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The existence of nontrivial periodic solutions of the scalar equation x(t) = - f(x(t))(g(x(t)) 

+ h(x(t - 1))) is mainly discussed by using a fixed point theorem for a closed convex set. As an 

application of the main results, we show that a conjecture by G. Seifert is right. Moreover we 

grve a negatrve answer to a question by G. Seifert 

S1. Imtroductiom 

Recently, G. Seifert [8] has obtained some results concerning the boundedness and 

the asymptotic behavior of the solutions, and the existence of periodic solutions of the 

scalar generalized logistic equation 

N(t) N(t) (a bN(t)-N(t-1)), t~O, (1) 
which anses in population dynamics. Here the superposed dot denotes the right-hand 

derivatrve, a and b are positive constants. We are concerned with solutions of (1) such 

that N(t)=No (t), where No (t) is a given initial function defined on [ - 1, O] which is 

positive and contmuous. In [8], concerning the existence of periodic solutions, it is 

shown that (1) has nontrivial periodic solutions for a fixed b (O 

ao(b)(= (1 + b)/(1-b)Cos~1(-b)) by using a Hopf bifurcation. In addition, G 

Seifert presented the following conjecture and a question for b 

(C) For all a > ao(b), there exist nontrivial periodic solutions of (1). 

(Q) Is it possible that there exists a sequence tk->00 as k->00 such that N(tk)~*O as 

k->ao? 
In this paper, we shall show that Conjecture (C) is right and give a negative answer to 

Question (Q). 

There are various methods and many results for the existence of periodic solutions of 

functional differential equations [cf. 1-5, 7]. In S2, we shall show the existence of 

nontrivial periodic solutions of a more general system than (1) by usmg a fixed point 

theorem for a closed convex set which can be found in [5]. In S3, we shall obtain a result 
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concernmg the existence of nontrivial periodic solutions of (1) as an application of the 

results obtained in S2. Finally we shall give a negative answer to Question (Q) 

Let R denote the interval - oo 

functions ip.･ [-1,0]H>Rwith the uniform norm lipl = sup lip(O)1. For any M>0, Iet 

-1
SM = {ipeC.' Iipl = M}. For any continuous function x(s) defined on - I ~s

~ co), and any fixed t (O ~ t

S2. Existence of montrivia~ periodic solutions 

If we put x(t)=N(t)-a/(b + 1) for a solution N(t) of (1), we obtain from (1) the 

equation equivalent to (1): 

a
 

x(t) x(t)+b+1 (bx(t)+x(t 1)) t>0 (2) 

The zero solution of (2) corresponds to the constant solution N(t) = a/(b + I ) of (1) 

In this section, we shall discuss the existence of nontrivial periodic solutions of the 

equation 

x(t)= -f(x(t)) (g(x(t))+h(x(t-1))), t~O, (3) 

where f g, and h satisfy the following conditions for Ao > A I > O, A2 > O, and B > O 

(H1) f g, h .' R->R are continuously differentiable, f ( - Ao ) = O, f (x) > O for x > - Ao' 

f (x) > B for - A I 

 O and xh (x) > O for x ~ O, and g(x* ) + h* = O, g(x) + h* 0is a constant and h - A ' *~~ omf h x . (H2) Ih(x)] ~ qlxl for -AI ~x~A2' where q>0 is a constant. 

(H3) For G, H>0, g(x)-Gx= o(lxl) and h(x)-Hx= o(IxD as x-O. 
The function x (t) = x(t, ip ) is said to be the solution of (3) through (O, ip) if for T 

with O 

and xo = c' For any k > O, the set K(k) is defined by 

lcl~k, ip(-1)=0, ip(e)~;O and Ic(Ol)~ip(e2)I 

K(k) ipeC: ~:LI61-021 for -1~6, O1' 62~0 

where L = ( sup f(x))max{ sup g(x), -h*}. Then K(k)is a compact convex set 

0in C, OeK(k), and we have: 

LEMMA 1. IfBq ~ 1, then there are positive constants to = to(k), ko = ko(k), and kl 

such that tf ipeK(k)¥{O}, then 

(i) x(t) =x(t, c) =0 for some te [O, to]' 

(ii) x(t)~-ko as long as sup x(s)~kfor t~O, and 
-1

(iii) there is afin.ite T(ip)>2 such that 
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x,(c) (ip ) e K(kl ) ' 

where the set {T(ip): ceK(k)¥{O}} is bounded. 

PROoF. Let t0=2 if k~A2' and let t0= (k-A2)/u(v+vv)+3 if k>A2' where u 

= inf f(x), v= inf g(x), and w= inf h(x). We show that x(t)=x(t, c) 
A2A2A2

= O for some te[O, to]' First we consider the case k>A2 and ip(O)>A2' In this case, 

x(t) is non-increasing for t~O as long as x(t) > O, and ~(t) ~- u(v+ w) for t~ I as long 

as x(t)>A2' Hence if x(1)>A2' we have 

x(t)~x(1)-(t-1)u(v+w), t~~1 

as long as x(t)>A2' Suppose that x(t)>A2 on [O, to ~2]. Then we obtain 

x(t 2) 

This contradiction shows that x(t)=A2 for some te[O, to ~ 2]. Next suppose that x(t) 

>0 on [to ~2, to]' Then x(t) is decreasing on [to ~2, to]' and 

~(t)~~-Bqx(t-1), t0~1~t~to' 

Hence we have 

x(t )

and this contradiction shows that x(t)=0 for some te [O, to] 

In other cases, we can prove similarly that x(t)=0 for some te [O, to] 

(ii) It is clear that 

~(t) ~ -f(x(t)) (g(x(t)) +h*) (4) 
holds as long as -A0

0
the solution of the equation )~= -f(x) (g(x)+h*) through (O, O). Then xo(.t) is 

decreasing for O~t~ I and -A0

-xo(1)~ko 

x(t)~ -ko as long as sup x(s)
-1

Suppose that for some tl>0, x(tl)

~ 1. Suppose that tl~t2 > 1. Then we obtain 

x(t2 + I ) ~ xo(1 ) ~ -ko 

from (4). Since we have x(t)~O for t2 ~ t~ tl and ,~(t)~0 for t2 + I ~ t~ tl' we obtain 
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x(ti ) ~ x(t2 + I ) ~ - ko' 

which contradicts the choice of tl' Thus we have tl ~ t2 

x(tl) ~ xo(tl ~ t2) ~ - ko' 

which contradicts the choice of tl again. Hence (5) holds 

(iii) First we show that x(t) 

0. Suppose that x(t)~O for t ~ O. Then x(t) is nonincreasing for t ~ O and we obtain from (i) that x(t) s O for t ~ to' and 

consequently x(t) s O for t ~ - 1. But this contradicts the fact that c~0. Now let To 

=inf{t>0: x(t) 

x(t)
holds. Suppose that (6) does not hold. Then there are t3 and t4 such that T0

~ To + 1, x(t) 

obtain 

~(t) ~ -f(x(t))g(x(t)), t3~t~t4 . 

Let xl(t) be the solution of the equation ~ = -f(x)g(x) through (t3, x(t3)). Then xl(t) is 

increasing on [t3, t4] and xl(t4) 

x(t4) ~ x 1(t4) 

which contradicts the choice of t4, and hence, (6) holds 

Let cc, p, y, and ~ be numbers such that O 
~ko 

= sup (g(x) + h(y)), and ~ = (oc - ko)lPy. First we show that x(t) = - oc for some 
~ko 

te[To' To + ~ + 2] even if x(t5) 

have 

x(t)>-py, t~T0+2 

as long as x(t) 

Next let t6e[To + l, To + ~ + 2] be a number such that - c( ~ x(t6) 

[t6' t6 + 2], then x(t) is increasing on [t6' t6 + 2] and we have 

~(t)~-Bqx(t-1), t6+1

which implies 

t
o
 

x(t )
to ~ 1 

Since this is a contradiction, x(t) = O for some te (To, To + ~ + 4] 

If we define ~ I by lr I = inf{t > To : x(t) = O}, then by a similar argument as in the proof 
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of (6), we can easily prove that x(t) > O for 71 

Since we have x(t)~ - ko for - I ~ t ~ T1, we obtain 

~(t) ~ -f(x(t)) (g(x(t)) + ho)' T1 ~ t ~ T1 + 1, 

where ho = inf h(x). Let x* = inf{x > O: g(x) + ho = O}, and let x2(t) be the solution 

~k0
of the equation ~ = -f(x) (g(x) + ho) through (O, O). Then x2(t) is increasing on [11' T1 

+ I] and x2(TI + 1)

O~x(t)

Moreover, since we have I~(t)1 ~f(x (t))max {g(x(t)), -h(x (t-1))} ~ ( sup f(x)) 

0
max{ sup g(x), -ho}~L for lcl~t~T(c), it follows that x.(c)(c)eK(kl). Finally 2 

0

The linear part of (3) rs 

y(t) = - F(Gy(t) + Hy(t-1)), t ~ O, (7) 

where F =f(O). The characteristic equation for (7) is 

~
 

F + G + He O (8) 
Concerning the existence of a characteristic root of (8) with positive 'real part, we have 

LEMMA 2. If 0

 cos~ 1(_ G/H)/ J~ (7z:/2 there is a characteristic root ~ = oc + ip of (8) with O 

PROoF. Suppose that ~ = oe + ip (p > O) solves (8). Then we have 

oe + G + He~"cos p = O 

p He~ smp O 
F
 

By eliminating F from these equations , we obtann 

G He~" ccsinp+cosp f(cc p) (10) 
p
 

Since we have f (oc, 7c/2) = 20cHe~"I7c, f (oc, 7c) = - He~", and 

fp(oc, p) He~" oc(PcosP-sinP) sinP 
0 

7
t
 

p2 .' ~~p~~ 
there rs a continuous function P(oc) defined on [O, Iog (H/G)] such that IT/2 
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f(oc, P(oc)) = - G for O 

the second equation of (9), we obtain 

1 He ~ " sin p 
= p E 9(cc, p) F

 

and since G(oc) = g(c(, P(oc)) is continuous on [O, Io9(HIG)] and we have 

~l~~~ 1 G(O) = cos ~ I ( - G/H) > F > o = G(lo9(H/G)) 

From 

there is a characteristic root ~ = oc + ip of (8) such that O 

Now we state a known result for (7). For any characteristic root A of (8), there is a 

decomposition of C as C = P~eQA, where PjL and Qh are invariant under the solution 

operator T (t) of (7), T (t)ip=yt(ip), ipeC. Let the projection operators defined by the 

above decomposition of C be ICA and I- 7cA, where I denotes the identity operator and the 

range of ICA is PA. 

For k > kl' Iet K=K(k). For ipeK¥{O}, define the mapping A by 

A c = x.(c) (ip) . 

Smce we have x(t) 

> O. Thus by the continuity ofx(t, ip)in t and ip, T(ip)is continuous on K¥{O}, andhence, 

T : K¥{O} -> [2, oo ) is completely continuous by Lemma I (iii). On the other hand, A is 

continuous and AipeK(kl)cKon ~¥{O}. Thus A takes K¥{O} into Kand is completely 

continuous. Moreover, we have the following lemma 

LEMMA 3. (i) Let~be the characteristic rootof(8) given in Lemma 2. Then there is a 

~ > O such that 

inf{17chipl: ceKnS8} >0. (11) 
(ii) There is an M>0 such that Aip=plp, ceKnsM implies //

PROoF. (i) For the characteristic root ~ = oc + ip of (8) given in Lemma 2, Iet ~(e) 

= eAo, _ I ~ e ~ O, and n(s) = e~A', O ~ s ~ 1. The adjoint equation of (7) is 

~(t) = F(Gz(t) + Hz(t + 1)) 

and the bilinear form is given by 

(n, ~) = n(O)~(O) - FH n(e + 1)~(O)dO 

Let Y col(n, ~) and define -~'~=(~l' ~2) by 
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~1(O)='(1_A (~' ~~)~ ~(~, ~)~), 

-1~e~o 
~2(O) =~(1_A (n' ~)~~~(n, ~~)~), 

where ~ denotes the complex conjugate of n and A = (n, ~) (~, ~) - (n, ~~) (~, ~ ) ~ O. Then it 

is easy to see that (n, ~l)= (~, ~2)= I and (n, ~2)= (~, ~l)=0. Therefore, for any ipeC, 

7cAc= (n, ip)~l + (~, ip)~2 (cf. [5, p. 177, Lemma 3.4]) 

Let 6 be a number with 0

ipeKnS6' since 1lcAipl is a continuous function in ip on the compact set KnS6' Thus we have 

(n, ip)= (~, ip)=0. If we denote by I(c) the imaginary part of (n, c), then 

I(c) FH e~"(0+1)sinP(0+1)ip(e)d6 

Since lc/2 

> O. But this contradicts the fact that (n, ip)FO. 

(ii) For M with kl 
implies p 

We are now ready to prove the existence of a nontrivial periodic solution of (3) by 

using the following theorem, which can 'be found in [5] 

THEOREM 1. Suppose that the following conditions are satisfied 

(i) There is a characteristic root ~ of (8) with Re ~ > O. 

(ii) There is a closed convex set KcC, OeK, and 6 > O, such that 

inf {l~Aipl .' ipeKnS6} >0. 

(iii) There is a completely continuousfunction T .' K¥{O} -> [e, oo ), e ~ O such that the 

mapping defined by 

Ac=x.(c)(ip), ceK¥{O} 

takes K¥{O} into K and is completely continuous. 

(iv) There is an M>0 such that Ac=ptip, ceKnsM implies //

Then there is a nontrivial periodic solution of (3) with initialfunction in K¥{O}. 

Among the assumptions of Theorem 1, (i) holds by Lemma,2, (ii) and (iv) hold by 

Lemma 3, and (iii) holds for e = 2 by Lemma I and the continuity of T(c), under the 

conditions in Lemmas I and 2. Hence we have the following theorem 

THEOREM 2. Under the conditions ofLemmas I and 2, there is a nontrivial periodic 

solution x(t) of (3) with - ko 

x(t) has at most one zero point in any interval [s, s + I J, and x(t) crosses the t-axis at its zero 

point. 
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S3･ The equatiom N(t) = N(t) (a - bN(t) - N(t - 1)) 

Equation (2), which is equivalent to Equation (1), is the equation wrth f(x)=x+ 

a/(b + I ), g(x)=bx, and h(x)=x in Equation (3). Therefore (Hl~(H3) hold for Ao = al 

(b + I ), any B with O 

 O, x* = a/b(b + I ), q = 1, G = b, and H=1, and F=a/(b + I ) in (7). Moreover, x* in the proof of Lemma 1 
satisfies x* = ko/b 

 cos~ I ( - b)/ Jr~~ (1c/2 

COROLLARY. Suppose that 0
 (1+b)/(1-b)cos~1(-b) (1r/2 

the t-axis at its zero point. 

REMARK. By a similar argument as in the proofofLemma 1, it is easily seen that the 

period of the periodic solution x(t) of (2) in the above corollary is greater than 2 and less than 

oe + 7, where oe = (ko ~ y)/py(b + 1), p = a/(b + 1) - ko' O 

a suitable constant with O 

Finally we give a negative answer to Question (Q) 

THEOREM 3. Each solution N(t) of (1) such that N(t) > O for I 

away from zero. 

PROOF. Suppose that for some tl~0, N(t) ~ a/(b + 1)for t ~ tl' Then there is a 61 

> O such that N(t) ~ 61 for - I ~ t ~ tl' which implies N(t) ~min {a/(b + 1), 61} for t ~ - 1, 

and hence, N(t) is bounded away from zero. Now consider the case that the set S = {t 

> O : N(t) 

0
( 1 2) 

for some t2 > O. We show that there rs a 6 >0 such that 

N(t)~~2' oc~t~p 

holds for any interval (oc, P) c S with t2 + 2 ~ Qc 

First consider the case p > c( + 1. From (12), we obtain 

a2 
N(t)=N(t) (a-bN(t)-N(t- 1)) ~~ - b2' oc- I 

Thus if we define c by 

(13) 
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a a a20 ip(O)=min ~'b+1~ b2 ' -1~e=, 
then we have N(t - 1)~ c(t - oc - 1)), c( ~ t ~ oc + 1, and hence, 

N(t) ~ N(t) (a - bN(t) - c(t - oc - 1)), Qc ~ t ~ c( + 1. (14) 

Let Nl(t) be the solution of N = N(a - bN - ip(t-oc- 1)) on [Qc, oc + I] through (oc, a/(b 

+ 1)). Then we obtain from (14) that N(t) ~ N1(t) for oc ~ t ~ oc + 1. Since N1(t) > O for o( 

~ t ~ cc + 1, there is a 82 > O such that 

N(t)~62' oc~t~oc+1. 

Moreover we have 

N(t) = N(t) (a - bN(t) - N(t - 1)) > O, oc + I 

and consequently (13) holds. We can similarly prove that (13) holds in the case p ~ oc + 1 

On the other hand, for any T>0, there is a 63 > O such that 

N(t)~63, -1

which together with (13) imply that N(t) is bounded away from zero 
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