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Periodic solutions of the equation
x(t)=—f(x(t))(g(x(t))+h(x(t—1)))
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The existence of nontrivial periodic solutions of the scalar equation x(t)= —f(x(t))(g(x(t))
+h(x(t—1))) is mainly discussed by using a fixed point theorem for a closed convex set. As an
application of the main results, we show that a conjecture by G. Seifert is right. Moreover we
give a negative answer to a question by G. Seifert.

§1. Introduction

Recently, G. Seifert [8] has obtained some results concerning the boundedness and
the asymptotic behavior of the solutions, and the existence of periodic solutions of the
scalar generalized logistic equation

N(t)=N(t) (a—bN(t)—N(t—1)), =0, ' 1)

which arises in population dynamics. Here the superposed dot denotes the right-hand
derivative, a and b are positive constants. We are concerned with solutions of (1) such
that N(t)=N,(z), where Ny(¢) is a given initial function defined on [ —1, 0] which is
positive and continuous. In [8], concerning the existence of periodic solutions, it is
shown that (1) has nontrivial periodic solutions for a fixed b (0<b<1) and a near
ag(b)(=+/(1+b)/(1—b)Cos™*(—b)) by using a Hopf bifurcation. In addition, G.
Seifert presented the following conjecture and a question for <1 in [8].

(C) For all a> a,(b), there exist nontrivial periodic solutions of (1).

(Q) Isit possible that there exists a sequence #,— oo as k— oo such that N(z,)—0 as
k—o0?

In this paper, we shall show that Conjecture (C)is right and give a negative answer to
Question (Q).

There are various methods and many results for the existence of periodic solutions of
functional differential equations [cf. 1-5, 7]. In §2, we shall show the existence of
nontrivial periodic solutions of a more general system than (1) by using a fixed point
theorem for a closed convex set which can be found in [5]. In §3, we shall obtain a result
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concerning the existence of nontrivial periodic solutions of (1) as an application of the
results obtained in §2. Finally we shall give a negative answer to Question (Q).
Let R denote the interval — oo <t < oo, and let C be the Banach space of continuous
functions ¢. [ —1,0]— R with the uniform norm |¢| = 1s%p . |¢(0)]. Forany M>0,let
—-—1<6<

Syu={¢eC: |¢|=M}. For any continuous function x(s) defined on —1=<s<T (0<T
< ), and any fixed ¢t (0<t<T), x,eC is defined by x,(0)=x(t+0), —1<6=0.

§2. Existence of nontrivial periodic solutions

If we pht x(2)=N(t)—a/(b+1) for a solution N(z) of (1), we obtain from (1) the
equation equivalent to (1):

‘()= — _a _
x()= (x(t)+b+l> (bx(t)+x(t—1)), ¢=0. @

The zero solution of (2) corresponds to the constant solution N(¢)=a/(b+1) of (1).
In this section, we shall discuss the existence of nontrivial periodic solutions of the

equation
x(t)=—f(x(1)) €(x(1))+h(x(t—1))), 20, 3)

where f, g, and h satisfy the following conditions for 44> A4,>0, 4,>0, and B>0.

(H1)f, g, h: R— R are continuously differentiable, f(—4,)=0, f (x) >0 for x> — A4,
f(x)>Bfor — A4, <x<A,,xg(x)>0and xi(x)>0for x#0,and g(x*)+h,=0,g(x)+h,
<0 for 0<x<x* where x*>0 is a constant and h, = —A0i9£<o h(x).

(H2) |h(x)|=ql|x| for — A, <x=Z A4,, where ¢>0 is a constant.

(H3) For G, H>0, g(x)—Gx=o0(|x|) and h(x)— Hx=o0(|x|) as x—0.

The function x (¢) = x(z, ¢) is said to be the solution of (3) through (0, ¢)if for T
with 0< T< 00, x(¢) is defined and continuous on [—1, T') and satisfies (3) on [0, T'),
and x,= ¢. For any k>0, the set K(k) is defined by

|gl <k, ¢(—1)=0, ¢(6)=0 and |¢(6,)— ¢(0,)l
K(k)= {1 ¢eC:
<L6,—-0, for —1<6,0,,0,=0
where L =( sup . f(x))max{ sup . g(x), —h*}. Then K(k)is a compact convex set
0<x<x O0<x<x
in C, 0eK(k), and we have:

LEMMA 1. If Bg= 1, then there are positive constants to=to(k), ko=/ko(k), and k,

such that if pe K(k)\{0}, then
(i) x(t)=x(t ¢)=0 for some t€[0, t,],
(i) x(1)=—ko as long as sup x(s)<k for t=0, and

—1<s<t

(iii) there is a finite T(¢)>2 such that
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xt(¢)(¢)€K(kl)s
where the set {t(¢): ¢peK(k)\{0}} is bounded.
PROOF. Let t,=2 if k< A,, and let 1o=(k—A,)/u(v+w)+3 if k> A,, where u

= inf f(x),v= inf g(x),andw= inf  h(x). We show that x(z)=x(t, @)
Ay <x<k Ay <x<k Ay <x<k

=0 for some [0, t,]. First we consider the case k>4, and ¢(0)>A,. In this case,
x(t) is non-increasing for =0 as long as x(£)>0, and X (1) S—u(v+w) for 1= 1as long
as x(1)>A,. Hence if x(1)>A4,, we have

x(f)Ex(1)—(—=ulv+w), 1zl
as long as x(t)>4,. Suppose that x(t)> 4, on [0, to—2]. Then we obtain
x(tg—2)Ex(1)— (to—3u(v+w)Sk—(k—A4;)=A4,.

This contradiction shows that x(z)= 4, for some t€[0, ¢,—2]. Next suppose that x(z)
>0 on [t,—2, t,]. Then x(¢) is decreasing on [to—2, to], and

X)L —Bgx(t—1), to—1=t=t,.
Hence we have
o
x(to)éx(to—l)—BQj x(s—1)ds < x(to—1) (1—Bg) =0,

to—l

and this contradiction shows that x(¢)=0 for some t€[0, #,].
In other cases, we can prove similarly that x(¢)=0 for some e [0, 7,].
(i) Tt is clear that

X(1)z —f(x(1)) (g(x(1))+h*) 4)

holds aslong as — 4y <x(s)<k, —1<s<1,fort=0, where /*= sup h(x). Letxy(z)be

0<x<k

the solution of the equation x= —f(x) (g(x)+h*) through (0, 0). Then x,(7) is
decreasing for 0<r<1 and —A4,<x,(1)<0. Let ko=ko(k) be a number such that
—xo(1)Sko< A, Now we show that the following holds.

x(t)= -k, aslongas sup x(s)=k. (5)
-1 <5<t

Suppose that for some 7,>0, x(t;)<—k, and x(t,)<x(t)Sk for —1=5t
<t,. Define t, by t,=sup{te[0, ¢,): x(z)=0}. First we show that 1,—¢,
<1. Suppose that 1, —,>1. Then we obtain

x(t+1)Zx0(1)2 —ko

from (4). Since we have x(¢)<0 for 7, <<t and x(¢)20 for 1, +1=1=1¢,, we obtain
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x(t)2x(t,+1)2 —k,,
which contradicts the choice of #;. Thus we have ¢, — t,<1 and
x(ty) 2 xo(t; — 1) Z — ko,

which contradicts the choice of t; again. Hence (5) holds.

(iii) First we show that x(t)<0 for some t>0. Suppose that x(f)=0 for ¢
20. Then x(¢) is nonincreasing for ¢ > 0 and we obtain from (i) that x(t)=0fort=t,,and
consequently x()=0 for t= —1. But this contradicts the fact that ¢£0. Now let To
=inf{t>0: x(t)<0}. We show that

x(t)<0, to<t=<to+1 6)

holds.  Suppose that (6) does not hold. Then there are ¢, and ¢, such that To<t3<t,
=10+ L x(t)<0fort3<t<t,, and x(,)=0. Since we have x(t—1)=0 for 13=5t=<t,, we
obtain

)= —f(x@)g(x(t), ts<t=<t,.

Let x,(¢) be the solution of the equation % = —f(x)g(x) through (t, X(t3)). Then x,(t) is
increasing on [¢3, t,] and x,(t,)<0. Thus we obtain

x(t4) é xl(t4) < 09
which contradicts the choice of t,, and hence, (6) holds.
Let a, B, 9, and 6 be numbers such that 0 <a <min {ko, A1}, B= . inf  f(x),v
- 0<x< -a
=, su (9(x)+h(y)), and 6=(x—ky)/By. First we show that x(f)= —a for some
- <x,y<-—a

te[7o, To+0+42] even if x(t5) < —o for some ts€(tg, To+1). If x(ty+2)< —o, then we
have )

X2 —By, tzto+2

as long as x(t)< —a. Thus it is easily seen that x(t)= —o for some te[tq, 1o+ +2].
Next let tge[7o+ 1, 7o+ +2] be a number such that — o <x(tg)<0. Ifx(f)<0on
[t6, ts+2], then x(z) is increasing on [z, te+2] and we have

X(t)Z —Bgx(t—1), te+1=<t<tc+2,
which implies
)
X(to) S x(to— 1)—qu x(s—1ds=x(to—1) (1—-Bg) =0,

to—l

Since this is a contradiction, x(¢)=0 for some te(tq, To+0+4].
If we define 7, by 7, =inf{s>1,: x(¢)=0}, then by a similar argument as in the proof
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of (6), we can easily prove that x(t)>0 for 7; <t=7;+ 1.
Since we have x(t)= —k, for —1<t<1;, we obtain

XS —f(x(0) (@Ce) +ho), TiSESTyH],
where ho= ) inf  h(x). Letx,=inf{x>0:g(x)+ho =0}, and let x,(t) be the solution
—kg <x<0

of the equation %= —f(x) (g(x)+ ho) through (0, 0). Then x,(¢) is increasing on [1,, 7,
+1] and x,(t; +1)<x,. Thus for ©(¢)=1,+1 and k, =x,, we have

0 x(t) <k, t1St=UeP).
Moreover, since we have |% (1) < f(x (¢))max {g(x(z)), —h(x(t—1))} = ( sup fx))
max{ sup g(x), —ho} <L for 7, £1<1(9), it follows that Xy (P)EK(Ky ) Fmally 2
0<x<ky

<1(¢)<to+06+5 implies that the set {z(¢): peK(k)\{0}} is bounded.
The linear part of (3) is

W)= —F(Gy®)+Hy(t—-1)), t=0, (7

where F=f(0). The characteristic equation for (7) is
/1 -2

F +G+He *=0. ®)

Concerning the existence of a characteristic root of (8) with positive real part, we have:

LEMMA 2. Jf 0<G<H and F>cos™'(— G/H)/, /H? —G* (n/2<cos™(—G/H)<m),
there is a characteristic root A=o+ip of (8) with 0<a<log(H/G) and n/2<B<m.

PROOF. Suppose that A=a+if (8>0) solves (8). Then we have

%+G+He'“cosﬁ=0

9)
%—He’“sin[f =0.
By eliminating F from these equations, we obtain
—G=He‘°‘<zs—;n—l—3+cosﬁ>§f(a, B). (10)

Since we have f (a, n/2)=20He ™ %/r, f (o, m)=—He™* and
(o B)=He‘“<M;LLW—sinﬁ><o, >0, g§ﬁ§n,

there is a continuous function f(«) defined on [0, log (H/G)] such that 7/2 < B(«) <m and
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Sla, B@))=—G for 0<a<log(H/G), B(0)=cos™*(— G/H), and B(log(H/G))=n. From
the second equation of (9), we obtain
1 He *sinf

F= ﬁ _g(oc, B)a

and since G(a)=g(a, f(e)) is continuous on [0, log(H/G)] and we have

/2_21
am=a£;%:g%ﬁ>F>O=GmeUG»

there is a characteristic root 1 =0+ if of (8) such that 0<a<log (H/G) and n/2< <.
Now we state a known result for (7). For any characteristic root 4 of (8), there is a
decomposition of C as C=P,®Q,, where P, and Q, are invariant under the solution
operator T'(¢) of (7), T (t)p=y,(¢), pC. Let the projection operators defined by the
above decomposition of C be 7, and /—r,, where I denotes the identity operator and the
range of w; is P,.
For k>k,, let K=K(k). For ¢eK\{0}, define the mapping 4 by

A ¢= xr(¢)(¢)-

Since we have x(¢) <0 for 7, —1 <t <17, from (6) and the definition of ,, we obtain X(ty)
>0. Thus by the continuity of x(¢, ¢)in ¢ and ¢, 7(¢)is continuous on K\{0}, and hence,
t: K\{0}—[2, c0) is completely continuous by Lemma 1 (iii). On the other hand, 4 is
continuous and 4¢peK(k;)= Kon K\{0}. Thus 4 takes K\{0} into K and is completely
continuous. Moreover, we have the following lemma.

LeMMA 3.(i) Let A be the characteristic root of (8) given in Lemma 2. Then thereisa
0>0 such that

inf{|m;¢|: peKNS;}>0. (1)
(i) There is an M >0 such that A¢= ug, pcKNS,, implies p<1.

Proor. (i) For the characteristic root A=a+if of (8) given in Lemma 2, let &0)
=€, —1<60<0, and y(s)=e"*,0<s<1. The adjoint equation of (7) is

t)=F(Gz(t)+ Hz(t + 1))
and the bilinear form is given by
0

(#, &)=n(0)5(0)~ FH j

1O+ 1)&(6)do.
1

Let Y=col(y, 7) and define £=(¢,, &,) by
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£,6)= 5, HE—Gi 0D,
—120=<0

40 =1, HE—(0, D).

where 7 denotes the complex conjugate of n and A=y, &) (7, ) — (1, &) (7, £)#0. Thenit
is easy to see that (1, &,)= (i}, &;)=1and (n, &;)=(#, £;)=0. Therefore, for any ¢eC,
m¢= (1, P)C1+ (@, #)E2 (cf. [5, p. 177, Lemma 3.4]).

Let § be a number with 0<d<k. If (11) does not hold, then 7,¢=0 for some
P KNS;, since |7, ¢| is a continuous function in ¢ on the compact set KN S;. Thus we have
(n, @)= (i, $)=0. If we denote by I(¢) the imaginary part of (1, ¢), then

0
I(¢)=FHI e~ O Vgin B(6+ 1)p(6)db.
-1
Since /2 < f <, we have sin (6 + 1) =0 for — 1 <0<0, and hence, ¢ KNS, implies 1(¢)
>0. But this contradicts the fact that (5, ¢)=0.
(i) For M with k, <M<k, where k, is given in Lemma 1, A¢=pu@p, pcKNSy
implies u<1 by Lemma 1 (iii).
We are now ready to prove the existence of a nontrivial periodic solution of (3) by
using the following theorem, which can be found in [5].

THEOREM 1. Suppose that the following conditions are satisfied:
(i)  There is a characteristic root A of (8) with Re 1>0.
(i) There is a closed convex set K= C, 0K, and 6>0, such that

inf {|n,P|. peKNS;5}>0.

(i) There is a completely continuous function t: K\{0}—[¢, ), =0 such that the
mapping defined by

A ¢ = xr(¢)(¢)’ ¢GK\{O}

takes K\{0} into K and is completely continuous.

(iv) There is an M >0 such that A¢p=u¢, pc KNSy, implies p<1.
Then there is a nontrivial periodic solution of (3) with initial function in K\{0}.

Among the assumptions of Theorem 1, (i) holds by Lemma 2, (ii) and (iv) hold by
Lemma 3, and (iii) holds for ¢=2 by Lemma 1 and the continuity of 7(¢), under the
conditions in Lemmas 1 and 2. Hence we have the following theorem.

THEOREM 2. Under the conditions of Lemmas 1 and 2, there is a nontrivial periodic
solution x(t) of (3) with —ky < x(t)<k,, its period is greater than 2 and less than ty+ 6 +5,
x(t) has at most one zero point in any interval [s, s+ 1], and x(t) crosses the t-axis at its zero
point.
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§3. The equation N(t) =N(t) (a—bN(t) —N(t—1))

Equation (2), which is equivalent to Equation (1), is the equation with f(x)=x+
a/(b+1), g(x)=bx, and h(x)=x in Equation (3). Therefore (H1)~(H3) hold for 4,=a/
(b+1),any BwithO<B<a/(b+1), 4;=a/(b+1)—B, any 4,>0, x,=a/b(b+1), g=1,
G=b, and H=1, and F=a/(b+1) in (7). Moreover, x, in the proof of Lemma 1
satisfies x, =ko/b<a/b(b+1). Sincea/(b+1)>cos™*(—b)//1—b? (n/2<cos™ ' (—b)
<mn) for 0<b <1, we have the following corollary from Lemmas 1-3 and Theorem 2.

COROLLARY. Suppose that 0<b<1. If a>./(1+b)/(1—b)cos™*(=b) (n/2
<cos™'(—b)<m), then there is a nontrivial periodic solution x(t) of (2) with —a/(b+1)
<x(t)<a/b(b+ 1), x(t) has at most one zero point in any interval [s, s + 17, and x(t) crosses
the t-axis at its zero point.

REMARK. By a similar argument as in the proof of Lemma 1, it is easily seen that the
period of the periodic solution x(t) of (2) in the above corollary is greater than 2 and less than
a+7, where a=(ko—7)/py(b+1), B=a/(b+1)—ko, 0<y <min{ko, a/(b+1)— 1}, and k, is
a suitable constant with 0 <k, <a/(b+1).

Finally we give a negative answer to Question (Q).

THEOREM 3.  Each solution N(t) of (1) such that N(t)>0 for —1<t<0 is bounded
away from zero.

ProoF.  Suppose that for some ¢, 20, N(t)=a/(b+1)for t>¢,. Then thereisa & 1
>0 such that N(t)= 6, for —1<t<t¢,, which implies N(f)=min {a/(b+1),6,} fort= —1,
and hence, N(¢) is bounded away from zero. Now consider the case that the set § = {t
>0: N(t)<a/(b+1)} contains an arbitrary large t. By Theorem 3 in [8], we have

a
N - >
0< (t)_b, t=t, (12)

for some ¢,>0. We show that there is a §,>0 such that
N({)26,, ast=p ' (13)

holds for any interval (a, f)= S with t,+2<a<B=<o0 and N(a)=a/(b+1).
First consider the case f>a+1. From (12), we obtain

a2

N(t)=N(t)(a—bN(t)—N(t—l))g—b—z, a—1<t<a.

Thus if we define ¢ by
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29

then we have Nt—1)S ¢p(t—a—1)), a<t=a+1, and hence,
N({®)ZN(t) (a—bN(@®)— p(t—a—1)), ast=soa+l (14)

Let N,(t) be the solution of N=N(a—bN— ¢(t—o—1)) on [a, a+1] through (x, a/(b
+1)). Then we obtain from (14) that N(f) = N,(z) fora<t=a+ 1. Since N,(t)>0for o
<t<a+1, there is a §,>0 such that

N@®)=d, ostSa+l.

Moreover we have
N(t)=N(t) (a—bN(t)—N(t—1)>0, a+1 <t<p,

and consequently (13) holds. We can similarly prove that (13) holdsin thecase f< o+ 1.
On the other hand, for any T>0, theré is a ;>0 such that

N@t)zds, —1=t=T

which together with (13) imply that N(z) is bounded away from zero.
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