. Let reL ( Y)be strictly positive and ~y=YrOl)

an infinite network which is of hyperbolic type of orderp. We see by Theorem 4.3 that F 

ns a singleton {oc} and F=Fh. Let us consider the function u defined by u(x~) 

=~k=1rCvk)･ Then duCy~)=-1 and Dp(u)=~y=Yr(y). Put U.={xeX; u(x)> 
u(x~ I )}U{oc} Then U rs an open set m X and n~ I U = {cc}. Namely {oc} is a G6-set. 

EXAMPLE 4.2. Let {X, Y, K} be the same graph as in Example 4.1 and let rO/)= I on 

Y. Smce N rs of parabolic type of order p, rh = ip by Theorem 2.1. We show that F 

contams uncountable points. In fact, consider a function f on X defined by 

f(x ) 2 ~t for k 2~+1+t 2 (t=0, 1,...,2~), 

f(xk)=1-2-~t for k=2m+1+2~+t 2 (t 1 2,･･･,2~), 

where m=0, 1, 2, ･. ･ ･ Then we have 

D (f)=~k"= o If (xk)-f (xk+1)lP 

= 2~~= 0~t2--"I (2 ~ ~)P = 2~~= 02 ~ ~(P ~ 1) 

ThenfeBD(P) (N). Note that the closure off(X) in the real line is equal to the interval [O, 

l], and hence f(X* ) = [O, I J by the continuity offon X*. Sincef(X) is a countable set 

and f(F) Df(X* ) -f(X), f(F) is an uncountable set. Thus F contains uncountable 

pomts 

S5. Royden boundary of a tree 

We shall study the Royden bouundary of a tree. A binary tree stemmed from x(o) is 

defined as the graph {X, Y, K}, where 

X {x(nk)'n O I ･･,2k-1,k=0, 1,2,･･･}, 

Y={y(k+1). n O 1 2 2k+1_ 1, k=0, 1, 2,･･･}, 
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(k) (k+1) K(x(nk)'y(2k+1))=K(xn 'y2~+1)=~1 for n O 1 2 1 

K(x(k+1),y(k+1))=1 for n=0, 1,...,2k+1_1, 

(k O 1,2, ...)and K(x, y)=0for any other pair. Take rOl)=1 on Y. Then N={X, Y 

K, r} is an infinite network. It was shown in [4] that Nis ofhyperbolic type of any order 

p > 1. For each k, we define a finite family of subnetworks {N!nk); n = O, 1, 2, . . ･ , 2k - I } 

(N:~k) = 

 ) by 

X!k) U~ k{x("t), m 2t kn 2t kn+1 2t kn+2t~k-l}, 

Y"(k) = {ye Y; eO/) c Xi.k)} . 

We may call the subgraph {X!k) Y(k) K} the binary tree stemmed from x(k) 

Denote by P.,* (N) the set of all paths P = {Cx (P), CY (P), p} from node a to the ideal 

boundary of N such that Cx(P) and CY(P) are contained in the binary tree from a. We 

call an element of the union P* of the set {P.,*(N); aeX} an infinite path 

PROPOSITION 5.1. For every infinite path P, e(P) contains uncountable points 

PRooF. Without any loss ofgenerality, we may assume that a = x(o) and PeP.,*(N) 

with Cx(P)= {x(ok); k=0, 1, 2, ･ ･ ･ } and CY(P)= {y(ok); k= 1, 2, ･ ･ ･ }. Then this path P is 

identified with the network considered in Example 4.2. Letfbe the function defined in 

Example 4.2 with x(k) = xk and extend f to a function u on X by 

u(x)=f(x(k)) on Xik) for n 1 2 2 1 and k 1 2 

Then we see easily that ueBD(P)(N) and u(Cx(P))=f(Cx(P)). Since u(e(P))=f(e(P)) 

contalns uncountable points by Example 4.2, e(P) contains uncountable points 

Let us consider the following e~tremum problem 

(5.1) Minimize Dp(u; N(~k)) subject to ueD(P)(N!~k)) and u(x(k)) = 1, 

where Dp(u; Ni~k)) = ~y~Y~k) IduO/) IP and D(oP) (Nl~k)) is defined similarly to D(oP) (N) replacing 

N. I{)(X) and Dp(u) by N!~k). Lo(X!~k)) and Dp(u; N!~k)). 

Denote by do (x("k), oo ; N!~k)) the value of problem (5.1). By the similarity of N=N{oO) 

and N(~k), we see that 

d (x(~k), oo N!k)) do(x(oO), oo ; IV{oO)) with N=N;oo). 

We proved in Example 5.2 in [4] that do (x(oo), co ; N) > O. Thus we have 

LEMMA 5.1. All the values ofproblems (5.1)for n andk (n =0, 1,･･･, 2k-1; k O, 1, 

2, ･ ･ ･ ) are equa/ to a positive constant. 

Now we shall prove 
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PROPOSITION 5.2. Let ueBD(P) (N). For every infinitepath P, u(x)has a limit O as x 

tends to the ideal boundary along P. 

PROOF. Without any loss of generality, we may assume that Cx(P)= {x(ok); k = O, 1, 

2, . . . }. Suppose that limsup~+*lu(x(o"))1 = p ~ O. There exists a subsequence {b~} of 

{x(ok)} such that lu(b~)1 > p - 1/m for every m. Denote by a~ the node x(1k) with b~ 

= x(ok)' Since the restriction of u to Xilk) belongs to BD(oP) (N(1k))' we have by Lemma 5.1 in 

case u (x(1k) ) ~ O 

D (u/u(x(k)) N{k))>~ do (x(1k)' oo ; N{1k))=do > O, 

or equrvalently 

(5.2) Dp(u; N{1k)) >_ Iu(x(1k))lPdo' 

In case u(x(1k) ) = O, (5.2) is clear. It follows that 

D(u)=~y~cY(P)IduO/)1 +~~ I Iu(x(k)) u(x(1k))lP+~k"=1Dp(u; N{1k)) 

~> ~~= I Iu(b~ ) - u(a~) IP + ~~= I Iu(a~) IPdo ' 

so that u(b~)-u(a~)~'O and u(a~)->0 ~s m->00. This is a contradiction. Therefore 
lim~+ * u(x* ) = O. 

COROLLARY. e(P)cFh for every infinite path P 

By this corollary, we see that Cl(U{e(P); PeP*}) c Fh. Since the inverse inclusion 

relation was proved in [6; Theorem 6.4], we have 

PROPOSITION 5.~･ Cl(U{e(P); PeP*})=Fh 

REMARK 5.1. If P~P', then e(P)ne(P')=c. In fact, if P~P', then there exists a 
node x(k) and infinite subpaths P1 and P1 of P and P' respectively such that Cx(PI ) c ;t~.k) 

and Cx(P'I ) c Xi~k)+ 1' Define ueL(X) by u(x)=1 on X!.k) and u(x)=00n X-X(.k). Then 

ueBD(P) (N), u(x)= I on e(P) and u(x)=0 on e(P'). Thus e(P)ne(P')= ip. 

PROPOSITION 5.4. Let P be an infinite path and ocee(P). Then {oe} is not a G6-set 

PRooF. Let c(ee(P) and assume that {cc} is a G6-set. By Theorem 4.2, there exists 

heBD(P) (N) such that h(x)

> I - 1/n} is an infinite set. Since the subnetwork Np = 

 is ofparabolic type of orderp(cf. Example 4.2), u = I eBD(OP) (Np). By Lemma 3.4, we can find a function 

epeBD(oP) (Np) and two sequences {a~} and {b~} in Cx(P) such that a~e V2~_ 1' b~e V2~ 

and ep(a~)=0

way as in Proposition 5.1. Then Dp(v)=Dp(ep; Np), veBD(P) (N) and v(x)=ep(x) on 

Cx (P). Since {a~} and {b~} converge to c( and v is continuous at oc, we arrive at a 
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Thus {oc} iS not a G3-set. 
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