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Fine properties of Royden boundary of an infinite network are discussed in this paper. In
particular, we study the problem whether every one-point set of the Royden boundary is a
Gsset or not.

§1. Introduction

The concept of Royden boundary is one of the most important notions in the theory
of Riemann surfaces. In order to obtain a fine theory of the ideal boundary of an infinite
network, we studied in [1] and [6] discrete analogues of Royden boundary I'=I"® and
harmonic boundary I',= I''P’ of an infinite network N={X, Y, K, r} of order p>1. Our"
aim is to study the discrete analogue to the fact in [3] that a point x of the Royden
compactification of a Riemannian manifold is a Royden boundary point if and only if the
set {x} is not a G;-set.

We shall show in §2 that if x is a Royden boundary point and not a Royden harmonic
boundary point, i.e., xe I'— I'j, then the set {x} is not a G;-set. This result was proved in
[1]incase p=2. Incontrast with the continuous case, we can not assure that the set {x}
is not a Gs-set for xerl, (cf. [3; Chap. III, Theorem 2D]). Our proof in §3 shows a
difference between the continuous case and the discrete case. Some supplementary
remarks will be given in §4. We shall give an example which shows that I'=1, is a
singleton and a G;-set. It should be noted that the closure of I'—1I, in the Royden
compactification is equal to I" in the continuous case (cf. [3; Chap. III, Theorem 2E]). In
§5, we shall study the Royden boundary of a network defined by a binary tree. For this
network, there exists xel, such that the set {x} is not a G;-set.

We shall freely use the notation in [2], [5] and [6].

§2. Royden boundary

Let L(X) be the set of all real functions on X and Lo (X’ ) be the set of all ue L (X) with
finite support. For ue L(X), its discrete derivative due L(Y) and its discrete Dirichlet
integral D,(u) of order p (1<p< o) are defined by
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du(y) = r(y) N IerX K(xa y)u(x),

Dy(u)= 3 ey r(y)ldu(y)|P.

Denote by D®(N) the set of all ue L(X) with finite Dirichlet integral of order p. It is
easily seen that DP(N) is a reflexive Banach space with the norm |ull,=[D,(u)
+1u(d)P]'? (beX). Let DP(N) be the closure of Ly(X) in D®(N) with respect to this
norm. We call an element of DJ’(N) a Dirichlet potential of order p. Denote by
BD®(N) and BDY(N) the subsets of D®(N) and D@ (N) which consist of bounded
functions respectively.

By a compactification of X which is a locally compact Hausdorff space with respect
to the discrete topology, we mean a compact Hausdorff space X* containing X as a dense
opensubset. Thereis a unique (up to a homeomorphism) compactification X* of X such
that every feBD®(N) can be continuously extended to X* and the class of extended
functions separates points of X* —X. This compactification is called the Royden p-
compactification of N and I and I'=1"®" = X* — X is called the p-Royden boundary of
N. The extension of feBD®”(N) to X* is denoted by f again.

Next, we define the Royden p-harmonic boundary I, of N by

Iy=TP={xel; f(x)=0 for all feBDJ(N)}.

Note that I, is a compact subset of I,
We proved in [4] that N is of parabolic type of order p if and only if 1eD@(N).
Thus we have

THEOREM 2.1.  An infinite network N is of parabolic type of order p if and only if T,
=¢.

Since {x} is a G;-set for every xeX, we have

THEORREM 2.2 If xe X* and {x} is not a G,-set, then xeT.

We shall discuss the converse of this fact. We shall prove
THEOREM 2.3. For any ael’'— I, the set {o} is not a Gsset in X*.

In contrast with the continuous case, we can not assure that {o} is not a G;-set for
every ael (cf. [3; Chap. III, Theorem 2D]).

§3. Proof of Theorem 2.3

For a subset B of X, let us define Y (B) and X(B) by
(3.9) Y (B)={yeY;e(y)nB+¢},
(3-2) X(B)={e(y); ye Y(B)}.
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For the proof of Theorem 2.3, we need some lemmas.
We proved in [6]

LEMMA 3.1.  For a closed subset F of X* such that F(\I',= @, there exists feBD(N)
such that f=1 on F and 0< f <1 on X*.

LemMa 3.2. Let {u,} be a sequence in D{P(N) which converges pointwise to
ueL(X). If {D,(u,)} is bounded, then ucsDP (N).

We shall prove

LEMMA 3.3. Let ucBDW(N)and A be afinite subset of X.  For any ¢>0, there exists
feLy(X) such that f=u on A, sup|f|<suplu| and D,(u—f)<e.

PROOF. Since ueBD@(N), there exists a sequence {f,} in Lo(X) such that
sup|f,|<suplu| and lu—f,l,—0 as n—co. Define u, by u,(x)=u(x) on 4 and u,(x)
=f(x) on X—A. Then u,eLy(X). It suffices to show that D,(u—u,)—0 as n
—o00. Since f,(x)—u(x) as n—oo for each xeX, d(u—u,)(y)—0 as n—oo for each
yeY. We have

Dp(u_un) < Zer(A)r(y)ld(u_un) (y)lp + Dp(u—.f;n)
Since Y (4) is a finite set, we see that
Zer(A)r(y)ld(u—un)(y)lp_)O as n—oo,
and hence D,(u—u,)—0 as n—co.

LEMMA 3.4. Let ueBD®(N) and {V,} be a sequence of infinite subsets of X. Then
there exist a function g BD® (N) and two sequences {a,,} and {b,,} of nodes satisfying the
Jfollowing conditions:

3.1 A€V ym— 15 Om€EVom m=1, 2,--,
(3.2) a,#a, and b,#b,  for m#n,
(3.3) 0(a,)=0 and o@(b,)=u(b,) forallm.

Proor. First, choose any x;e¥, and set 4,={x;}. By Lemma 3.3, there is
f1€Ly(X) such that f;(x,)=u(x,), sup|f;| <suplu| and D,(u—f)<1/2. Set B, =
X(Sf,)UA,, where Sf={xeX; f(x)#0} for feL(X). Since B, is a finite set, we can
choose x,eV,—B;. Set A,=X(B;)U{x,}. By Lemma 3.3 again, there is f3€Lo(X)
such that f,=u on A4,, sup|f,| <suplu| and D,(u—f,)<(1/2)>. Repeating this process,
we can find sequences {x,} in X and {f,} in L,(X) which satisfy the following conditions:

x,eV,—B,_,, where B,=¢ and B,=X(Sf,)UA,,
f;l—__.u on An::X(Bn—l)U{xn}9
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sup|f,| <sup|u| and D,(u—f,)<(1/2),

n=1,2,---. Note that each B, is a finite set, X(B,_,)<B,, x,eB,—B,_, and Ju(x,)
=u(x,), n=1, 2,---. Now we define

Oy = Xom—1 and bm=x2m’m=1a 29
and
(/)k(.X)z u(x) _f2m—1(x) if xeBZm—l _—‘32m—2 (m= 1, 29"'9 k)a
(pk(x) =f2m(x) if xEBZm_BZm—l (m=19 2,'"; k),
Qx)=0 if xeX-—B,,

fork=1,2,---. Then g€ Lo(X), ¢(a,)=0and @ (b)) =u(b,,)form=1,2,..-. k. Thus
{¢x} converges to a function ¢ satisfying (3.3). Obviously, {a,} and {b,,} satisfy (3.1) and
(3.2).

In order to show that peBD{(N), we evaluate D,(¢,). Let

Y,={yeY; e(y)=B,—B,_4},

Y,={yeY; e()NB,# ¢, e(y)£ B},
n=1,2,---. Since B,,,>X(B,), we see that

Uit (YUY =Y (By),
so that
Dy(@) =3 {Tper, FONAGL N + Ty, 70 )P}
If ye Yy, m<k, with e(y)={z,, z,}, then @,(z)=u(z)—fom-1(2), j=1, 2, so that
ldo )P = ld(u—fom-1) ).
If ye Yy, m<k, with e(y)={zy, z,}, then ¢,(z;)=f>m(z;), j=1, 2, so that
)P = |dfom()P < 27 Hldu)IP + | —frm) )17}

If yeY,, n<2k, with e(y)={z,, z,}, z,€B, and z, ¢ B,, then z, ¢ Sf, (for, otherwise
z,€X(Sf,)=B,) and z,eX(B,)cA,.,. Hence f,(z;)=0 and f,,(z,)=u(z,). It
follows that ¢.(z,)=g,(z,)=0 if n is even, and ¢, (z;)=u(z;), j=1, 2, if n is
odd. Therefore
Dy @) S Thm [yery FONAU—LFom— ) OW+ Do, r)ldu(y)l?
2071 PO (O + 1= fo) )P}

<2°7YD,(u)+ Y2, D, (u—f,)}
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S2P7HD,(u)+ Y35 1 (172} <277 H{D,(u) + 1}
for all k. Hence, by Lemma 3.2, we see that o BD{(N), and the lemma is proved.

Proor OF THEOREM 2.3.  Suppose that {a} isa Gs-set. Then there exists a sequence
{U,} of open neighborhoods of a in X* such that Cl(U,,,)=U, and N;i,U,
={a}. Sinceael — I, there exists ueBD (N)such that u(x)=1and 0<u<1on X by
Lemma 3.1. Set

V,={xeUNX; u(x)>1/2}, n=1,2,---.

Then each V,is aninfinite set. Hence, by Lemma 3.4, there exist a function ¢ eBD{(N)
and two sequences {a,,} and {b,,} of nodes such that a,,eUy,,_1, b,,€U,,, and 0= ¢(a,,)
<1/2< ¢(b,,) for all m. This contradicts the continuity of ¢ at «, since a,,—a and b,
—a. Therefore {0} is not a G,-set.

§4. Supplementary remarks

By Theorems 2.1 and 2.3, we have

TurorEM4.1.  Assume that N is of parabolic type of orderp. Then oI if and only if
the one-point set {a} is not a Gs-set.

As a criterion for a singleton to be a G;-set, we have

TurEOREM 4.2. Let ael,. The singleton {o} is a Gs-set if and only if there exists
veBDW(N) such that 0<v(x)<1 on X*—{a} and v(x)=1.

Proor. The“if” part s clear, since ve BD® (W) is continuous on X*. To prove the
“only if ” part, let {U,} be a sequence of open sets in X* such that ;2 , U,= {o} and put F,
=X*—U, Then F,is compact and a¢F,. There exists u,eBD®(N) such that u,(«)
=1, u,(x)=0 on F, and 0<u,(x)<1 on X. Let us take v=),2,2""u,(x). Then
veBDP(N), v(a)=1 and 0<v(x)<1on X. Since Yix,F,=X*—{a}, we see that v(x)
<1 on X*—{a}.

For an infinite path P, denote by e(P) the intersection of the Royden boundary and
the closure of Cx(P).

THEOREM 4.3.  Let P be aninfinite path. If Zyecy(,,)r(y) < 0, then e(P) is a singleton
and e(P)<= T,

ProOF. Assume that Zyec @F(y)<o. By Theorem 3.1 in [2], every u(x)
(ueBD®W(N)) has a limit as x tends to the ideal boundary along P, so that e(P) is a
singleton. By Theorem 3.2 in [2], every v(x) (veBDY(N)) has a limit 0 as x tends to the
ideal boundary along P, so that e(P)c= I,
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COROLLARY. If e(P) contains more than two points, then

4.1) ZyecY(P)"(V) = 0.

Now we remark that {«} may be a G;-set for ael,. This is shown by the following
example: -

ExaMPLE 4.1. Let us consider the infinite graph G={X, Y, K} shown as in the
following figure, where X={x,; n=0, 1, 2,---} and Y={y,; n=1, 2,.--}:

y y y y Yn+1
o003 0—20—0— 02 05\ 0—0—
0 *1 *2 *3 *n *a+1

Here K(x,, y,)=1 and K(x,_,, y,)= —1 for every positive integer n and K(x,y) =0 for
any other pair. LetreL (Y') be strictly positiveand ) .y r(y)<co. Then N={G,r}is
an infinite network which is of hyperbolic type of order p. We see by Theorem 4.3 that I”
Iis a singleton {a} and I'=I,. Let us consider the function u defined by u(x,)
=Y%=1"(»). Then du(y,)=-1 and D,(u)=Y,yr(y). Put U,={xeX; u(x)>
u(x,-,)}U{a}. Then U,isanopensetin X* and N, U,={a}. Namely {«}isa G;-set.

ExampLE4.2. Let {X, Y, K} be the same graph as in Example 4.1 and let 7(y)=1 on
Y. Since N is of parabolic type of order p, I',= ¢ by Theorem 2.1. We show that I
contains uncountable points. In fact, consider a function f on X defined by

fx)=2""t for k=2"*141-2 (t=0,1,---,2™),
fx)=1-2"" for k=2"*142"47-2 (1=1,2,--,2"),

where m=0, 1, 2,---. Then we have

D, ()= olf () —f (s I
=2y Y 2P =2Y 27D < o
ThenfeBD®(N). Note that the closure of f(X)in the real line is equal to the interval [0,

1], and hence f(X*)=[0, 1] by the continuity of fon X*. Since f(X)is a countable set
and f(I')>f(X*)—f(X), f(I') is an uncountable set. Thus I" contains uncountable

points.

§5. Royden boundary of a tree

We shall study the Royden bouundary of a tree. A binary tree stemmed from x{ is
defined as the graph {X, Y, K}, where

X={x¥; n=0,1,---,2*~1, k=0, 1, 2,--},
Y={y$lk+1); h= 0) ]-9 29"'9 2k+1"19 k=05 19 2""}:
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K(x,‘,"), y(2kn+1))=K(x$‘k), yg(nt-ll?)z —1 for n=0= 19"'a 2k_ 15
K(x¥+D, y%+0y=1 for n=0, 1,---, 211,
(k=0,1,2,---)and K(x, y)=0 for any other pair. Taker(y)=1onY. Then N={X, Y,
K, r}is an infinite network. It was shown in [4] that Nis of hyperbolic type of any order
p>1. For each k, we define a finite family of subnetworks {N{°; n=0, 1, 2,---, 213
(NP =<XP, Y{P>) by
Xslk)=U;x;k{x$’ti); m=2'_kl’l, 2t~kn+1,_._, 2t—kn+2t—k_1}’
YO ={yeY;e(y)= X¥}.

We may call the subgraph {X®, Y®), K} the binary tree stemmed from x%.

Denote by P, ., (N) the set of all paths P={Cy(P), Cy(P), p} from node a to the ideal
boundary of N such that Cy(P) and Cy(P) are contained in the binary tree from a. We
call an element of the union P, of the set {P, ,,(N); aeX} an infinite path.

PROPOSITION 5.1.  For every infinite path P, e(P) contains uncountable points.

Proor. Without any loss of generality, we may assume that a=x{" and PeP, ,(N)
with Cy(P)={x¥; k=0, 1, 2,---} and Cy(P)={y¥; k=1, 2,---}. Then this path P is
identified with the network considered in Example 4.2. Let f'be the function defined in
Example 4.2 with x§ = x, and extend f to a function u on X by

u(x)=f(x¥) on X® for n=1, 2,---,2*~1 and k=1, 2,---.

Then we see easily that ue BD®(N) and u(Cx(P))=f(Cx(P)). Since u(e(P))=f (e(P))
contains uncountable points by Example 4.2, e(P) contains uncountable points.
Let us consider the following extremum problem:

(5.1) Minimize D,(u; N®) subject to ue D@ (NP) and u(xP)=1,

where D,(u; N)= Zyeyg{) |du(y)|P and D@ (N®) is defined similarly to DY (N) replacing
N, Ly(X) and D,(u) by N, Ly(X\") and D,(u; Ny°).

Denote by dy(x®, co; N®) the value of problem (5.1). By the similarity of N= N§
and N%¥, we see that

do(xiP, 003 NP) = do(x(", 003 NY?) with N=Ng.
We proved in Example 5.2 in [4] that dy(xy, co; N)>0. Thus we have

LEMMA 5.1.  All the values of problems (5.1) for n and k (n=0, 1,---,2¥—1; k=0, 1,
2,--+) are equal to a positive constant.

Now we shall prove
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PROPOSITION 5.2.  LetueBD@) (N).  For every infinite path P, u(x) has a limit 0 as x
tends to the ideal boundary along P.

Proor. Without any loss of generality, we may assume that Cy(P)={x®; k=0, 1,
2,-+}. Suppose that limsup,._, , [u(x§’)|=p>0. There exists a subsequence {b,,} of
{x{’} such that |u(b,,)>p—1/m for every m. Denote by a,, the node x{ with b,
=x{. Since the restriction of u to X{ belongs to BDY (N¥), we have by Lemma 5.1 in
case u(x#)#£0

D, (ufu(x{); NP) 2 do(x, 005 NP)=d,>0,
or equivalently
(5.2) D, (u; NP) = |u(xP)[Pd,,.
In case u(x{?)=0, (5.2) is clear. It follows that

D(u)=ZyECY(P)'du(y)|p+Zlgo= 1 lu(ch))—u(x?))lp"‘Zﬂ le(u; N(1k))
2 m=11u(by) — () P+ Y= 1 [u(a,)Pdy,

so that u(b,,)—u(a,,)—0 and u(a,)—0 as m—co. This is a contradiction. Therefore
lim,_, , u(x,)=0.

COROLLARY. e(P)c T, for every infinite path P.

By this corollary, we see that Cl(|J{e(P); PeP,})c=T). Since the inverse inclusion
relation was proved in [6; Theorem 6.4], we have

ProrosiTioN 5.3. Cl(y{e(P); PeP})=1T.

REMARK 5.1. If P#P, then e(P)Ne(P')=¢. In fact, if P# P, then there exists a
node x® and infinite subpaths P, and P of P and P’ respectively such that Cyx(P,)< X\
and Cy(Py)=X® ,. Define ueL(X)byu(x)=10onX® and u(x)=00n X—X¥. Then
ueBD® (N), u(x)=1 on e(P) and u(x)=0 on e(P'). Thus e(P)Ne(P')=¢.

PROPOSITION 5.4. Let P be an infinite path and ace(P). Then {a} is not a Gs-set.

PROOF. Let ace(P)and assume that {a} is a Gs5-set. By Theorem 4.2, there exists
heBD® (N)such that A(x)<1on X* —{a} and h(x)=1. Note that V,={xeCy(P); h(x)
>1—1/n}isaninfiniteset. Since the subnetwork Np= < Cyx(P), Cy(P)> is of parabolic
type of order p (cf. Example 4.2), u=1eBD® (N,). By Lemma 3.4, we can find a function
@eBDY) (N;) and two sequences {a,} and {b,,} in Cx(P) such that a,eV,,_1, b€V,
and ¢(a,,)=0<u(b,)=¢(b,,) for allm. We extend ¢ to a function v on X by the same
way as in Proposition 5.1. Then D,(v)=D,(¢; Np), veBD® (N) and v(x)=¢(x) on
Cx(P). Since {a,} and {b,} converge to « and v is continuous at «, we arrive at a
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contradiction. Thus {a} is not a G;-set.
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